- Advanced topics in programming languages

Garbage collection

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2023 -




Algorithms



Algorithms

Vocabulary

A heap: of one or more blocks of contiguous words
A object: a heap-allocated contiguous region addressed by 0+ pointers

A mutator: application thread, opaque to the collector except for heap
operations (allocate, read, write)

A root: a heap pointer accessible to the mutator
(e.g. in static global storage, stack space, or registers)

An object is live if a mutator will access it in the future

An object is reachable if there is a chain of pointers to it from a root



Al ith Mark
orit S
gorithm mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms nark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Mark

Algorithms mark(node) =

if not node.marked:

node.marked = True

for ¢ in node.children:

mark(c)

Mark-and-sweep collection




Copying collection

Collect

Algorithms copy live blocks to to-space (starting at the root)

leave forwarding addresses in from-space
switch roles of spaces

from-space to-space

1]




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

from-space to-space




Algorithms

Copying collection

Collect

copy live blocks to to-space (starting at the root)
leave forwarding addresses in from-space
switch roles of spaces

to-space from-space

SO LTI




Reference counting

The reference count tracks the number of pointers to each object.

Algorith et i
SDIEIDS An object's reference count is 1 when the

object is created:

The count is incremented when a pointer
newly references the object:

The count is decremented when a
pointer no longer references the object:

The object is unreachable garbage when
the reference count goes to 0:




Algorithms

Conservative collection

Motivation: collector has imperfect information about object layout
(e.g. because language is compiled to C)

Idea: use an approximation to guess whether a value represents a pointer, e.g.:

1. does the value point into the heap?

2. does it point to valid metadata?

Drawbacks
1. (chance) can incorrectly classify addresses as pointers

2. (subterfuge) can fail to identify disguised pointers



Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Algorithms Copying collector for minor heap / mark-and-sweep for major heap

major heap

minor heap

4 A

AN
N N

|7




Generational collection

Algorithms Copying collector for minor heap / mark-and-sweep for major heap

major heap

minor heap

4 A

AN
O b




Generational collection

Algorithms Copying collector for minor heap / mark-and-sweep for major heap

major heap

minor heap

4 A

/N
p EAN I MR




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Generational collection

Copying collector for minor heap / mark-and-sweep for major heap

Algorithms

major heap

minor heap




Performance



Performance

GC metrics

Throughput: mutator performance
Latency: pauses in mutator execution

Space overhead: e.g. due to mark bits, layout information

More (combination of program behaviour and collector design):

maximum heap size allocation rate

collection frequency mean object size

proportion of heap occupied by large objects



Performance subtleties

Example
Pause times alone provide little information.
A good distribution of pause times is needed for mutators to make progress.

Performance

Example
Compaction can slow collection but improve locality (& hence throughput)




Hybrid systems

Many mature systems combine several standard algorithms.

For example, Cedar (1985):

“[..] provides both a concurrent reference-counting collector that

runs in the background when needed, and a pre-emptive conven-
tional “trace-and-sweep” collector that can be invoked explicitly by

the user to reclaim circular data structures [...]

Performance

“Both collectors treat procedure-call activation records (called frames)
“conservatively”; that is they assume that every ref-sized bit pattern

found in a frame might be a ref”




Reading



Reading

THE i iy
GARBAGE COLLEGTION

HANDBOOK# = &

The Art of Automalic l\m‘mry fhn'agqm‘_nt 2

Second edition

Background reading

K.




Reading

A Real-time Garbage Collector
with Low Overhead and Consistent Utilization

VT, Rajan

Paper 1: Bacon et al (2003)

“[.] there is significant interest in applying garbage
collection to hard real-time systems.”

“Past approaches have generally suffered from one
of two major flaws: either they were not provably
real-time, or they imposed large space overheads to
meet the real-time bounds.”

“We [..] show that at real-time resolution we are
able to obtain mutator utilization rates of 45% with
only 1.6-2.5 times the actual space required by the
application”




Reading

Paper 2: Carpen-Amarie et al (2023)

Concurrent GCs and Modern Java Workloads:
A Cache Perspective

“This work builds on the hypothesis that the cache
pollution caused by concurrent GCs hurts applica-
tion performance.”

“We find that concurrent GC activity may slow down
the application by up to 3x and increase the LLC
misses by 3 orders of magnitude.”

“However, [..] we find that only 5 out of 23 bench-
marks show a statistically significant correlation
between GC-induced cache pollution and perfor-
mance.”




Reading

Low-Latency, High-Throughput Garbag

e Collection
-

Paper 3: Zhao et al (2022)

“To achieve short pauses, state-of-the-art concur-
rent copying collectors such as C4, Shenandoah, and
ZGC use substantially more CPU cycles and memory
than simpler collectors.”

“This paper [..] uses the insight that regular, brief
stop-the-world collections deliver sufficient respon-
siveness at greater efficiency than concurrent evacu-
ation.”

“[.] LXR delivers 7.8% better throughput and 10x
better 99.99% tail latency than Shenandoah.”




