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The Weighted Set-Cover Problem

Set Cover Problem

= Given: set X and a family of subsets F, [ [ [ )
and a cost function ¢ : F — R" S
= Goal: Find a minimum-cost subset Py e | o
CCF
Sum over the costs | S-t: X = U S. S
of all sets in C sec d e | e
I
[ ] [ [
Ss Ss

S S S5 S S5 Ss
Remarks: c:2 3 3 5 1 2
= generalisation of the weighted Vertex-Cover problem

» models resource allocation problems
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Setting up an Integer Program

Question: Try to formulate the integer program and linear
D ’ P program of the weighted SET-COVER problem
m B = (solution on next slide!)
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Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to dTovsS) = 1 for each x € X
SeF: xe$S
y(S) € {0,1} foreach S e F
Linear Program
minimize > e(S)y(S)
SeF
subject to dooy(s) = 1 for each x € X
SeF: xeS
y(S) € [0,1] foreach S € F
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Back to the Example

[ J [ J [ J
Si

o (o T

° e | o

[ J [ J [ J

Ss

S1 32 S3 34 35 SB
C: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 8.5
N\

7\

[The strategy employed for Vertex-Cover would take all 6 sets!]
N\

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]
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Randomised Rounding

81 82 83 S4 85 S6
c: 2 3 3 5 1 2
y): 12 1/2 12 1/2 1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

1 with probability y(S
ﬂ@z{ p y¥(S)

) forall S € F.
0 otherwise.

= Therefore, E[y(S)] = ¥(S).
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Randomised Rounding

Si S,
c: 2 3
y(): 1/2 1/2

Ss
3
1/2

Si S S
5 1 2
12 1 12

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

= The expected cost satisfies

SeF

E[c(C)]=)_ c(S)-¥(S)

= The probability that an element x € X is covered satisfies

[XESEUCS] 1—7
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Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g ¢(S) - ¥(S).

» The probability that x is covered satisfies P[x € UsecS] > 1 — 1.

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [ZC(S)} =E |:Z1SGC'C(S):|
Sec SeF
=Y P[SecC]-¢(S)=>_¥(S)-c(9).

SeF SeF
= Step 2: The probability for an element to be (not) covered

PlxguseeSl = ] PIs¢cl= [ (1-¥%s)

SeF: xeS ScF: xe$

—y(S
< JI 7@ ¥ solves the LP!
(1 + x < e* for any xﬁ SeF:xes

=e Yser: xes V(S < 9_1 (]
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The Final Step
Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = Y g ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — 1@

Z;

[Problem: Need to make sure that every element is covered!]

' Idea: Amplify this probability by taking the union of Q(log n) random sets C. '

WEIGHTED SET COVER-LP(X, F,c)
: compute ¥y, an optimal solution to the linear program
cC=10
repeat 2In n times
foreach Se F
let C = C U {S} with probability y(S) __~_
return C [clearly runs in polynomial—time!j

@ a s wn
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Analysis of WEIGHTED SET COVER-LP

Theorem

* The expected approximation ratio is 2 In(n).

= With probability at least 1 — 1, the returned set C is a valid cover of X.

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn

iterations with probability at least 1 — 16 so that

1 2lnn
P[X & UsccS] < (;) -1

= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [ U {X€U36c3}]

xeX

[P[AUB] < P[A]+P[B]> >1-3 P[x¢UsecS] 21—'7'%:1

xeX

= Step 2: The expected approximation ratio

= By previous lemma, the expected cost of one iteration is 3 sc = ¢(S) - ¥(S)-

= Linearity = E[c(C)] < 2In(n) - 3" gc 7 ¢(S) - ¥(S) < 2In(n) - ¢(C*)

1
-,

O
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Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 1, the returned set C is a valid cover of X.
* The expected approximation ratio is 2 In(n).

[By Markov's inequality, P [¢(C) < 4In(n) - ¢(C*)] > 1/2. ]

Hence with probability at least 1—1—1 > 1, solution probability could be further
is valid and within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

NN
[ [Exercise Question (9/10).10] gives a different perspective on the ]

amplification procedure through non-linear randomised rounding.
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MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (x1 VXa) A (X2 VXaV Xga V X5) A - -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches
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Approach 1: Guessing the Assignment

' Assign each variable true or false uniformly and independently at random. '
[\

1\

[Recall: This was the successful approach to solve MAX-3-CNF! ]

Analysis

For any clause i which has length ¢,
P [clause i is satisfied] =1 — 27" := .

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
= As before, let Y := Z,’.’; Y; be the number of satisfied clauses. Then,

E[Y]=E{ivf]:iem>i;:;-m. 0
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Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding! j

0-1 Integer Program

m
maximize Z z [

These auxiliary variables are used to
reflect whether a clause is satisfied or not

[

negated variables of clause i.

,n

i=1
V/d
subjectto > y+ > (1-y) > z foreachi=1,2,...
ject jec
1 z € {0,1} foreachi=1,2,....m
Cf“istheindexsetoftheun-] yi € {01} foreachj=1,2,...

= In the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let (¥, Z) be the optimal solution of the LP
= Obtain an integer solution y through randomised rounding of y
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Analysis of Randomised Rounding
Lemma

For any clause i of length ¢,

P [clause i is satisfied] > (1 — (

1—%)5) .z

= Assume w.l.0.g. all literals in clause i appear non-negated

(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C;

Proof of Lemma (1/2):

(X1\/~~~\/Xe)
4

4
= P[clause is satisfied] = 1 — [[P[ yjisfalse ] =1 -] (1 - ¥))

j=1
Arithmetic vs. geometric mean:
ay+...+a >
%2\"/a1x...><ak4 =

j=1
O EES/AY
B ¢

e —\* _
:1_<1_Z’;y’> 21—(1—2")[.

MAX-CNF
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — —) ) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

P[clause i is satisfied] > 1 — (1 - 5)

= Forany ¢ > 1, define g(z) :=1— (1 — %)e This is a concave function
4
with g(0) = 0 and g(1) = 1 — (1 - %) = Be. 9(2)

= g(2)>p-z foranyze[0,1 1-(1-1)p°

= Therefore, P [clause i is satisfied] > 3, - Z;. O
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Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. . 1\¢\ _
P [clause i is satisfied] > (1 — (1 — ) ) - Zj.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

~

\.

Proof of Theorem:
= Forany clause i = 1,2,..., m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

R i g
Ereems) (et =) ()
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Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorter clauses

(Idea: Consider a hybrid algorithm which interpolates between the two approaches J

no
0

Q
o

HYBRID-MAX-CNF(p, n, m)
1: Let b € {0, 1} be the flip of a fair coin
2: If b = 0 then perform random guessing
3: If b = 1 then perform randomised rounding J
4: return the computed solution

(o

Algorithm sets each variable x; to TRUE with prob . 2 + 2 Y-
Note, however, that variables are not mdependently assigned!
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Analysis of Hybrid Algorithm

Theorem
HYBRID-MAX-CNF(p, n, m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - Z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % sy Zp+ % - Be - Zj.
* Note 232t = 3/4 for ¢ € {1,2}, and for £ > 3, “41P¢ > 3/4 (see figure)
= = HYBRID-MAX-CNF(p. n, m) satisfies it with prob. at least 3/4 - Z; O
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MAX-CNF Conclusion

Summary
= Since az = B2 = 3/4, we cannot achieve a better approximation
ratio than 4/3 by combining Algorithm 1 & 2 in a different way
= The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution
= The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!
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