
Advanced topics in programming languages Michaelmas 2023

Dependent types

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk



Origins



The Curry-Howard correspondence

Origins

Inductive
families

Reading

Correspondence between simply-typed language and propositional logics:

A → B ≃ A ⊃ B (functions and implications)
A × B ≃ A ∧ B (products and conjunctions)
A + B ≃ A ∧ B (sums and disjunctions)

Correspondence between dependently-typed languages and predicate logics:

(x : A) → B ≃ ∀(x : A).B (functions and universal quantification)
Σ(x : A).B ≃ ∃A ∧ B (dependent pairs and existential quantification)

How should we start to design a dependently-typed language?
Foundation for constructive mathematics (Martin-Löf Type Theory)
Lambda calculus with fancy types (Calculus of Constructions)



Equalities

Origins

Inductive
families

Reading

With dependent types we can form types from terms.
Parameterise B by a term of type A:

(x : A) → B(x)

Key Q: when are two types equal? (essential for type checking!)

Is B((λx.x)Nat) equal to B(Nat)?

Determining equality typically requires normalization (i.e. computation).

(Separate question: what equalities can we prove?)



Inductive families



Inductive families: basics

Origins

Inductive
families

Reading

Inductive families support indexing data types by terms:

data Vect : Nat → Type → Type where
Nil : Vect Z a
_::_ : a → Vect n a → Vect (S n) a

an inductive family,
Vect:

_++_ : Vect m a → Vect n a → Vect (m + n) a
_++_ Nil ys = ys
_++_ (x :: xs) ys = x :: (xs ++ ys)

a function _++_
over Vect:

_++_ : {a : Type} → {m : Nat} → {n : Nat} →
Vect m a → Vect n a → Vect (m + n) a

the full type
of _++_:



Inductive families and pattern matching

Origins

Inductive
families

Reading

Matching on one value may reveal something about another.
_++_ : Vect m a → Vect n a → Vect (m + n) a
_++_ Nil ys = ys
_++_ (x :: xs) ys = x :: (xs ++ ys)

Example:

1. Matching the first vector tells us that m is Z

2. Vect (Z + n) a ⇝ Vect n a

3. so ys has the appropriate type in the first branch
zip : Vect n a → Vect n b → Vect n (a,b)
zip Nil ys = ?

Example:

1. Matching the first vector tells us that n is Z

2. so the type of ys is Vect Z b

3. and so Nil is the only possible constructor for ys



Inductive families and termination

Origins

Inductive
families

Reading

Ideally: all functions terminate. (Why?))
Problem: termination is undecidable, so we must approximate syntactically
Question: what to do with functions that are not structurally decreasing?

length : [a] → Int
length [] = 0
length (x:xs) = 1 + length xs

structurally decreasing:

quicksort :: [N] → [N]
quicksort [] = []
quicksort (x:xs) = quicksort (filter (< x) xs) ++

x : quicksort (filter (>= x) xs).

not (obviously)
structurally decreasing:



Inductive families and erasure

Origins

Inductive
families

Reading

Problem: computationally-unnecessary code in elaborated programs
Idea: infer which parts can be erased to improve run-time performance

_++_ : Vect m a → Vect n a → Vect (m + n) a
_++_ Nil ys = ys
_++_ (x :: xs) ys = x :: (xs ++ ys)

vector append:

_++_ : (a : Type) → (m : Nat) → (n : Nat) →
Vect m a → Vect n a → Vect (m + n) a

_++_ a Z n Nil ys = ys
_++_ a (S k) n ((::) a k x xs) ys =

(::) a (k+n) x (_++_ a k n xs ys)

vector append,
elaborated:



Reading



Reading 1: pattern matching

Origins

Inductive
families

Reading

Chapter 2

Pattern Matching

In a simply typed setting pattern matching is a convenient mechanism for
analysing the structure of values, and it is one of the strong points of popu-
lar functional languages such as ML and Haskell. In the presence of depen-
dent types the scrutinee of a pattern match may appear in the goal type.
Hence, pattern matching will instantiate the goal with the different pat-
terns. When we introduce inductively defined families of datatypes [Dyb94],
pattern matching becomes even more powerful. Consider, for instance, the
simple datatype of natural numbers Nat and its inductively defined ordering
relation 6 1:

data Nat : Set where
zero : Nat
suc : Nat → Nat

data 6 : Nat → Nat → Set where
leqZero : (n : Nat) → zero 6 n
leqSuc : (n m : Nat) → n 6 m → suc n 6 suc m

The major source of difficulty when moving from simply typed pattern match-
ing to pattern matching over inductive families is that pattern matching on
one value yields information about other values. This makes case-expressions
unsuitable for pattern matching. In the example of the types above, given an
element p : n 6 m for some n andm, when pattern matching on p, n andm
will be instantiated. In other words, when pattern matching on elements of a
family, not only the goal type is instantiated, but also the context. Consider
the problem of proving transitivity of 6:

trans : (k m n : Nat) → k 6 m → m 6 n → k 6 n

1Names containing underscores can be used as operators where the arguments go in
place of the underscores. Hence, x 6 y is equivalent to 6 x y.

27

“[W]e present the type checking algorithm for sys-
tems of pattern match equations. Contrary to previ-
ous work we allow equations to overlap and prioritise
the rules from top to bottom […]

“In many previous presentations coverage checking is
undecidable […] To solve this problem we […] require
programs to contain explicit dismissal of elements in
empty types […]

“The with construct, introduced by McBride and
McKinna, allows analysis of intermediate results to
be performed on the left hand side of a function def-
inition rather than on the right hand side.”



Reading 2: termination checking

Origins

Inductive
families

Reading

foetus - Termination Checker for Simple
Functional Programs

Andreas Abel∗

July 16, 1998

Abstract

We introduce a simple functional language foetus (lambda calculus
with tuples, constructors and pattern matching) supplied with a ter-
mination checker. This checker tries to find a well-founded structural
order on the parameters on the given function to prove termination.
The components of the check algorithm are: function call extraction
out of the program text, call graph completion and finding a lexical
order for the function parameters. The HTML version of this paper
contains many ready-to-run Web-based examples.

1 Introduction

Since the very beginning of informatics the problem of termination has been
of special interest, for it is part of the problem of program verification for in-
stance. Because the halting problem is undecidable, there is no method that
can prove or disprove termination of all programs, but for several systems
termination checkers have been developed. We have focused on functional
programs and designed the simple language foetus1, for which we have imple-
mented a termination prover. foetus is a simplification of MuTTI (Munich
Type Theory Implementation) based on partial Type Theory (ala Martin

∗Theoretical Computer Science, Institute of Computer Science, Ludwigs-
Maximilians-University, Oettingenstr. 67, D-80538 Munich, Germany, email:
abel@informatik.uni-muenchen.de. I want to thank my supervisor Thorsten Al-
tenkirch and Rolf Backofen for his friendly support in technical questions.

1In German foetus is an abbreviation of “Funktionale – Obgleich Eingeschränkt – Ter-
mination Untersuchende Sprache” ;-). It also expresses that it is derived from MuTTI
(this is the German term for Mum).

1

“We introduce a simple functional language
foetus (lambda calculus with tuples, construc-
tors and pattern matching) supplied with a ter-
mination checker. This checker tries to find a
well-founded structural order on the parameters
on the given function to prove termination […]

“To prove the termination of a functional pro-
gram there has to be a well founded order on the
product of the function parameters such that
the arguments in each recursive call are smaller
than the corresponding input regarding this or-
der.”



Reading 3: erasure inference

Origins

Inductive
families

Reading

91

A Dependently Typed Calculus with Pattern Matching and

Erasure Inference

MATÚŠ TEJIŠČÁK, University of St Andrews, United Kingdom

Some parts of dependently typed programs constitute evidence of their type-correctness and, once checked,

are unnecessary for execution. These parts can easily become asymptotically larger than the remaining

runtime-useful computation, which can cause normally linear-time programs run in exponential time, or

worse. We should not make programs run slower by just describing them more precisely.

Current dependently typed systems do not erase such computation satisfactorily. By modelling erasure

indirectly through type universes or irrelevance, they impose the limitations of these means to erasure. Some

useless computation then cannot be erased and idiomatic programs remain asymptotically sub-optimal.

In this paper, we explain why we need erasure, that it is different from other concepts like irrelevance, and

propose a dependently typed calculus with pattern matching with erasure annotations to model it. We show

that erasure in well-typed programs is sound in that it commutes with reduction. Assuming the Church-Rosser

property, erasure furthermore preserves convertibility in general.

We also give an erasure inference algorithm for erasure-unannotated or partially annotated programs and

prove it sound, complete, and optimal with respect to the typing rules of the calculus.

Finally, we show that this erasure method is effective in that it can not only recover the expected asymptotic

complexity in compiled programs at run time, but it can also shorten compilation times.

CCS Concepts: · Software and its engineering→ Compilers; Functional languages;Automated static

analysis; Patterns; · Theory of computation→ Type theory.

Additional Key Words and Phrases: dependent types, erasure, inference

ACM Reference Format:

Matúš Tejiščák. 2020. A Dependently Typed Calculus with Pattern Matching and Erasure Inference. Proc. ACM

Program. Lang. 4, ICFP, Article 91 (August 2020), 29 pages. https://doi.org/10.1145/3408973

1 INTRODUCTION

Consider the following fragment of an Idris program that computes the successor of a binary
number. It includes a definition of binary numbers, indexed by their value as natural numbers, and
the type signature of add1, which guarantees that the result of add1 must indeed be the successor
of the given binary number.

data Bin : N→ Type where

N : Bin 0
I : Bin 𝑘 → Bin (1 + 2 ∗ 𝑘)
O : Bin 𝑘 → Bin (0 + 2 ∗ 𝑘)

add1 : Bin 𝑛 → Bin (1 + 𝑛)

Author’s address: Matúš Tejiščák, School of Computer Science, University of St Andrews, St Andrews, Fife, United Kingdom,

ziman@functor.sk.

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART91

https://doi.org/10.1145/3408973

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 91. Publication date: August 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

“Some parts of dependently typed programs consti-
tute evidence of their type-correctness and, once
checked, are unnecessary for execution. These parts
can easily become asymptotically larger than the
remaining runtime-useful computation, which can
cause normally linear-time programs run in exponen-
tial time, or worse […]

“We show that erasure in well-typed programs is
sound in that it commutes with reduction. Assum-
ing the Church-Rosser property, erasure furthermore
preserves convertibility in general.”



Writing suggestions

Origins

Inductive
families

Reading

Types
How do compilers for dependently typed languages make use of types?

Termination
Is there a connection between erasure and accessibility predicates?

Efficiency
Are dependent types an impediment or an aid to efficiency?

Decidability
What undecidable questions arise in compilation with dependent types?

Usability
Do dependent types aid or impede usability?
Are inductive families an improvement over “recursive families”?


