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between two boxes
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The Ehrenfest Markov Chain

—— Ehrenfest Model

= A simple model for the exchange of molecules
between two boxes

= We have d particles

= At each step a particle is selected uniformly at
random and switches to the other box

= [fQ={0,1,...,d} denotes the number of O

particles in the red box, then:

X
Px,x—1 = d and Px,x+1 =
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The Ehrenfest Markov Chain

—— Ehrenfest Model
= A simple model for the exchange of molecules Prg = %
between two boxes T
= We have d particles o @) o
= At each step a particle is selected uniformly at @)
random and switches to the other box OO o
= [fQ={0,1,...,d} denotes the number of o O
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The Ehrenfest Markov Chain

—— Ehrenfest Model
= A simple model for the exchange of molecules Prs =15
between two boxes T
= We have d particles o @) o
= At each step a particle is selected uniformly at @)
random and switches to the other box OO 0) O
= [fQ={0,1,...,d} denotes the number of O @
particles in the red box, then: ~____~
Prg=3
X d—x ’ 10
Px,x—1 = d and Px,x+1 = d

Let us now enlarge the state space by looking at each particle individually!
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The Ehrenfest Markov Chain

—— Ehrenfest Model
= A simple model for the exchange of molecules Prs =15
between two boxes T
= We have d particles labelled 1,2, ..., d ® ®
= At each step a particle is selected uniformly at ®
random and switches to the other box @® ®
= [fQ={0,1,...,d} denotes the number of ® ®
particles in the red box, then: ~____~
Prg=3
X d—x ’ 10
Px,x—1 = d and Px,x+1 = d
Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube

= For each particle an indicator variable = Q = {0, 1}¢

= At each step: pick a random coordinate in [d] and flip it
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

= For each particle an indicator variable = Q = {0, 1}¢
= At each step: pick a random coordinate in [d] and flip it
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

= For each particle an indicator variable = Q = {0,1}¢
= At each step: pick a random coordinate in [d] and flip it

AN
\

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
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(Non-Lazy) Random Walk on the Hypercube

= For each particle an indicator variable = Q = {0,1}¢
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Lazy Random Walk (1st Version)
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Lazy Random Walk (1st Version)
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

= For each particle an indicator variable = Q = {0,1}¢
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube
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Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube ————————n »
= For each particle an indicator variable = Q = {0,1}¢ N <
= At each step: pick a random coordinate in [d] and flip it °°°° °
AN
\ o o

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!
N

[Solution: Add seli-loops to break periodic behaviour! ]

Lazy Random Walk (1st Version) Lazy Random Walk (2nd Version)

* Ateachstept=20,1,2... = Ateachstept=20,1,2...
= Pick a random coordinate in [d] = Pick a random coordinate in [d]
= With prob. 1/2 flip coordinate. = Set coordinate to {0, 1} uniformly.

\_/

These two chains are equivalent!
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Example of a Random Walk on a 4-Dimensional Hypercube

i @ t Coord. X;
0 0 0 0 O
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Example of a Random Walk on a 4-Dimensional Hypercube
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Example of a Random Walk on a 4-Dimensional Hypercube
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Example of a Random Walk on a 4-Dimensional Hypercube
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Once all coordinates have been picked at least
once, the state is uniformly at random in {0,1}¢.
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Example of a Random Walk on a 4-Dimensional Hypercube
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Once all coordinates have been picked at least
once, the state is uniformly at random in {0,1}¢.
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[Coupon Collector ~ mixing time should be O(d log d) ] 10
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Example of a Random Walk on a 4-Dimensional Hypercube

0000

Once all coordinates have been picked at least
once, the state is uniformly at random in {0,1}¢.
/)

[Coupon Collector ~ mixing time should be O(d log d) ] 10

t | Coord.
0 2
1 3
2 3
3 4
4 2
5 4
6 2
7 4
8 3
1
done!

(We won't formalise this argument here (see [Ex. 4/5.11]) )
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Total Variation Distance of Random Walk on Hypercube (d = 22)

0.6 |- .

1Px = 7l

0.2 |

\
0 20 40 60 80 100
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Total Variation Distance of Random Walk on Hypercube (d = 22)

0.6

1Px = 7l
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d Iog d~ 68.pO
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Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53

0.8f

0.2+

0 L
1
il log n
N
Fig. 1. The variation distance V as a function of N, for n =10

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.
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Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53

0.8f

0.6

O L
1
anogn
N

Fig. 1. The variation distance V as a function of N, for n =10

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

= This is a numerical plot of a theoretical bound, where d = 1012
(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
= The variation distance exhibits a so-called cut-off phenomena:
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Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53

0.8f

0.6

O L
1
anogn
N

Fig. 1. The variation distance V as a function of N, for n =10

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

= This is a numerical plot of a theoretical bound, where d = 1012
(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
= The variation distance exhibits a so-called cut-off phenomena:
= Distance remains close to its maximum value 1 until step %nlog n—0o(n)
= Then distance moves close to 0 before step %nlog n+©(n)
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Random Walks on Graphs, Hitting Times and Cover Times
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

1 .
P(u,v) = { %@ i {u,v} € E, 7
0 if {u,v} ¢ E.

and m(u) = d;iggr)
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Random Walks on Graphs

on a graph G is a Markov chain on V(G) with

A Simple Random Walk (SRW)

deg(u)

2|E|

m(u)

d

n

)

vieE
vi¢E.

)

if {u
if {u

u)

1
deg(

)

b
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Random Walks on Graphs

on a graph G is a Markov chain on V(G) with

)

A Simple Random Walk (SRW

deg(u)
2|E|

m(u)

nd

)

v} € E,
vi¢E.

)
b

if {u
if {u

u)

1

deg(

N

/]
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N
2% \V‘.,,‘A

I
A
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Random Walks on Graphs

on a graph G is a Markov chain on V(G) with

A Simple Random Walk (SRW)

deg(u)

2|E|

m(u)

d

n

)

vieE
vi¢E.

)

if {u
if {u

1
()

deg

)

b

> 1: X; = v}] is the hitting time of v from u.]

Ey[min{t

[Recan: h(u, v)

Random Walks on Graphs, Hitting Times and Cover Times
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + /) /2,

1 .
- 2deg(u) if {U, V} € E7
Puy =43 ifu=v,

0 otherwise.
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + /) /2,

sy T {u v} €E,

P - SRW matrix
Pu,v =

I - Identity matrix.

if u=v,

2
1
2
0 otherwise.
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + /) /2,

s if {u,v} € E,

deg(u)

P - SRW matrix
Pu,v =

itu=v, I - Identity matrix.

2
1
2
0 otherwise.

Fact: For any graph G the LRW on G is aperiodic.
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + /) /2,

1 .
B Taewy T{UV}EE,
Puyv=143% ifu=v,

0

otherwise.

P - SRW matrix
I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

O—=@®

1
2
1 1 1 1
2 2 2 2
1
@ : @
1
2

SRW on C,, Periodic
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + /) /2,

Pu,v:

s if {u,v} € E,

deg(u)

T P - SRW matrix
nu=v, I - ldentity matrix.

2
1
2
0 otherwise.

Fact: For any graph G the LRW on G is aperiodic.

2
1]
2

1
4_2\@
1

1 1
2 2
1
2
©—0©
1
2

SRW on C,, Periodic

1

4
1 4’_\<:D1
2 — 2
1
4
1

1 1
4 4
1
4

LRW on Cs, Aperiodic

1 1
1 1
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Outline

Random Walks on Paths and Grids
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid

o o}
© °
“““ o) °
© °
o o}
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid

o—9 o—90—0
o}
°
“““ °
© °
o o}
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
o0 @ 19}
Q
10}
“““ ®
(o3 10}
o Q
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
o0 @ 19}
Q
10}
44444 o ‘ W
(o3 10}
o Q
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
o0 @ 19}
Q
10}
“““ ° %
(o3 10}
o Q

“A drunk man will find his way home, but a drunk bird may get lost forever.”
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

—
o o

o o o

[~

o ° =

o o

,/'/
o o

2 v

“A drunk man will find his way home, but a drunk bird may get lost forever.”

O

[But for any regular (finite) graph, the expected return time to vis 1/x(u) = n ]
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SRW Random Walk on Two-Dimensional Grids: Animation

( ) (
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0.5
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) =[0,n], E(P») = {{i,j}:j=i+1}.

O—0—~0@—C—
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=1i+1}.

O—0—~0@—C—

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=1i+1}.

O—0—~0@—C—

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=1i+1}.

O—0—~0@—C—

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=1i+1}.

O—0—~0@—C—

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=1i+1}.

O—0—~0@—C—

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=1i+1}.

O—E@0—~06——~0©

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(Pn) = {{i,j}:j=1i+1}.

O—0—~0@—C—

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) =[0,n], E(P») = {{i,j}:j=i+1}.

O—0—~0@—C—

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k<n.

A Exercise: [Exercise 4/5.15] What happens for the LRW on P,?
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k?,forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = i — k?, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = i — k?, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

£(0) =1+ (1)
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = i — k?, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
10)=1+7(1) and (k) =1+ DL TEED g cpcp v,
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = i — k?, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
10)=1+7(1) and (k) =1+ DL TEED g cpcp v,

System of n independent equations in n unknowns, so has a unique solution.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = i — k?, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
10)=1+7(1) and (k) =1+ DL TEED g cpcp v,

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above.
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = i — k?, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
10)=1+7(1) and (k) =1+ DL TEED g cpcp v,

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed
f0)=1+f1) =1+ 1% =1’
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = i — k?, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) =TT N P(x,z) h(zy)  Vx#ye V.

zeQ\{y}
Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
10)=1+7(1) and (k) =1+ DL TEED g cpcp v,

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed
fO)=14+f1)=14+nr*—12=r?,

and forany 1 < k < n—1 we have,

S ) L Sk

B n — 2
f(k)y =1+ 5 5 K. O
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Outline

SAT and a Randomised Algorithm for 2-SAT
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and Xx; = True.
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)
Solution: xy = True, Xxo = False, X3 =False and Xx; = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:
SAT: (X1 VX VX3) A (X1 VXa) A (X1 VX2V Xa) A (XaVX3) A (XeVX7)

Solution: xy = True, Xxo = False, X3 =False and Xx; = True.

= If each clause has k literals we call the problem k-SAT.
In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect

= A huge amount of problems can be posed as a SAT:
— Model checking and hardware/software verification
— Design of experiments

— Classical planning
— ...
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3: Pick an arbitrary unsatisfied clause
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
: Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

Call each loop of (2) a step. Let A; be the variable assignment at step i.
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
: Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5
6

If formula is satisfied then return “Satisfiable”
. return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a=(T,T,F,T).
F T T T F F F T F T

(7 % [ [ % %]

0| F F F | F

© &—~C0E——~0®
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5
6

If formula is satisfied then return “Satisfiable”
. return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX) A (X1 VX3) A (X1 V X2) A (Xa V X3) A (Xa V X7) a = (T,T,F,T).
F T T T F F F T F T

(7 % [ [ % %]

0| F F F | F

© &—~C0E——~0®
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5
6

If formula is satisfied then return “Satisfiable”
. return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a=(T,T,F,T).
F T T T F F F T F T

(7 % [ [ % %]

0| F F F | F

© &—~C0E——~0®

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 18




2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a=(T,T,F,T).
F F T T F T F T F T

(7 % [ [ % %]

0| F F F F
1 F T F

O—C0—00——~CE—~®
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX2) A(XTVX3) A (X1 V X2) A (Xa V X3) A (Xa V X7) a=(T,T,F,T).
F F T T F T F T F T

(7 % [ [ % %]

0| F F F F
1 F T F
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a=(T,T,F,T).
F F T T F T F T F T

(7 % [ [ % %]

0| F F F F
1 F T F
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5
6

If formula is satisfied then return “Satisfiable”
. return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a=(T,T,F,T).
T F F T T T F F

(7 % [ [ % %]

0| F F F F
1 F T F
2| T T F F

O—C0—00——~CE—~®
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX2) A (X1 V Xa) A (X1 V X2) A (Xa V Xg) A (X4 V X7) o= (T,T,F,T).
T F F T T T F F

O—C0—00——~CE—~®
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2. Repeat up to 2r° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5
6

If formula is satisfied then return “Satisfiable”
. return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

(X1 VX) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a=(T,T,F,T).
T F F T T T F F

(7 % [ [ % %]

0| F F F F
1 F T F
2| T T F F
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RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 :

Ca VX)) AV X)) A (X1 V Xe) A (XaVX3) A (Xa VX7) a=(T,T,F,T).
T F F T T T T T T F

[t x|l xe][x][x

O| F | F | F |F
% 1| F | T | F | F
2
O—O—@—@—@ SESEBERE:

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 18



2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
: Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
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If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 1 : Solution Found
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. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(x1 VX)) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F F F F T
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. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
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Example 2 :
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

CaVX)A(GVX)A (X1 VXe) A (XaV Xa) A (Xa V X7) a = (T,F,F,T).
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. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
. Start with an arbitrary truth assignment
. Repeat up to 2 times
Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”
return “Unsatisfiable”

o ahwh2

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

CaVX)A(GVX)A (X1 VXe) A (XaV Xa) A (Xa V X7) a = (T,F,F,T).
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2. Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5

6

If formula is satisfied then return “Satisfiable”
. return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(x1 VX)) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a = (T,F,F,T).

T F F T T T T F T F
[t x|l xe][x][x
0 F F F F
1 F F F T
2 F T F T

—0—@—@—® Chbhh
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2. Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5

6

If formula is satisfied then return “Satisfiable”
. return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 : (Another) Solution Found

(x1 VX)) A (X1 VX)) A (X1 V X2) A (Xa V X3) A (Xa V X7) a = (T,F,F,T).

T F F T T T T F T F
[t x|l xe][x][x
0 F F F F
1 F F F T
2 F T F T

—0—@—@—® Chbhh
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.
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Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution o, thenforany i > 0and 1 < k< n-1,
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution o, thenforany i > 0and 1 < k< n-1,
() P[Xsr=1]X=0]=1
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution o, thenforany i > 0and 1 < k< n-1,
() P[Xir=1]X=0]=1
(iy P[Xir =k +1| Xi=k]>1/2
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k <n-1,
) P[Xip1 =1 Xi=0] =1

() P[Xy1=k+1|Xi=k]>1/2

(i) P[ X1 =k =1 X = k] < 1/2.
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution o, thenforany i > 0and 1 < k< n-1,
(i) P[ X1 =1]X=0]=1

(i) P[ X1 =k+1| Xi=k] >1/2

(ii)) P[ X1 =k —1] X =k] <1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 20



2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k <n-—1,
() P[ X1 =1]X=0]=1

(i) P[ X1 =k+1| Xi=k]>1/2

(ii)) P[ X1 =k —1] X =k] <1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).

Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k <n-—1,

() P[Xy1=1]X=0]=1

(i) P[ X1 =k+1| Xi=k]>1/2

(i) P[ X =k — 1] Xi=k] < 1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can
bound it by Y; (SRW on the n-path from 0).
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k <n-—1,

() P[Xy1=1]X=0]=1

(i) P[ X1 =k+1| Xi=k]>1/2

(i) P[ X =k — 1] Xi=k] < 1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can

bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eq[min{t : X; = n}] < Eg[min{t : Y; = n}] = h(0, n) = n?.
O
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k <n-—1,
() P[ X1 =1]X=0]=1

(i) P[ X1 =k+1| Xi=k]>1/2

(ii)) P[ X1 =k —1] X =k] <1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can
bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eo[min{t: X; = n}] < Eo[min{t : Y; = n}] = h(0, n) = r.

O
[Running for 2n? steps and using Markov’s inequality yields: J

(P
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k <n-—1,
() P[ X1 =1]X=0]=1

(i) P[ X1 =k+1| Xi=k]>1/2

(ii)) P[ X1 =k —1] X =k] <1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (iii) we can
bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eo[min{t: X; = n}] < Eo[min{t : Y; = n}] = h(0, n) = r.

O
[Running for 2n? steps and using Markov’s inequality yields: ]
Proposition 17

Provided a solution exists, RANDOMISED-2-SAT will return a valid solu-
tion in O(n?) steps with probability at least 1/2.
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2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k <n-—1,

() P[Xy1=1]X=0]=1

(i) P[ X1 =k+1]|Xi=k]>1/2
(ii)) P[Xis1 =k —1] X = k] < 1/2.

Notice that if Xi = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).
The process X; is complicated to describe in full; however by (i) — (iii) we can
bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.16])

E [time to find sol] < Eq[min{t : X; = n}] < Eg[min{t : Y; = n}] = h(0, n) = n?.
O

Exercise: (difficult, beyond this course) What happens to the
above analysis if we apply the same algorithm to 3-SAT?

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 20



Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Thenforany C > 1, (% - log n| repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.
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Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Then forany C > 1, (% - log n| repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recall that 1 — p < e~ for all real p. Let t = [% log n] and observe

P[truns all fail] < (1 — p)’
<e™
<n ¢,

thus the probability one of the runs succeeds is at least 1 — n~C.
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Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Thenforany C > 1, (% - log n| repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recall that 1 — p < e~ for all real p. Let t = [% log n] and observe

P[truns all fail] < (1 — p)’
<e™
<n ¢,

thus the probability one of the runs succeeds is at least 1 — n~C.

RANDOMISED-2-SAT

There is a O(n? log n)-step algorithm for 2-SAT which succeeds w.h.p.
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