Algorithms for the Longest Common Subsequence Problem

DANIEL S. HIRSCHBERG

Princeton Universuy, Princeton, New Jersey

ABSTRACT Two algorithms are presented that solve the longest common subsequence problem The first
algorithm 1s applicable i the general case and requires O(pn + n log n) ime where p 1s the length of the
longest common subsequence The second algorithm requires time bounded by O(p(m + 1 — p)logn) In the
common special case where p 1s close to m, this algorithm takes much less time than n?

KEY WORDS AND PHRASES' subsequence, common subsequence, algonithm

CR CATEGORIES 3 73,3 79,525,539

Introduction

We start by defining conventions and terminology that will be used throughout this
paper.

String C = ¢y, *** ¢, is a subsequence of string A = a,a; - a,, if there is a mapping
F:{1,2,..,p}— {1, 2, ..., m}such that F(i) = k only if ¢, = a, and F is a monotone
strictly increasing function (i.e. F()) = u, F(j) = v, andi <j imply thatu <v). Ccanbe
formed by deleting m — p (not necessarily adjacent) symbols from A. For example,
“course” is a subsequence of “computer science.”

String C is a common subsequence of strings A and B if C is a subsequence of A and
also a subsequence of B.

String C is a longest common subsequence (abbreviated LCS) of string A &nd B if C is
a common subsequence of A and B of maximal length, i.e. there is no common subse-
quence of A and B that has greater length.

Throughout this paper, we assume that A and B are strings of lengthsm andn, m <n,
that have an LCS C of (unknown) length p.

We assume that the symbols that may appear in these strings come from some alphabet
of size t. A symbol can be stored in memory by using log¢ bits, which we assume will fit in
one word of memory. Symbols can be compared (¢ < b?) in one time unit.

The number of different symbols that actually appear in string B is defined to be s
(which must be less than n and ¢).

The longest common subsequence problem has been solved by using a recursion
relationship on the length of the solution [7, 12, 16, 21]. These are generally applicable
algorithms that take O(mn) time for any input strings of lengths m and n even though
the lower bound on time of O(mn) need not apply to all inputs {2]. We present
algorithms that, depending on the nature of the input, may not require quadratic time
to recover an LCS. The first algorithm is applicable in the general case and requires
O(pn + n logn) time. The second algorithm requires time bounded by O((m + 1 — p)p
log »). In the common special case where p is close to m, this algorithm takes time

Copynight © 1977, Association for Computing Machinery, Inc General permission to republish, but not for
profit, all or part of this material is granted provided that ACM’s copyright notice 1s given and that reference s
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

Thus research was supported by a National Science Foundation graduate fellowship and by the National Science
Foundation under Grant GJ-35570.

Author’s present address” Department of Electrical Engineering, Rice Unmiversity, Houston, TX 77001

Journal of the A for Computing Machmery, Vol 24, No 4, October 1977, pp 664-675

Algorithms for the Longest Common Subsequence Problem 665

much less than n?. We conclude with references to other algorithms for the LCS
problem that may be of interest.

pn Algorithm

We present in this section algorithm ALGD, which will find an LCS in time O(pn +
n log n) where p is the length of the LCS. Thus this algorithm may be preferred for
applications where the expected length of an LCS is small relative to the lengths of the
input strings.

Some preliminary definitions are as follows:

We represent the concatenation of strings X and Y by X||Y.

A, represents the string aa, -+ a, (elements 1 through i of string A). Similarly, the
prefix of length j of string B is represented by By;.

We define L(i, j) to be the length of the LCS of prefixes of lengths i and j of strings A
and B, i e. the length of the LCS of A,, and B,,.

@, j) represents the positions of a, and b,, the ith element of string A and the jth
element of string B. We refer to i (J) as the i-value (j-value) of (1, j).

We define {(0, 0)} to be the set of O-candidates, and we define ¢, j) to be a k-
candidate (for k = 1) if a, = b, and there exist i’ and j' such thati’ < i, j' < j, and
(i’,j')is a (k — 1)-candidate. We say that (i’, j') generates (i, j).

Define a, = b, = $ where $ 1s some symbol that does not appear in strings A or B.

Lemma 1. Fork =1, 4,j)is a k-candidate iff L(i,j) = k and a, = b;. Thus there is a
common subsequence of length k of A,, and By;.

Proor. By induction on k. {,j) 1s a 1-candidate iff a, = b, (by definition), in which
case L(i, j) necessarily 1s at least 1. Thus the lemma is true for k = 1. Assume it is true
for k — 1. Consider k. If ¢, j) 1s a k-candidate then there exist i’ < i and j’ <j such
that (i’,j') is a (k — 1)-candidate. By assumption, there is a common subsequence D’ =
dydy -+ dp_, of Ay, and By,. Since a, = b; (i, j) is a k-candidate), D = D' |a; 15 a
common subsequence of length k of Ay, and By,. Thus L(i, j) = k.

Coaversely, if L(i, j) = k anda; = b;, then there existi’ <i andj’ <j such thata, =
by and L', ;) = LG,j) — 1=k — 1. {',j')is a (k — 1)-candidate (by inductive
hypothesis) and thus {, j) 1s a k-candidate. 0

The length of an LCS is p, the maximum value of k such that there exists a k-
candidate. As we shall see, to recover an LCS, it suffices to maintain the sequence of a 0-
candidate, 1-candidate, ... , (p — 1)-candidate, and a p-candidate such that in this
sequence each i-candidate can generate the (i + 1)-candidate for 0 =i < p.

Rule. Letx = (x,,x;) andy = (y,, y») be two k-candidates. If x, = y, and x, = y,,
then we say that y rules out x (x 1s a superfluous k-candidate) since any (k + 1)-
candidate that could be generated by x can also be generated by y. Thus, from the set
of k-candidates, we need consider only those that are minimal under the usual vector
ordering. Note that if x and y are minimal elements then x, <y, iff x, > y,.

LEMMA 2. Let the set of k-candidates be {(,, 1)} r = 1, 2, ...). We can rule out
candidates so that (after renumbering) 1, < iy < -~ and j, > j, > ---.

Proof. Any two k-candidates ¢, j) and (', j') satisfy one of the following (without
loss of generality, i < i'):

Di<i,j=sj.

Q)i<i',j>j.

B)i=i"j=j.

@) i=1,j>j.

In cases (1) and (3) ¢’,j’) can be ruled out; in case (4) (i, j) can be ruled out; and case (2)
satisfies the statement of the lemma. Thus any set of k-candidates which cannot be
reduced by further application of the rule will satisfy the condition stated in the
lemma. 0

The set of k-candidates, reduced by application of the rule so as to satisfy the
statement of Lemma 2, are the minimal elements of the set of k-candidates (since no

666 DANIEL S. HIRSCHBERG

element can rule out a minimal element) and will be called the set of minimal k-
candidates. By Lemma 2, there is at most one minimal k-candidate for each i-value.

We note that if (i, j) is a minimal k-candidate then L, j) = k and (i, j) is the k-
candidate with i-value i having smallest j-value j such that L(, j) = k.

LemMA 3. Fork = 1, (, j) is @ mimimal k-candidate iff j is the minimum value such
that b; = a, and low < j < high, where high is the minimum j-value of all k-candidates
whose i-value is less than i (no upper limit if there are no such k-candidates) and low is the
munimum j-value of all (k — 1)-candidates whose i-value is less than i.

ProoF. Assume that (i, j) is a minimal k-candidate. If j = high then there is a k-
candidate ¢’, j') such thati' < i andj’ = high < j. {i, j) would be ruled out by ¢’, j")
and thus would not be minimal.

If j < low, then there is no (k — 1)-candidate that can generate (, j). i, j) would not
be a k-candidate.

b, = a, is required by the definition of k-candidate and low < j < high has just been
shown. If j and j' both satisfy these constraints, j <j', then i, j') is ruled out by ¢, j).
Thus, for a particular i, j must be the minimum j-value of all k-candidates satisfying
these constraints.

The if of the lemma has thus been shown.

The converse is easily shown: If ¢, j) is not a k-candidate, then either a; # b; or there is
no (k — 1)-candidate that can generate (i, j). That is, the j-value of all (¢ ~ 1)-candidates
with i-value less than i is greater than or equal to j. This is equivalent to j < low.

If ¢, j) is a k-candidate but is not minimal, say ¢',j') rules out (i,), then' =jandj' =
j. Ifi' <i, then clearly j < high is violated. Otherwise, i’ = i. In this case j' > low since
(i', j') must be generated from a (k — 1)-candidate and by = g, since (', j) is a k-
candidate. Alsoj’ <j < high. Thusj' satisfies all the constraints and is not the minimum
value that does so, a contradiction. O

We present algorithm ALGD, which, using the results of Lemma 3, obtains an LCS
C of length p of input strings A and B in time O(pn + n log n).

The algorithm is based on an efficient representation of the L matrix. Since L is
nondecreasing in both arguments, we may draw contours in its matrix as shown in the
following example:

B8

a b a

a [
b 2 2 2
c 2 2 2
A 2 2 2
b 3 3 3
b 3@ 4

The entire matrix is specified by its contours. The contours are described by sets of
minimal k-candidates. The contour between L-values of k — 1 and k is defined by the set
of minimal k-candidates whose elements are positioned at the convex corners of the
contour.

To keep track of the minimal k-candidates, we use the matrix D. D[k, i] is the j-value
of the unique minimal k-candidate having i-value of i or O if there is no such minimal k-
candidate. Thus D[k, i] describes the contours by giving the number of the first column
of row i that is in region k (if that number is different from D[k, : — 1]).

Algorithms for the Longest Common Subsequence Problem 667

lowcheck is the smallest i-value of a (k — 1)-candidate. FLAG has value 1 iff there are
any k-candidates.

NB[6] is the number of times symbol § occurs in string B. PB[e, 1], ...,
PB[#, NB[0]} is the ordered list, smallest first, of positions in B in which symbol 8 occurs.

If ¢, the size of the symbol alphabet, is not large compared to n, then we may index an
array by the bit representation of a symbol. Otherwise, if # > n, then we construct a
balanced binary search tree which provides a mapping from symbols that appear in string
B to the integers 1 through s (there are s different symbols that appear in B). Whenever
string element g, appears as an array subscript (as in N[g,]), it should be understood that
we are indexing N by the integer s, which has been obtained (during initialization for
ALGD) from traversing the search tree just described. If g, does not appear in B, then
the integer s, is zero. An equivalent assumption is followed for subscript b; in step 1.

ALGD(m,n, A, B, C, p)

1. NB[g) <~ Oforo=1,. ,s
PB[8,0}«~0Oforo=1,. ,s
PBf0, 0] « 0; PB[0,1] < 0
forj « 1 step 1 until n do
begin
NB[b,] < NB[b}]} + 1
PBlb;, NB[bj]} «j
end
2 D0,i]—0Ofor:=0,. ,m
lowcheck « 0
3. for k <« 1step 1 do
begin
4. N[6] «-NB[g]foro =1, ,s
N[0] «1
FLAG « 0
low « D[k — 1, lowcheck]
hmgh «n + 1
5. for: «lowcheck + 1 step 1 until m do
begin
6. while PB[a;, N{a,] — 1] > low do Nfa,] < N[a,] — 1
7 if lugh > PBla;, N{a,]] > low
then begin
high < PBa,, N[a]]
Dik, 1} « high
if FLAG = 0 then {owcheck <1, FLAG « 1}
end
else Dik,1] < O
8 if D[k ~ 1,:] > 0 then low « D[k — 1,1]
end loop of step 5
9. # FLAG = 0 then go to step 10
end loop of step 3
10 pe—k -1
k«p
for: «~m + 1 step — 1 until 0 do
if D[k, :] > 0 then
begin
Cr < ay
kek -1
end
The loop of step 3 evaluates the set of minimal k-candidates fork = 1, 2, The loop
of step 5 evaluates the set of minimal k-candidates, smallest i-value first, and fills in the
D array accordingly (in the example given previously this is left-to-right) while scanning
the chains of occurrences of a given character in B with largest j-value first (right-to-left).
For each i, i can be the i-value of a minimal k-candidate if there is a j satisfying the
constraints of Lemma 3. This is tested by determining the minimum j-value of symbol a,
that is greater than Jow. If that value is less than lugh, then (i, j) is a minimal k-candidate.

668 DANIEL S. HIRSCHBERG

There can be no k-candidate with i-value less than or equal to lowcheck, so the loop of
step 5 begins at lowcheck + 1. lowcheck is set, in step 7, when the first minimal k-
candidate (that having smallest i-value of all k-candidates) is determined.

LeMMa 4. ALGD evaluates the correct values of high and low (as defined n
Lemma 3) for determining whether each k-candidate i, j) is minimal.

ProoF. high is supposed to be the miimum j-value of all k-candidates with i-value
less than i high is imtialized at n + 1 (i.e. does not limit) in step 4, before any k-
candidates have been generated. Thereafter, if any k-candidates are found to be minimal
(in step 7), then, since the j-values of minimal k-canchdates decrease as the i-values
increase, the mimmum j-value of all minimal k-candidates with :-value less than i will be
the j-value of the minimal k-candidate with greatest i-value less than i (i.e. the last one
found, since we generate minimal k-candidates in order of increasing i-value). The j-
values of ruled-out (nonminimal) k-candidates cannot be smaller than the j-value of the
last minimal k-candidate high is updated to the most recent j-value each time a new
minimal k-candidate is found in step 7. Thus kigh has value as defined in Lemma 3.

low is supposed to be the minimum j-value of all (¢ — 1)-candidates whose i-value is
less than i. Again, since j-values decrease as i-values increase, low should be the j-value
of the (k — 1)-candidate whose i-value is as great as possible but less than i. low is
initialized in step 4 to be the j-value of the first (lowest i-value) (k — 1)-candidate. As i
increases, if there was a mimmal (k — 1)-candidate with i-value of i, then the minimum
permissible j-value will decrease and low is updated (in step 8) for the next iteration. O

LeMMA 5. ALGD correctly determines the set of minimal k-candidates.

Proor. By Lemma 4, high and low are computed correctly. We must show that in
the loop of steps 5-8 D[k, i] gets the minimum j-value (0 if none) such that b; = a, and
low <j < high.

The j-values of successive minimal k-candidates decrease in value since their i-values
increase. In looking for D[k, i] we look for a match for symbol «, in string B, and we
can restrict our attention to occurrences (j-values) of symbol a, in string B that are
before (less than) the last occurrence (j-value) that was examined. Step 6 does that.
PBla,, *] is the ordered list of j-values of symbol a, and N[a,] points to the smallest

j-values (in PB) of symbola; that has been examined. Initially, in step 4, N[a,] points to
the last occurrence of symbol a;. If the last-examined j-value of g, is greater than low,
step 6 sets N[a,] to point to the lowest j-value of a, that is greater than low. If the last-
examined j-value of g, is not greater than low, then there can be no minimal k-
candidate for this value of i since the minimum j-value that is greater than low either
violates the high constraint or results in a candidate that can be ruled out. In this case
step 6 does nothing, the test in step 7 fails, and D[k, i] is set to zero. O

TueoreM 1. ALGD correctly computes the LCS of strings A and B.

Proor. By Lemma 5, ALGD correctly determines the set of minimal k-candidates.
Thus, if there are any k-candidates, at least one is minimal. If ¢, j) is the pth match in
an LCS which is of length p, then, by Lemma 1, {,j) 1s a p-candidate. Thus there is at
least one minimal p-candidate (and there are no (p + 1)-candidates). Step 10 of
ALGD recovers a common subsequence of length p by recovering a sequence of
(i-values of) minimal candidates such that the minimal k-candidate gencrated the
minimal (k + 1)-candidate. O

THEOREM 2. Assuming that symbols can be compared in one time unit, ALGD
requires time of O(pn + n log s), where s is the number of different symbols that appear
in string B.

Proor. Step 1 can be done in time O(n log s). Step 2 can be done in time O(m).
Step 3 executes steps 4-9 p times. Step 4 takes time Of(s) per execution, s = n, for
total time less than or equal to O(pn). Step 5 executes steps 6-8 at most m times, a
total of at most pm times. The while loop in step 6 is executed at most n times within
the loop of step 5 since the N[6] are not increased within this loop (each position of B 1s
examined at most once for each value of k). The total time in step 6 is therefore O(pn)

Algorithms for the Longest Common Subsequence Problem 669

Steps 7 and 8 are done in constant time. Total time is O(pm). Step 9 is done m
constant time. Total time is O(p). Step 10 is done in time O(m). Total execution time is
thus as stated above. O

Note that for p = O(logs), ALGD requires time O(pn).

pe log n Algorithm

We now consider a special case that often occurs in applications such as determining
the discrepancies between two files, one of which was obtained by making minor
alterations to the other (and we wish to recover those alterations). We assume that
there is an LCS of length at least m — ¢ (for some given €).

If Cis an LCS of A and B, there will be at most ¢ elements of A that do not appear in
C. The position of each such element will be called a skipped position. Thus there are at
most ¢ skipped positions. We define e to be € + 1.

If ¢, j) is a minimal k-candidate that can be an element in an LCS (that is, g, = b; is the
kth element of an LCS), then k < i = k + ¢ (otherwise more than ¢ positions in A would
be skipped). We shall call such candidates feasible k-candidates. Leth =i — k. Then 0 =
h = e and h is the number of positions in A that have been skipped thus far (through
ar+r). By Lemma 2, there is at most one feasible k-candidate with i-value of i.

Let the feasible k-candidate pairs (j-value and j-value) be held in arrays F and G, ¢.g.
(h + k,)) would be described by F[h] = h + k, G[h] = j. If there is no feasible k-
candidate with j-value & + k, let F[h] = F[h — 1], G[h] = G[k — 1], and define F[—1]
= 0, G[—-1] = n + 1. By this construction and by Lemma 2, F is a nondecreasing
sequence and G is a nonincreasing sequence.

Define NEXTB(9, j) to be the minimum r > such that b, = 8. If there is no such r,
then NEXTB(9, j} is defined to be n + 1.

LemMa 6. If(,j)is a feasible k-candidate ,then j = NEXTB(a,, G[h]), where h =i-
k and where G[h] is the value associated with the set of feasible (k ~ 1)-candidates.

Proor. Let (i, j) be a feasible k-candidate. By definition of k-candidate, there must
exist i’ < i and j' < j such that (i, j’) is a feasible (k — 1)-candidate. By Lemma
3, j is the minimum (over possible j') of NEXTB(a,, j'). But j* < j' implies that
NEXTB(#, j") = NEXTB(0, j'). Therefore j = NEXTB(a,, min possible j'). Since j-
values of minimal k-candidates decrease as their i-values increase, the mnimum
possible j' is the j-value of the feasible (k — 1)-candidate whose i-value is as large as
possible but less than i = k + k, i.e. not more than h + (k — 1). G[h] is precisely that
J-value. So we conclude that j = NEXTB(a,, G[h]). O

In order to be able to recover an LCS, we shall keep track (for each feasible k-
candidate) of which & positions in A have been skipped. A straightforward method,
keeping values of F[h] for all » and k, requires space of O(pc). We shall use a data
structure that requires only O(e? + n) space without changing the order of magnitude of
time requirements.

Let there be an array KEEP whose elemrents are triples such that

KEEP{x] = {(aafx], nskip[x], pt [x]).

P is an array of size e such that, after the set of feasible k-candidates has been
determined, x = P[h] will be the index of the element of KEEP that has information
enabling recovery of a common subsequence that has g, = bgy, as its kth element. F[i]
= h + k, and thus precisely & of the elements a;, ... , azp, Will not appear in the common
subsequence. To recover the common subsequence, it is sufficient to recover these A
skipped positions. If x = 0, then no positions were skipped, and if x < 0, then there is no
common subsequence to be recovered.

The method of recovery is as follows:

If x is zero, there are no more skipped positions to be recovered.

Otherwise, aa[x] is the largest index of a skipped position in string A. nskip[x] is the
number of consecutive positions ending in aa[x], all of which are skipped positions.

670 DANIEL S. HIRSCHBERG

If all of the skipped A-positions have been recovered, then pi[x] is zero.

Otherwise, pe{x] is the index of KEEP that has information enabling recovery of the
skipped A-positions having indices smaller than aa[x] — nskip[x] + 1.

Example. 1If positions 2, 5, 6, 7, 9, 10 in string A correspond to a common
subsequence of length 6 (of A,), then h = 4 and KEEP[P[4]] will enable recovery of
positions 1, 3, 4, 8: aa[P[4]] = 8, nskip[P[4]] = 1, p{P[4]] = y (another index of
KEEP). aafy] = 4, nskip[y] = 2 (positions 3 and 4 have been skipped), pt[y] =
z. aalz] = 1, nskip[z] = 1, pt[z] = 0 (all skipped positions have been recovered).

Reference counts are kept for each element of KEEP. Spaces in the KEEP array are
maintained by garbage collection functions GETSPACE which provides an available
space and PUTSPACE which places a newly available space (i.e. one whose reference
count drops to zero) on the garbage linked list. See {10] for implementation techniques.

We now present ALGE, which uses Lemma 6 in order to solve the LCS problem in
time O(pe log n):

ALGE (m,n,A, B,C,p, €

1 F[h), Glh]l«<Oforh =0, .., ¢
P[0] «0; P[Al e —-1forh =1, ,¢
2 fork « 1 step 1 while there were candidates found in the last pass de
begin
3 max < 0
jmin «n + 1
4 forh « 0 step 1 until ¢ do
begin
5 1<—h+k
j < NEXTB(a,, Glh))
ify = ymn
6 then begin
Fih) « imax
Glh) « jmun
NEWP[R]) « -1
end
7 else begin
nskip « (¢ ~ 1) — Flh]
ifnskip =0
then NEWP[h] « Pfh]
else begin
NEWP[h] « GETSPACE
KEEPINEWP(h}] « G — 1, nskip, P{h — nskip])
end
8 max <1
jmin <=}
Flh] <
Glh] <
end
9 end loop of step 4
10. if no k-candidates were found then goto step 13
for; «— 0 step 1 until € do
begin
11 REMOVE(P[1])
P[i] « NEWP[i]
end loop of step 10
12 end loop of step 2
13 x « mun 4 such that P[h]) = 0, —1 if none such

pek-—1

ifx <0 ORp <m — e then {print “NO”, goto step 15}
14. RECOVER
15 END of ALGE
SUBROUTINE RECOVER

1 SKIP[x + 1]« 0
lastmatch « F(x]
y <« Px]

Algorithms for the Longest Common Subsequence Problem 671

2 whiley # do
begin
count « nskiply}
postion < aaly]
3 while count > 0 do

begin
SKIP[x] « posution
xe—x—1

position < posttion — 1
count « count — 1
end loop of step 3
y < ptly]
end loop of step 2
4. x <1
k<1
for: « 1 step 1 until lastmatch do
if: = SKIP[x] thenx «<x + 1
else begin
Cx —a,
ke—k+1
end

5 END OF RECOVER

The loop of step 2 evaluates sets of feasible k-candidates for k = 1, 2, The loop
of step 4 evaluates whether there 15 a teasible k-candidate having precisely 4 skipped
positions, for £ = 0, 1, ..., €, by using Lemma 6 to determine the j-value for a
particular i-value and then checking, by using Lemma 2, whether ¢, j) is minimal. imax
is the maximum ;-value of feasible k-candidates generated thus far (i.e. with i-values
less than the current value of i); jmun 1s the corresponding j-value (which is the
minimum j-value of feasible k-candidates generated thus far). If (i, j) is a feasible k-
candidate, then it is stored in the F and G arrays and information will be stored in P[h],
enabling recovery of any additional skipped positions that occur between i and F[A] as
well as the skipped positions occurring before F[h)] ((F[h], G[h]) is a (k — 1)-candidate
that can generate (i, j)). The & skipped positions corresponding to (F[h], G[h]) are
recoverable by accessing KEEP[P[h]]. In general there may be more than one feasible
k-candidate that will be generated by (F[h], G[#]). Thus we must not destroy P[h] until
all required references to KEEP[P[h]] are made. For this reason, new values for the P
array are stored in the NEWP array. When we no longer need the old values of P (after
the inner loop of steps 4-9), we can then replace them with the new values, being
careful to decrement reference counts of KEEP elements that were pointed to by the
old P array

Function REMOVE(x) decrements the reference count of KEEP[x] (unless x = 0, in
which case nothing 1s done), and, if KEEP[x] now has reference count zero, then a call
will be made to REMOVE(pt{x]) after KEEP{[x] has been put on the garbage linked list
by using PUTSPACE.

Implementation of NEXTB
The following should be done before using ALGE:

1 Sort the symbols in A and then construct a balanced biary search tree of symbols that appear 1n strng A
Let there be ss such symbols (ss < m).
2. for k « 1 step 1 until ss do LAST[k] < 0
3 for: « 1step 1 untiln do
begin
find out that b, = 6,
] « LASTI[k]
LAST[k] <
if; + O then NEXT[)] <
else FIRSTk] «:
end loop of step 3

672 DANIEL S. HIRSCHBERG

4. start — 1

for k « 1 step 1 until ss do

begin
Place the positions j of B such that b; = @, into N[start] through Nstar: + nn — 1] where 6, occurs nn
times in string B. The first position in B at which 8, occurs 1s at FIRST[k]. If 6, occurs at position j, then
the next occurrence of 8, m B will be at position NEXT[;] unless LAST[k] = j, in which case there are no
more occurrences of 6, n B.
S[k] « start
start < start + nn

end

We can find out that g, = 8, 1n time O(log s). N[S[1]:S[k + 1] — 1] holds the block
of positions j with b, = 6. This block of cells can be searched by using binary search of
a linearly ordered array [11, Sec. 6.2.1]. NEXT(a,, j) can thus be executed in time
O(log n).

If s is very small, then the following alternate way of computing NEXTB(6, j) may be
preferred: Instead of constructing a compressed array in step 4, construct a NEXTB
matrix while in step 3. For each:, set NEXTB[k, t] = i for j =t <. This will result in
time and space complexity (of the setup) of O(sn). The function NEXTB(®, j) can be
evaluated by determining that ¢ = 6, in time O(log S) and by doing a simple table look-
up.

ALGE retains k-candidates, as did ALGD, except for those candidates that cannot
lead to a sufficiently long common subsequence because too many A-positions have
already been skipped. The (k + 1)-candidates that can be generated by the dropped k-
candidates also skip too many A-positions.

LemMMa 7. ALGE retains all feasible k-candidates.

Proor. By induction on k. It is trivially true for £k = 0 (the F and G arrays are
initialized to zero 1n step 1). Assume that the set of feasible (¢ — 1)-candidates has been
evaluated and stored in arrays F and G. ALGE generates the set of feasible k-
candidates in order of increasing i-value. F[h] is to holdi = h + k if i is an i-value of a
feasible k-candidate; otherwise F[h] 1s to hold the maximum i’ < i such that i’ is a
feasible k-candidate. G[#] is to hold the corresponding j-value. imax and jmin hold the
last-generated feasible k-candidate, which, by Lemma 2, has the maximum i-value and
minimum j-value generated thus far. Step 3 initializes them to correctly indicate that no
k-candidates have yet been generated. Step 5 evaluates the j-value for a given potential
k-candidate by using Lemma 6. If j = jmin then, even though the necessary condition for
feasibility has been met, (i, j) is not minimal since 1t would be ruled out by (imax, jmin).
In this case step 6 sets F[h] and G[h] to imax and jmin. If j < jmin, then (, j) is minimal
since it cannot be ruled out by any previously generated k-candidate (; < jrun) and it
cannot be ruled out by any future generated k-candidate (all future i’ > §). In this case
step 8 sets F{#] and G[#] and also updates imax and jmin. O

THEOREM 3. ALGE correctly computes the LCS of strings A and B if the LCS is of
length at least m — .

Proor. By Lemma 7, ALGE correctly keeps minimal k-candidates. Thus, if there
is a common subsequence of length p = m — ¢, then there is a minimal p-candidate
which will be feasible. The data structure of ALGE keeps track, for each feasible k-
candidate (, j), of the h = | — k positions in string A that have been skipped in the
common subsequence of length k of A, and B,,. P{h] points to the element of KEEP
that contains the necessary information. P 1s updated in step 7 when a feasible k-
candidate is generated. If any additional positions are skipped (between the k-candidate
{, j) and the (k¢ — 1)-candidate (', j') that generated (i, j)), then that information is
recorded m an element of KEEP as well as a ponter, enabling recovery of the A —
nskip previously skipped A-positions (of ¢’, j')). Subroutine RECOVER recovers the
skipped positions of a feasible p-candidate by reversing the process in which they were
stored and then computes the LCS by deleting the skipped positions from string 4. O

THEOREM 4. For ¢ = O(n'?), ALGE requires space linear in n.

Algorithms for the Longest Common Subsequence Problem 673

Proor. The KEE P array requires O(e?) space: The common subsequence implied by
k-candidate (h + k, j) has h skipped A-positions, i < ¢, and thus can use at most s spaces
in the KEE P array. The total number of spaces referred to by all feasible k-candidates is
thus at most e(e + 1)/2. Adding to that the (exactly) e references to get the set of feasible
(k + 1)-candidates gives a total of no more than (e? + ¢)/2. Each element of array KEEP
requires four words (aa, nskip, pt, and a reference counter).

The arrays and space that they use are as follows: Fle], Glel, C[p], Ple], NEWP[e],
KEEP[2¢* + 2], FIRST[ss], NEXTI[n], LASTI[ss], SKIP[e], S[ss], N[n].

The NEXTB function requires at most 2n locations to store the various balanced
binary search trees.

Thus a total of at most 2% + 7e + 4n + p + 3ss locations is used. Fore =< Q(n!?), space
requirements are linear inn. [

THEOREM 5. ALGE requires time O(pe log n).

Proor. Preprocessing for the NEXTB function requires time O(n log m). Step 1
takes time Ofe). Step 2 executes steps 3-12 p times. Step 3 takes constant time for a
total time of O(p). Step 4 executes steps 5-9 at most e times. Step 5 takes time O(logn)
for a total time of O(pe log n). Steps 6-9 take constant time for a total time of O(pe).
Steps 10-12, excluding time spent in function REMOVE, take time Of(e) for a total time
of O(pe).

Subroutine RECOVER recovers at most € skipped positions (taking time O(e)) and
then deletes them from string A (taking time O(m)) for a total time of O(m).

The number of references (to array KEEP) removed is at most the number of
references inserted. There are at most pe references inserted (one per execution of step
7), and the amount of time (per reference removal) spent in function REMOVE is
constant. Therefore the total time spent in function REMOVE is O(pe).

Therefore the total time of execution of ALGE is O(pe logn). [

It is noted that step 5, requiring O(log n) time, is the bottleneck, causing total time
requirements of O(pe log n). P. van Emde Boas’s recent algorithm for priority queues
[19] appears capable of solving the position-finding problem in time O (log log n). If so,
this would reduce the time bound of this problem to O(pe log log n).

ALGE assumes that ¢ is known. If ¢ is not known, then set ¢ «— 2 and proceed
through the algorithm. If that value of ¢ is insufficient (1.e. there is no common
subsequence of length m — €), then double the guess for ¢ and continue iteratively until
a common subsequence is found.

Total time spent will be (letting £ be the multiplicative coefficient of the time
requirement)

2pk logn + 4pk logn + --- + epk logn,

which is less than 2pek log n. Since ¢ < 2(m + 1 — p), we can recover an LCS in time
O(p(m + 1 — p)logn).

Other Algorithms

The only known algorithm for the LCS problem with worst-case behavior less than
quadratic is due to Paterson [14]. The algorithm has complexity O(n®log log nflog n). It
uses a “Four Russians™ approach (see [3] or [1, pp. 244-247]). Essentially, instead of
matrix L (where L1, j] is the length of an LCS of A,, and By;) being calculated one
element at a time (see [7]), the matrix is broken up into boxes of some appropriate size
k. The high sides of a box (the 2k — 1 elements of L on the edges of the box with
largest indices) are computed from L-values known for boxes adjacent to it on the low
side and from the relevant symbols of A and B by using a look-up table which was
precomputed.

The algorithm assumes a fixed alphabet size although modifications to the algorithm
may be able to get around that condition.

674 DANIEL S. HIRSCHBERG

There are 2k + 1 elements of L adjacent to a box on the low side. Two adjacent L-
elements can differ by either zero or one. There are thus 2% possibilities in this respect.
The A- and B-values range over an alphabet of size s for each of 2k elements, yielding a
multiplicative factor of s?*, and the total number of boxes to be precomputed is therefore
22ka+log > Each such box can be precomputed in time O(k?) for a total precomputing
time of Q(k222k1+log 9)

There are (n/k)? boxes to be looked up, each of which will require O(k log k) time to
be read, for a total time of O(n%log k/k).

The total execution time will therefore be O (k?2*+19€ 9 + n2log k /k). If we let k = log
n{2(1 + log s), we see that the total execution time will be O(n*log log n/log n).

Restrictions on the L.CS Problem

Szymanski [17] shows that if we consider the LCS problem with the restriction that no
symbol appears more than once within either input string, then this problem can be
solved in time O(n log n).

In addition if one of the input strings is the string of integers 1 —~ n, this problem is
equivalent to finding the longest ascending subsequence in a string of distinct integers. If
we assume that a comparison between integers can be done in unit time, this problem can
be solved in time O(n log log n) by using the techniques of van Emde Boas [18].

ACKNOWLEDGMENT. 1 would like to thank the (anonymous) referees for their many
helpful suggestions which have led to a material improvement in the readability of this

paper.

REFERENCES
(Note References [4-6, 8,9, 13, 15, 20, 22, 23] are not cited m the text.)

1 AHo, AV, Hopcrorfr, J E , AND ULLMAN, J D The Design and Analysis of Computer Algorithms
Addison-Wesley, Reading, Mass , 1974

2 AnHo, AV, HIRSCHBERG, D.S , AND ULLMAN, J D Bounds on the complexity of the longest common
subsequence problem J ACM 23,1 (Jan 1976), 1-12.

3 ArLazarov, VL, Divic, E A, KrRONROD, M A, AND FarRADZEV, I A On economic construction of
the transitive closure of a directed graph Dokl Akad Nauk SSSR 194 (1970), 487-488 (in Russian)
English transl 1 Soviet Math Dokl 11,5 (1970), 1209-1210

4 CHvatAL, V, KLARNER, D A , AND KNutH, D E Selected combinatonal research problems STAN-
CS-72-292, Stanford U , Stanford, Calif , 1972, p 26

5 CHvATAL, V , AND SanNkoFF, D Longest common subsequences of two random sequences STAN-CS-
75-477, Stanford U , Stanford, Cahf , Jan 1975

6 HIrsCHBERG, D S On finding maximal common subsequences TR-156, Comptr Sci Lab , Princeton
U, Princeton, N.J , Aug 1974

7. HIRSCHBERG, D S A linear space algorithm for computing maximal common subsequences Comm
ACM 18, 6 (June 1975), 341-343

8 HirscuperG, D S The longest common subsequence problem Ph D Th, Pnnceton U, Princeton,
NI, Aug 1975

9 Hunt, J W, AND SzymaNski, TG A fast algorithm for computing longest common subsequences
Comm ACM 20,5 (May 1977), 350-353.

10 KnutH, D E The Art of Computer Programmung, Vol 1. Fundamental Algornithms Addison-Wesley,
Reading, Mass., sec. ed , 1973

11 Knuth, D. E The Art of Computer Programming, Vol 3 Sorting and Searching. Addison-Wesley,
Reading, Mass., 1973

12 Lowranck, R, AND WAGNER, R A An extension of the string-to-string correction problem J ACM
22, 2 (Apnl 1975), 177-183

13 NEEDLEMAN, S B, AND WunscH, CD A general method applicable to the search for similanties in
the amuno acid sequence of two protemns J. Mol Biology 48 (1970), 443-453

14 PatersoN, M.S Unpublished manuscript U of Warwick, Coventry, England, 1974

15 Sankorr, D Matching sequences under deletion/finsertion constraints Proc Nat Acad Sc USA 69, 1
(Jan 1974), 4-6

16 Seriers, P H An algorithm for the distance between two finite sequences J. Combinatorial Theory,
Ser A, 16 (1974), 253-258

Algorithms for the Longest Common Subsequence Problem 675

17

18

19

20

21

22

23

Szymanski, T G A special case of the maximal common subsequence problem TR-170, Comptr Sci
Lab , Princeton U | Princeton, N J , Jan 1975.

vaN EMDE Boas, P An O(n log log n) on-line algorithm for the insert-extract min problem TR 74-
221, Dept Comptr Sa, Cornell U | Ithaca, N Y , Dec 1974

vaN EMDE Boas, P. Preserving order 1n a forest 1n less than logarithmic ime Conf Rec 16th Annual
Symp on the Foundations of Comptr Sa , Oct 1975, pp 75-84

WAGNER, R A On the complexity of the extended string-to-string correction problem Proc Seventh
Annual ACM Symp on Theory of Comptng , 1975, pp 218-223

WAGNER, R A, aND FiscHErR, M J The string-to-string correction problem J. ACM 21, 1 (Jan
1974), 168-173

Wone, C K., anp CHANDRA, A.K Bounds for the string editing problem J ACM 23,1 (Jan 1976),
13-16

Yao, CC, anD Yao, FC On computing the rank function for a set of vectors UIUCDCS-R-75-699,
Dept Comptr Sc1, U of Lllinoss at Urbana-Champaign, Urbana, 11l , Feb 1975.

RECEIVED JUNE 1975, REVISED FEBRUARY 1977

Journal of the A 1on for Comp Mach y, Vol 24, No 4, October 1977

