- Advanced topics in programming languages

Program synthesis

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2023 -

The program synthesis problem

What is the synthesis problem?

The problem
Program Synthesis (Gulwani et al, 2017):

..is the task of automatically finding a program in the underly-

ing programming language that satisfies the user intent ex-

pressed in the form of some specification.
(emphasis mine)

That is, it's a search for a constructive proof of a quantified formula:

3.V input.Specification

When is program synthesis useful?

The problem Efficiency in

. Effective compilation Program repair
programming

(low-level code from
high-level specifications)

(updating buggy programs

(CEapsepiieion) to fit a specification)

Program

Deobfuscation End-user programming .
transformation

(e.g. interactive (updating programs as

(esizating ezeeliiy) programming-by-examples) specifications evolve)

What is a specification?

“..the user intent expressed in the form of some specification ...”
The problem

A logical specification A type An existing program

xX:L—=y:7Z—

{z:Z | z= max(x,y)} slow_max(x,y)

fix,y) 2 xNfixy) >y

Input-output examples Natural language

f2,4) = 4,f(5,2) =5,... “The larger of x and y”

One approach: Syntax-Guided Synthesis (SyGuS)

The problem .
logical formula

f:Zx7—7
f(x, y) =1f(y, x) A f(x, y) > x

SyGuS F{f 0,y = TTE((x<y),y, 0 |

grammar (search space) /)

x| y|e | 1]ITE(C,T,T)
T<T|=T|CAC

Example from Search-based Program Synthesis, Alur et al (2018)

Why is program synthesis hard?

Challenge: big search space

Synthesis is often based on some form of enumeration of programs.

However, the search space is extremely large (exponential in program length).

Sl Some form of pruning or guidance is necessary, e.g. by using
abstract interpretation grammar refinement syntactic templates
domain equations component-based construction

stochastic search constraint solving precise types

Challenges 2: determining correctness

How can we tell when we've found a solution?

SMT solving Type checking

ZB I'ke:r

Challenges

L Human inspection

Success in limited domains

Spreadsheet Regular Trigonometric
formulas expressions functions

t a(b|c)*d %

Challenges

oo Loop-free SQL Bit

programs queries twiddling

(O~ Momrselect ™ x g oxBEEF << y

where

Reading

Reading

Background reading: Program Synthesis

“This survey is a general overview of the state-of-the-art
approaches to program synthesis, its applications, and sub-
Program Synthesis fields. We discuss the general principles common to all

Sumit Gubwani modern synthesis approaches such as syntactic bias, oracle-

Microsoft Research

smitganicrosoft.con guided inductive search, and optimization techniques.”

Rishabh Singh
Microsoft Research
risinemicrosoft.com

Program Synthesis.

S. Gulwani, O. Polozov and R. Singh.

Foundations and Trends in Programming Languages,
vol. 4, no. 1-2, pp. 1-119, 2017.

Online:
https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

https://microsoft.com/en-us/research/wp-content/uploads/2017/10/program_synthesis_now.pdf

Reading

Oracle-Guided Component-Based Program Synthesis
Susmit Jha Sumit Gulwat Sanjit A. Seshia Ashish Tiwari
keley
e

ni
UC Berkeley Microsoft Research UC Bert SRI International
hoBeecs berlleydu ity micr hiatie twariBsLar con

ABSTRACT

“We present a novel approach to automatic
synthesis of loop-free programs. The approach
is based on a combination of oracle-guided
learning from examples, and constraint-based
synthesis from components using satisfiability
modulo theories (SMT) solvers.]..]

“We demonstrate the efficiency and effec-
tiveness of our approach by synthesizing bit-
manipulating programs and by deobfuscating
programs.”

Reading

Program Synthesis from Polymorphic Refinement Types

Nadia Polikarpova Ivan Kuraj

Armando Solar-Lezama

MIT CSAIL, USA
{polikarn,ivanko,asolar}@csail.mit.edu

Abstract
‘We present a method for synthesizing recursive functions that
provably satisfy a given specification in the form of a poly-

1. Introduction

‘The key to scalable program synthesis is modular verification.
Modularity enables the synthesizer to prune candidates for

morphic refinement type. We observe that such
are particularly suitable for program synthesis for two reasons.
First, they offer a unique combination of expressive power and
decidability, which enables automatic verification—and hence
synthesis—of nontrivial programs. Second, a type-based spec-
ification for a program can often be effectively decomposed into
independent specifications for its components, causing the syn-
thesizer to consider fewer component combinations and leading

the size of tthe

ore of our synthesis procedure is anew algorithm for refinement

different Whereby combi
ally reducing the size of the search space it has to consider.
‘This explains the recent success of type-directed approaches to
synthesis of functional programs [12, 14, 15, 27]: not only do
ill-typed programs vastly outnumber well-typed ones, but more
importantly, a type error can be detected long before the whole
programispu together

ple. coarse-grained types alone are, however, rarely
sufficient to prec\\e!y describe a synthesis goal. Therefore, ex-
isting approaches supplement type information with other kinds

which supports
" We have evalusted our prototype implementaion on orge
setofsy found thatit exceeds the state of the

of such as input-output examples [1. 12, 27],
or pre- and post-conditions 20, 21]. Alas, the corresponding
verification proced: Iy enjoy the same level of modularity

artin terms of both scalability and usability. The tool was able to
synthesize more complex programs than those reported in prior
work (several sorting algorithms and operations on balanced
search trees). as well as most of the benchmarks tackled by
existing synthesizers, often starting from a more concise and
intwitive user input

Categories and Subject Descriptors F3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs; 122 [Automatic Programming): Program
Synthesis

as 2, thus y limiting the scalability of
these lnhmquex
In this work we present a novel system that pushes the idea

of refinement types [13, 33]: types decorated with predicates
from a decidable logic. For example, imagine that a user intends
10 synthesize the function replicate, which, given a natural
number n and a value x, produces a list that cor

of . In our system, the user can express this intent by providing
the followi iture:

replicate s niNat —z:a - {v: Lista|lenv=n}

refinement types (2016

“We present a method for synthesizing re-
cursive functions that provably satisfy a
given specification in the form of a poly-
morphic refinement type.

"a unique combination of expressive power
and decidability [..] a type-based specifi-
cation for a program can often be effec-
tively decomposed into independent spec-
ifications for its components [..] leading to
a combinatorial reduction in the size of the
search space.

“The tool was able to synthesize more com-
plex programs than those reported in prior
work (several sorting algorithms and oper-
ations on balanced search trees) [..] often
starting from a more concise and intuitive
user input.”

Reading

Paper 3: abstract interpretation (2023)

Inductive Program Synthesis via Iterative Forward-Backward
Abstract Interpretation

YONGHO YOON, Seoul National University, Korea
WOOSUK LEE*, Hanyang University, Korea
KWANGKEUN Y1, Seoul National University, Korea

Akey challenge in example-based program synthesis i the gigantic search space of programs. To address this
challenge, various work proposed to use abstract interpretation to prune the search space. However, most of
existing approaches have focused only on forward abstract interpretation, and thus cannot fully exploit the
power of abstract interpretation. In this paper, we propose a novel approach to inductive program synthesis
via iterative forward-backward abstract interpretation. The forward abstract interpretation computes possible
outputs of a program given inputs, while the backward 1bsnam intepreaton computes possible inputs of a
program given outputs. By itera g the two abst in an alternating fashion,
e can clfctively determine if any completion o cach panm program as a Candidate can satsy the input-
output examples. We apply our approach to a standard formulation, syntax-guided synthesis (SyGus), thereby
supporting a wide range of inductive synthesis tasks. We have implemented our approach and evaluated it

ona set of benchmarks from the prior work. The experimental results show that our approach significantly
outperforms the state-of-the-art approaches thanks to the sophisticated abstract inteprtation techniques.

CCS Concepts: + Software and its - by exampl
+ Theory of computation — Abstraction; Program analysis

Additional Key Words and Phrases: Program Synthesis, Programming by Example, Abstract Interpretation
ACM Reference Format:

Yongho Yoon, Woosuk Lee, and Kwangkeun Yi. 2023. Inductive Program Synthesis via Iterative Forward-
Backward Abstract Interpretation. Proc. ACM Program. Lang. 7, PLDI, Article 174 (June 2023), 25 pages.
https://doi.org/10.1145/3591288

1 PROBLEM AND OUR APPROACH

Inductive program synthesis aims to synthesize a program that satisfies a given set of input-output
examples. The popular top-down search strategy is to enumerate partial programs with missing
parts and then complete them to a full program.

Though such a strategy is effective for synthesizing small programs, it hardly scales to large
programs without being able to rapidly reject spurious candidates due to the exponential size of
the search space.

Therefore, various techniques have been proposed to prune the search space [Feng et al. 2017;
Gulwani 2011; Lee 2021; Polikarpova et al. 2016; Wang et al. 2017a]. In particular, abstract inter-
pretation [Cousot 2021; Rival and Yi 2020] has been widely used for pruning the search space

“A key challenge in example-based program syn-
thesis is the gigantic search space of programs.
To address this challenge, various work pro-
posed to use abstract interpretation to prune
the search space.|[..]

“The forward abstract interpretation computes
possible outputs of a program given inputs,
while the backward abstract interpretation com-
putes possible inputs of a program given out-
puts.]...]

“We apply our approach to a standard formula-
tion, syntax-guided synthesis (SyGuS), thereby
supporting a wide range of inductive synthesis
tasks.”

Reading

Implementation and Synthesis of Math Library Functions

IAN BRIGGS, University of Utah, USA
YASH LAD, University of Utah, USA
PAVEL PANCHEKHA, University of Utah, USA

Achieving speed and accuracy for math library functions like exp, sin, and log is difficult. This is because
low-level implementation languages like C do not help math library developers catch mathematical errors,
build implementations incrementally, or separate high-level and low-level decision making. This ultimately
puts development of such functions out of reach for all but the most experienced experts. To address this,
we introduce MegaLibm, a domain-specific language for implementing, testing, and tuning math library
implementations. Megal_ibm is safe, modular, and tunable. Implementations in MegaLibim can automatically
detect mathematical mistakes like sign flips via semantic wellformedness checks, and components like range
reductions can be implemented in a modular, composable way, simplifying implementations. Once the high-
level algorithm is done, tuning parameters like working precisions and evaluation schemes can be adjusted
through orthogonal tuning parameters to achieve the d danda V- Megal

library de\elopers to wark interactively, compiling, tsting, and tuning their implementations and invoking
tools like Sollya and type-directed synthesis to complete ts and synthesize entire

MegalLibm can express 8 state-of-the-art math library implementations with comparable speed and accuracy
to the original C code, and can synthesize 5 variations and 3 from-scratch implementations with minimal
guidance.

CCS Concepts: » Mathematics of computing — Numerical analysis,

Additional Key Words and Phrases: Function approximation, libm, DSL, type-directed synthesis, e-graphs
ACM Reference Format:

Tan Briggs, Yash Lad, and Pavel Panchekha. 2023. Implementation and Synthesis of Math Library Functions. 1,
1 (November 2023), 28 pages. hitps://doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION
Mathematical computations in tasks as diverse as acronautics, banking, scientific simulations,
and data analysis are typically implemented as operations on floating-point numbers. The basic
btracti and possibly division, square roots, and fused
multiply-adds—are typically provided by the hardware, but higher-level mathematical functions
such as or functions are in software in libraries such as
libm. The speed and aceuracy of these software libraries can have a dramatic impact on applications
such as 3D graphics [Briggs and Panchekha 2022]
To maximize performance, math libraries are written in low-level languages like C; Figure 1

shows one example. Ensuring correctness and accuracy is thus challenging. These implementa-

tion languages cannot prevent errors such as mixing up signs or using the wrong

Paper 4: Megalibm (2024)

“Achieving speed and accuracy for math library func-
tions like exp, sin, and log is difficult [...]

“[W]e introduce MegaLibm, a domain-specific lan-
guage for implementing, testing, and tuning math
library implementations.

“MegalLibm can express 8 state-of-the-art math li-
brary implementations with comparable speed and
accuracy to the original C code, and can synthe-
size 5 variations and 3 from-scratch implementa-
tions with minimal guidance.]...]

“Unfortunately, determining equality for arbitrary
real-valued expressions is known to be hard —
dependent on unproven mathematical conjectures,
and possibly undecidable.”

Writing suggestions

Decidability
How does the system determine when a solution is valid?

Scalability
How complex can specifications be?
How large can generated programs be?
What subset of the language is targeted?
How long does synthesis take?

Practicability
How easy is it for users to express specifications?
Reading Applicability
What range of problems might the system apply to?

