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Abstract
Tagless interpreters for well-typed terms in some object language
are a standard example of the power and benefit of precise indexing
in types, whether with dependent types, or generalized algebraic
datatypes. The key is to reflect object language types as indices
(however they may be constituted) for the term datatype in the host
language, so that host type coincidence ensures object type coinci-
dence. Whilst this technique is widespread for simply typed object
languages, dependent types have proved a tougher nut with nontriv-
ial computation in type equality. In their type-safe representations,
Danielsson [2006] and Chapman [2009] succeed in capturing the
equality rules, but at the cost of representing equality derivations
explicitly within terms. This article delivers a type-safe represen-
tation for a dependently typed object language, dubbed KIPLING,
whose computational type equality just appropriates that of its host,
Agda. The KIPLING interpreter example is not merely de rigeur—
it is key to the construction. At the heart of the technique is that key
component of generic programming, the universe.

1. Introduction
Last century, we learned from Altenkirch and Reus [1999] how to
represent simply typed terms precisely as an inductive family of
datatypes [Dybjer 1991] in a dependently typed language. The idea
is to make the type system of the host language police the typing
rules of the object language by indexing the datatype representing
object terms with a representation of object types. The payoff is
that programs which manipulate the object language can take type
safety for granted—well-typedness of object language terms be-
comes a matter of basic hygiene for the host. There is a rich litera-
ture of work which exploits this technique, both in the dependently
typed setting and in Haskell-like languages with sufficiently precise
typing mechanisms. For a small selection, see Baars and Swierstra
[2004]; Brady and Hammond [2006]; Carette et al. [2009]; Chen
and Xi [2003]; Pasalic et al. [2002].
This paper makes the jump to representing dependently typed

object languages in a precise type-safe manner, a problem compli-
cated by the fact that object language type equality requires non-
trivial computation. However, the host language type system also
boasts a computational equality: let us steal it. If we can push object
language computation into host language types, object type equal-

[Copyright notice will appear here once ’preprint’ option is removed.]

ity becomes a matter of coincidence, specified by the outrageously
simple method of writing the same variable in two places! The key
is to choose our coincidences with care: we should not ask for coin-
cidence in what types say if we only want coincidence in what types
mean. Once we have found what host type captures the ‘meaning’
of object types, we can index by it and proceed as before.

The representation recipe. Recall the basic type-safe encoding
method, working in Agda [Norell 2008]. First, define types.

data ! : Set where
ι : !
! : ! → ! → !

Next, define contexts, with de Bruijn [1972] indices typed as wit-
nesses to context membership.

data Cx : Set where
E : Cx
, : Cx → ! → Cx

data " : Cx → ! → Set where
top : ∀ {Γ τ } → Γ , τ " τ
pop : ∀ {Γ σ τ } → Γ " τ → Γ , σ " τ

Finally, define terms by giving an indexed syntax reflecting the
typing rules which, fortunately, are syntax-directed. I make the
traditional use of comment syntax to suggest typing rules.

data $ : Cx → ! → Set where

-- variables witness context membership
var : ∀ {Γ τ } → Γ " τ

--————————
→ Γ $ τ

-- λ-abstraction extends the context
lam : ∀ {Γ σ τ } → Γ , σ $ τ

--————————————
→ Γ $ σ ! τ

-- application demands a type coincidence
app : ∀ {Γ σ τ } → Γ $ σ ! τ → Γ $ σ

--———————————————————
→ Γ $ τ

Notice how, for app, the domain of the function and the argu-
ment type must coincide. Agda will reject apps unless the candi-
dates for σ are definitionally equal in type !: it’s really checking
types. Moreover, with ‘implicit syntax’ [Norell 2007] combining
insights from Damas and Milner [1982] via Pollack [1992] with
pattern unification from Miller [1991], Agda makes a creditable
effort at type inference for object language terms!
McKinna and I [McBride and McKinna 2004] showed how to

write a typechecker which yields typed terms from raw preterms,
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ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of
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programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-
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Essay marks are awarded for understanding,
for insight and analysis,

and for writing quality.
Essays should be around 1500 words.

1. Contextualise widely 5. Describe originally
2. Analyse deeply 6. Synthesise insightfully
3. Appraise thoughtfully 7. Expound illustratively
4. Elucidate carefully 8. Write stylishly



Media

Structure

High marks

Low marks

PL

Running

Designing

Analysing

Read a book Read another book Read some papers
Outrageous but Meaningful Coincidences

Dependent type-safe syntax and evaluation

Conor McBride
University of Strathclyde
conor@cis.strath.ac.uk

Abstract
Tagless interpreters for well-typed terms in some object language
are a standard example of the power and benefit of precise indexing
in types, whether with dependent types, or generalized algebraic
datatypes. The key is to reflect object language types as indices
(however they may be constituted) for the term datatype in the host
language, so that host type coincidence ensures object type coinci-
dence. Whilst this technique is widespread for simply typed object
languages, dependent types have proved a tougher nut with nontriv-
ial computation in type equality. In their type-safe representations,
Danielsson [2006] and Chapman [2009] succeed in capturing the
equality rules, but at the cost of representing equality derivations
explicitly within terms. This article delivers a type-safe represen-
tation for a dependently typed object language, dubbed KIPLING,
whose computational type equality just appropriates that of its host,
Agda. The KIPLING interpreter example is not merely de rigeur—
it is key to the construction. At the heart of the technique is that key
component of generic programming, the universe.

1. Introduction
Last century, we learned from Altenkirch and Reus [1999] how to
represent simply typed terms precisely as an inductive family of
datatypes [Dybjer 1991] in a dependently typed language. The idea
is to make the type system of the host language police the typing
rules of the object language by indexing the datatype representing
object terms with a representation of object types. The payoff is
that programs which manipulate the object language can take type
safety for granted—well-typedness of object language terms be-
comes a matter of basic hygiene for the host. There is a rich litera-
ture of work which exploits this technique, both in the dependently
typed setting and in Haskell-like languages with sufficiently precise
typing mechanisms. For a small selection, see Baars and Swierstra
[2004]; Brady and Hammond [2006]; Carette et al. [2009]; Chen
and Xi [2003]; Pasalic et al. [2002].
This paper makes the jump to representing dependently typed

object languages in a precise type-safe manner, a problem compli-
cated by the fact that object language type equality requires non-
trivial computation. However, the host language type system also
boasts a computational equality: let us steal it. If we can push object
language computation into host language types, object type equal-

[Copyright notice will appear here once ’preprint’ option is removed.]

ity becomes a matter of coincidence, specified by the outrageously
simple method of writing the same variable in two places! The key
is to choose our coincidences with care: we should not ask for coin-
cidence in what types say if we only want coincidence in what types
mean. Once we have found what host type captures the ‘meaning’
of object types, we can index by it and proceed as before.

The representation recipe. Recall the basic type-safe encoding
method, working in Agda [Norell 2008]. First, define types.

data ! : Set where
ι : !
! : ! → ! → !

Next, define contexts, with de Bruijn [1972] indices typed as wit-
nesses to context membership.

data Cx : Set where
E : Cx
, : Cx → ! → Cx

data " : Cx → ! → Set where
top : ∀ {Γ τ } → Γ , τ " τ
pop : ∀ {Γ σ τ } → Γ " τ → Γ , σ " τ

Finally, define terms by giving an indexed syntax reflecting the
typing rules which, fortunately, are syntax-directed. I make the
traditional use of comment syntax to suggest typing rules.

data $ : Cx → ! → Set where

-- variables witness context membership
var : ∀ {Γ τ } → Γ " τ

--————————
→ Γ $ τ

-- λ-abstraction extends the context
lam : ∀ {Γ σ τ } → Γ , σ $ τ

--————————————
→ Γ $ σ ! τ

-- application demands a type coincidence
app : ∀ {Γ σ τ } → Γ $ σ ! τ → Γ $ σ

--———————————————————
→ Γ $ τ

Notice how, for app, the domain of the function and the argu-
ment type must coincide. Agda will reject apps unless the candi-
dates for σ are definitionally equal in type !: it’s really checking
types. Moreover, with ‘implicit syntax’ [Norell 2007] combining
insights from Damas and Milner [1982] via Pollack [1992] with
pattern unification from Miller [1991], Agda makes a creditable
effort at type inference for object language terms!
McKinna and I [McBride and McKinna 2004] showed how to

write a typechecker which yields typed terms from raw preterms,

1 2010/6/8



How to get a high mark in a presentation

Structure

High marks

Low marks

PL

Running

Designing

Analysing

Presentation marks are awarded for clarity,
for effective communication,

and for selection and organisation of topics

1. engage with the audience 4. explain the problem
2. empathize with the audience 5. bring out the key idea
3. bring people along 6. have one key example



Media

Structure

High marks

Low marks

PL

Running

Designing

Analysing

Read a book Look at some slides

Photo © James Millar/TEDxExeter

Watch a presentation
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How to get a low mark in an essay

Structure

High marks

Low marks

PL

Running

Designing

Analysing

1. be exclusively critical 3. assert without evidence
2. quote extensively 4. stay vague and noncommittal



How to get a low mark in a presentation

Structure

High marks

Low marks

PL

Running

Designing

Analysing

1. read your slides
Section no.1
Section no. 2
Section no.3
Section no. 4

Subsection no.1.1

two points

1 my first point
2 my second point

Sascha Frank Beamer Class a little nicer 2

1. my first point
2. my second point

Section no.1
Section no. 2
Section no.3
Section no. 4

Lists I
Lists II

lots of text
lorem ipsum dolor sit amet consectetur adipiscing elit donec convallis
ultrices placerat suspendisse scelerisque arcu felis eu suscipit arcu dapibus
vitae quisque ornare sem vitae libero dapibus sollicitudin suspendisse
potenti proin vitae molestie enim proin id rhoncus risus nunc varius lacus
a dictum placerat donec sit amet velit massa praesent a posuere elit
aliquam eu facilisis ex donec a neque ac ex rhoncus posuere
x + y2 = f (z) aenean posuere interdum nisix + y2 = f (z) elementum
varius nunc eu ipsum lorem ipsum dolor sit amet consectetur adipiscing
elit donec convallis ultrices placerat suspendisse scelerisque arcu felis eu
suscipit arcu dapibus vitae quisque ornare sem vitae libero dapibus
sollicitudin suspendisse potenti proin vitae molex + y2 = f (z) stie enim
proin id rhoncus risus nunc varius lacus a dictum placerat donec sit amet
velit massa praesent a posuere elit aliquam eu facilisis ex donec a neque
ac ex rhoncus posuere aenean posuere x + y2 = f (z) interdum nisi
elementum varius nunc eu ipsum suspendisse x + y2 = f (z) potenti proin
vitae molestie enim proin id rhoncus risus nunc varius lacus a dictum
placerat donec sit amet velit massa praesent a posuere elit aliquam eu
facilisis ex donec a neque ac ex rhoncus posuere aenean posuere interdum
nisi elementum varius nunc eu ipsum

Sascha Frank Beamer Class a little nicer 2

3. stuff your slides

2. overrun
lorem ipsum dolor sit amet consectetur adipiscing elit
donec convallis ultrices placerat suspendisse scelerisque
arcu felis eu suscipit arcu dapibus vitae quisque ornare
sem vitae libero dapibus sollicitudin suspendisse potenti
proin vitae molestie enim proin id rhoncus risus nunc
varius lacus a dictum placerat donec sit amet velit
massa praesent a posuere elit aliquam eu facilisis ex
donec a neque ac ex rhoncus posuere aenean posuere
interdum nisi elementum varius nunc eu ipsum

4. disregard structure



Programming languages: themes



Views of programs

Structure

High marks

Low marks

PL

Running

Designing

Analysing

Q: what is a program?



Undecidable questions

Structure

High marks

Low marks

PL

Running

Designing

Analysing

Q: what undecidable question
are we approximating?



Overview

Structure

High marks

Low marks

PL

Running

Designing

Analysing

running
programs

designing
languages

analysing
programs

Garbage collection

Delimited continuations

Dependent types

Module systems

Abstract interpretation

Partial evaluation

Program synthesis

Oct 9

Oct 16

Oct 23

Oct 30

Nov 6

Nov 13

Nov 20

Nov 27



Running programs



Garbage collection

Structure

High marks

Low marks

PL

Running

Designing

Analysing

How can we efficiently automat-
ically reclaim storage that is no
longer needed by a program?

Question:

a process that mutates memory
by allocating, freeing, reading
and writing blocks of memory

A program is

Liveness: it is not possible to de-
termine whether each value can
be used by the program in future

What’s undecidable?
• •

• • • •

•• •

• •



Delimited continuations

Structure

High marks

Low marks

PL

Running

Designing

Analysing

How can we extend program-
ming languages with operators
that allow powerful manipula-
tion of control flow?

Question:

a calculation that may interact
with its context

A program is

More questions:
How can we give types to delimited control operators?
How can we elaborate programs with delimited control?
What is the connection with algebraic effects?



Designing programming languages



Dependent types

Structure

High marks

Low marks

PL

Running

Designing

Analysing

How can we build a powerful, us-
able, and efficient programming
language out of type theory?

Question:

a blend of logic and computa-
tion.

A program is

Type equivalence is undecidable
in general

What’s undecidable?

m<n⇒n ̸=0 : m < n → n ̸= 0
m<n⇒n ̸=0 (s≤s m≤n) ()

More questions:
How should we handle equality?
How might we write programs in a dependently-typed language?
How might we compile programs effectively?



Module systems

Structure

High marks

Low marks

PL

Running

Designing

Analysing

How can we construct a lan-
guage that allows us to assemble
large systems from well-specified
components?

Question:

a large modular system as-
sembled from separately-defined
components.

A program is

module type SET =
s i g

type t
type elem
va l empty : t
va l add : elem → t → t
va l mem : elem → t → bool

end

module MakeSet (Elem: ORDERED) :
SET with type elem = Elem.t

More questions:
How can we support abstraction and flexible composition?
What might a core language of modules look like?
How might we add support for recursion, higher-order modules, and first-class modules?
What problems might arise in sophisticated module systems?



Analysing programs



Abstract interpretation

Structure

High marks

Low marks

PL

Running

Designing

Analysing

How can we analyse a program
to obtain information about it?

Question:

an object that can be given a
variety of semantics of varying
levels of precision

A program is

Most questions. Instead, deal
with sound overapproximations.

What’s undecidable?

•

•

•

•

γ(x̂) x̂

⊑ ⊑

x α(x)

γ

α

D D̂



Partial evaluation

Structure

High marks

Low marks

PL

Running

Designing

Analysing

How might we perform as much
computation as possible in ad-
vance?

Question:

an open term that can be simpli-
fied using reductions.

A program is

Whether a program is optimally
partially evaluated is undecid-
able.

What’s undecidable?

static input
in1

partial
evaluator

“mix”

general
program p

specialized
program pin1

outputdynamic
input in2

More questions:
How can we transform a program to improve its partial evaluation?
Is partial evaluation useful in practice?
How can we incorporate equations other than β?



Program synthesis

Structure

High marks

Low marks

PL

Running

Designing

Analysing

How can we generate programs
from specifications?

Question:

an object in a very large search
space.

A program is

Whether a program meets a
specification is undecidable in
general.

What’s undecidable?

Specification

Guess

Check

Final
program

Success

Feedback
Failure

Candidate
Program


