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Storing digital data using synthetic DNA requires information to 
be encoded into nucleotide sequences and the corresponding mol-
ecules to be synthesized and stored in an appropriate environment. 
To extract the stored information, one has to sequence the DNA and 
decode it back into digital data. Here, we provide an end-to-end DNA 
storage workflow (Fig. 1a). We focus on scaling up data volumes and 
solving the associated challenges. Specifically, we address the need to 
access data selectively, rather than in bulk, to minimize the amount of 
sequencing required to recover the desired stored data.

For many years, high cost and low throughput have limited the appli-
cations of DNA data as a storage medium1,2. Recently, various groups 
have observed that the biotechnology industry has made substantial 
progress and DNA data storage is nearing practical use3–10. However, 
most prior DNA data storage efforts sequenced and decoded the entire 
amount of stored information, with no random access3–7. However, this 
type of redundant sequencing becomes impractical as the amount of 
data increases (Fig. 1b,c). Being able to selectively access only part of 
the written information (e.g., retrieving only one image from a collec-
tion) is therefore necessary to make DNA data storage viable, but so 
far accessing part of stored information has only been demonstrated 
on a small scale8–10. Our work demonstrates that PCR-based random 
access can be scaled up to reliably extract files of widely varying size 
and complexity from a DNA pool three orders of magnitude larger than 
those used in prior random access experiments.

Both DNA synthesis and sequencing are highly error-prone11. It is not 
unusual to observe aggregate insertion, deletion, and substitution rates at 
~0.01  errors/base. Even complete loss of specific data strands can occur 
during library synthesis or amplification. Prior work has shown that it is 
possible to recover data even from such noisy conditions if proper encod-
ing schemes are used. Although efforts have been made to minimize the 

amount of logical redundancy (i.e., the amount of additional informa-
tion encoded) required for complete data recovery at a given error rate, 
existing approaches rely on a high degree of sequencing redundancy (i.e., 
having many copies of each sequence and deep sequencing coverage).

Here, we present a coding algorithm that explicitly reduces sequenc-
ing redundancy, hence requiring fewer sequencing resources and, in 
turn, fewer physical copies of any given molecule to fully recover 
the stored data. Our scheme tolerates aggressive settings of uneven 
low coverage and high coordinate error rates of insertions, deletions, 
and substitutions (Supplementary Note 1 and Supplementary  
Table 1), while maintaining a logical density (bits per nucleotide) com-
petitive with previously proposed schemes (Fig. 1d, Supplementary  
Note 2, and Supplementary Table 2). As DNA data storage technol-
ogy matures, the goals of increasing throughput and lowering costs 
will likely drive coordinate error rates in the DNA data storage chan-
nel even higher than the current value.

To investigate challenges associated with increasing DNA data 
storage size, we created a large DNA library of modern data types, 
such as high-definition video, images, audio, and text. These included 
the “Universal Declaration of Human Rights” in over 100 languages 
(doi:10.1080/13642989808406748; http://www.ohchr.org/EN/UDHR/
Pages/UDHRIndex.aspx), a high-definition music video of the band 
“OK Go” (https://www.youtube.com/watch?v=qybUFnY7Y8w), and 
a CropTrust database of the seeds stored in the Svalbard Global Seed 
Vault (https://www.nordgen.org/sgsv).

RESULTS
Coding method and random-access primer design
We encoded 35 files ranging from 29 KB to over 44 MB, totaling over 
200 MB of unique (compressed) data (Fig. 1c lists a few examples; 
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Supplementary Note 3 and Supplementary Table 3 provide the full 
list). We added 15% logical redundancy for robust error correction 
to 33 of our files and 25% to the other two, resulting in an additional 
32.2 MB of data encoded in DNA. For DNA synthesis, we segmented 
each input file into a large number of oligonucleotides, each contain-
ing the same PCR primer target sequences that form a unique file ID. 
Moreover, each strand also includes a unique, strand-specific address 
to order strands within a file. The resulting synthetic DNA library 
contains 13,448,372 unique DNA sequences of lengths ranging from 
150 to 154 bases, synthesized using Twist Bioscience’s oligo pool serv-
ices in a total of nine synthesis pools. Our resulting combined pool 
of about 2 billion bases represents an increase of about an order of 
magnitude in the amount of information stored in and retrieved from 
DNA, relative to prior work6.

Achieving robust random access in a large DNA data storage system 
requires effective PCR primers to reliably amplify a specific file with-
out crosstalk. We thus devised a framework for designing a primer 

library with thousands of pairs of orthogonal primers (file IDs). Our 
design method (Fig. 2a,i, Supplementary Note 4, and Supplementary  
Fig. 1) optimizes primers for several properties: avoidance of second-
ary structure formation and primer–dimer formation, absence of long 
stretches of homopolymers, melting temperature constrained to a nar-
row range (55–60 °C), and a minimum of 30% of their sequence unique 
compared to other primers. To increase the stringency of sequence 
orthogonality, we used the basic sequence alignment program BLAST 
to screen out primers with long stretches of similar sequences12. Before 
incorporating selected primer sequences into the library files, we tested 
primer performance on a pool of 3,240 synthetic “mini-files” ranging 
from 1 to 200 103-mers. We successfully accessed and sequenced up 
to 48 mini-files from this pool in a one-pot multiplex PCR experiment  
(Fig. 2a, ii), validating our primer library design approach 
(Supplementary Note 5 and Supplementary Fig. 2).

Next, we created a coding scheme to convert digital information 
to DNA sequences and back to digital information. Similar to prior 
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Figure 1 Overview of the DNA data storage workflow and stored data. (a) The encoding process maps digital files into a large set of 150-nucleotide 
DNA sequences, including Reed–Solomon code redundancy to overcome errors in synthesis and sequencing. The resulting collection of sequences 
is synthesized by Twist Bioscience. The random access process starts with amplifying a subset of the sequences corresponding to one of the files 
using PCR. The amplified pools are sequenced using either sequencing by synthesis (Illumina NextSeq) or nanopore sequencing (Oxford Nanopore 
Technologies). Finally, sequencing reads are decoded using our clustering, consensus and error correction algorithms. (b) We encoded a total of 200 
MB of data, about an order of magnitude more than prior work. (c) Example files encoded within these 200 MB of data. (d) A comparison to prior work 
shows that our coding scheme has similar logical redundancy, but requires lower sequencing coverage to recover files.
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work5,6, our approach employs concatenated codes with Reed–Solomon 
(RS) as the outer code (Fig. 2b). (However, unlike most earlier work, we 
used very long codes (length up to 65,536) to handle large variations in 
the number of errors between code words.) Input data are then rand-
omized by XOR with a pseudo-random sequence. Randomization facil-
itates coping with errors by breaking multi-bit repeats (e.g., 00000000) 
and ensures that the DNA sequences we produce are dissimilar, which 
makes decoding less computationally costly.

The encoder first partitions the randomized digital file into mul-
tiple blocks, up to a megabyte in size. We represent each block by a 
matrix M with up to ten rows and up to 55,000 columns, where every 
matrix cell carries a 16-bit value. Next, we encode each row of M with 
a Reed–Solomon code to obtain a larger matrix M′ that extends M by 
appending redundant columns. Every column of M′ is later converted 
into a DNA sequence of length 110 (114 for File 33; Supplementary 
Note 3 and Supplementary Table 3). When Reed–Solomon redun-
dancy is set to 15%, 87% of the DNA sequences carry raw input data 

(systematic RS coordinates), while 13% carry redundant data used for 
error correction (redundant RS coordinates).

The conversion of columns of M′ to DNA sequences involves rep-
resenting a column in base 4, appending a prefix with address infor-
mation (block index and column index), breaking the column into 
consecutive fragments of size three each, treating the content of each 
fragment as a number between 0 and 63 written in base four, repre-
senting this number in base three to obtain a fragment of size four, 
putting the new fragments together, and applying a rotating code4 to 
turn a base-three representation into a base-four representation that 
eliminates homopolymers.

Finally, all DNA sequences are appended with 20-base PCR primer 
targets selected from the primer library on both ends to allow random 
access to the file (Supplementary Note 6 and Supplementary Figs. 3 
and 4). Resulting DNA sequences are synthesized into DNA strands, 
which can then be preserved using a variety of methods, and later 
selected via random access.
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Figure 2 Design of random access primers and coding algorithm. (a, i) We designed a primer library for our PCR-based random access method using 
an in silico process. Starting with a set of random 20-mers, the sequences keep mutating until they satisfy all the design criteria, which include their 
GC-content, the absence of long sequence-complementarities, absence of long stretches of homopolymers, and a minimum Hamming distance of 6 
bases from other primers. The preselected sequence set (19,480 sequences) is then filtered by melting temperature and a set that is as diverse as 
possible, that is, has low similarity between the sequences, is selected. (a, ii) The resulting set of candidate primers is then validated experimentally 
by synthesizing a pool of about 100,000 strands containing sets of size 1 to 200 DNA sequences each, surrounded by one of the 3,240 candidate 
primer pairs, and then randomly selecting 48 of those pairs for amplification. The product is sequenced, and sequences with each of the 48 primer 
pairs appear among sequencing reads, albeit at different relative proportions when normalized to the number of sequences in each set. (b) Our encoding 
process starts by randomizing data to reduce chances of secondary structures, primer–payload non-specific binding, and improved properties during 
decoding. It then breaks the data into fixed-size payloads, adds addressing information (Addr), and applies outer coding, which adds redundant 
sequences using a Reed–Solomon code to increase robustness to missing sequences and errors. The level of redundancy is determined by expected 
errors in sequencing and synthesis, as well as DNA degradation. Next, it applies inner coding, which ultimately converts the bits to DNA sequences. The 
resulting set of sequences is surrounded by a primer pair chosen from the library based on (low) level of overlap with payloads. (c) The decoding process 
starts by clustering reads based on similarity, and finding a consensus between the sequences in each cluster to reconstruct the original sequences, 
which are then decoded back to digital data.
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Our proposed random-access approach and associated primer 
design and conflict detection methodology scales to physically iso-
lated pools of several terabytes each (Supplementary Note 5). In 
dehydrated spots, these would measure on the order of one millimeter, 
which in turn can be organized in dense arrays. Such a system would 
be orders of magnitude denser than tape.

When servicing a read request, we retrieve and rehydrate the 
DNA. Sequencing these DNA strands produces a collection of noisy 
reads, which do not necessarily include all original DNA sequences; 
sequences may be lost by sampling, storing, retrieving and preparing 
the DNA for sequencing. Sequences belonging to a specific file are 
obtained by aligning and filtering based on the primer sequence and 
length. Frugality with respect to coverage was a key consideration 
when designing our decoding approach. Therefore, we do not require 
reads to be the correct length5, and we do not filter out reads with 
errors in their primer region7. Instead, noisy reads whose length is 
within 20 nucleotides of the original length are selected and passed 
to the decoder.

The decoder operates in four stages (Fig. 2c). First, it clusters 
noisy reads by similarity, based on their entire content, not just the 
addresses8, to collect all available reads that likely correspond to one 
of the unique DNA sequences originally stored. To do so, we employ 
an algorithm that leverages the input randomization done during 
encoding. At a high level, we initially consider each noisy read a 
separate cluster and iteratively merge clusters based on random rep-
resentatives, leveraging the fact that noisy reads of any specific DNA 
sequence are similar and noisy reads of different DNA sequences 
are dissimilar. Our algorithm runs in time that is close to linear in 
the input size and utilizes a series of filters to avoid unnecessary and 
slow edit distance computations. Using a locality-sensitive hashing 
scheme for edit distance, we compare only a small subset of repre-
sentatives. We also use a lightweight check based on a binary embed-
ding to further filter pairs. If a pair of representatives passes these 
two tests, edit distance determines whether the clusters are merged. A 
less computationally efficient, but functionally equivalent alternative, 
approach to clustering that uses off-the-shelf software is discussed in 
Supplementary Note 7.

The second stage of the decoder then processes each cluster to 
recover the original sequence. This stage, which we call trace recon-
struction, uses a variant of the Bitwise Majority Alignment algorithm 
(BMA)13, adapted to support insertions, deletions, and substitutions. 
The algorithm follows BMA in that pointers for noisy reads are main-
tained and moved from left to right, and at every step of the process the 
next symbol of the original sequence is estimated via a plurality vote. 
For the noisy reads that agree with plurality, the pointer is moved to the 
right by 1 (hypothesizing that the read had the correct symbol at the 
respective position), just like in BMA. But for the samples that do not 
agree with plurality, the algorithm tries to decide what the reason for 
the disagreement is: is it due to a deletion, an insertion, or a substitu-
tion? The classification of mismatches is done by looking at the context 
around the symbol under consideration in the noisy read. Once this is 
estimated, the pointers are then moved to the right accordingly.

In the third stage, the decoder unwinds the no-homopolymer rep-
resentation to obtain matrices M corresponding to different blocks. 
In each recovered matrix some columns may be missing (erasures), 
and others may contain errors. In stage four, we decode the outer 
Reed–Solomon (RS) code to correct errors and erasures in rows of 
matrices M′ and invert randomization. Successful decoding is pos-
sible if for each row of each matrix M′ the ‘used error resilience’ ratio 
2∗(# (#
#

errors)+ erasures)
redundantRScoordinates

  is at most 1.

Error analysis and decoding from Illumina sequencing
We received nine synthesized DNA pools periodically over several 
months. In each case, we immediately individually amplified every 
file in the pool using random-access emulsion PCR, attached Illumina 
sequencing primers and adapters, and then sequenced the files for 
a total of ten sequencing runs. We have aggregated about 723 mil-
lion reads of more than 13 million distinct synthetic DNA sequences. 
The mean coverage (i.e., number of reads for a given DNA sequence) 
across the data set was 53.8 reads with a s.d. of 48.7 reads. We observed 
considerable variance across files, ranging from a mean of 6.7 reads 
with s.d. of 3.4 reads, to a mean of 298.6 reads with s.d. of 139.6 reads. 
For most files, the empirical coverage distribution was reasonably 
well-approximated by a gamma distribution with matching mean and 
variance (Fig. 3a, center).

The sequencing information serves two purposes: (1) error analy-
sis of processes related to DNA manipulation, including synthesis, 
random access, and sequencing, when used in conjunction with 
knowledge of the encoded DNA sequences; (2) and decoding of 
data stored in DNA and analysis of code resilience, that is, its ability 
to recover the information under the observed error regime. The 
decoding process uses only information that would be available at 
read time in a real storage scenario, that is, no knowledge of the 
encoded DNA sequences, other than the information received from 
sequencing, is used.

The error analysis in Figure 3b (Supplementary Note 8) reveals 
an average error rate per position of 0.6%. Substitutions were the 
most prominent type (0.4%), twice as likely as deletions (0.2%) and 
ten times as common as insertions (0.04%). In some files, specific 
positions showed higher error rates owing to systematic errors in the 
reading or writing processes. Also, primer target regions (first and 
last 20 positions) suffered from fewer errors because of the nature of 
PCR, which favors amplification of perfect primers and primer target 
regions. A clear exception is the spike at position 9, which was caused 
by a single primer sequence with an error at that position. However, 
in all cases, error rates in the primer region were low enough to asso-
ciate most reads coming from sequencing to the sequenced files via 
sequence alignment. Analysis of the non-primer region is shown in 
Figure 3c,d. Figure 3c shows the percent breakdown of errors per 
base type, highlighting that insertion and substitution errors were 
biased toward certain base types. Figure 3d also shows variation of 
error rates across differing neighboring base types.

Next, we proceeded to decode the data. In practice, current prepara-
tion and sequencing technologies yield some unusable reads owing to 
their length being outside the acceptable range or too low-confidence 
in base calling (6.5% on average in our experiments). We expect this 
number to improve as sequencing technology and wet lab protocols 
mature. We randomly subsampled the usable sequencing reads for 
each individual file, gradually increasing the number of reads supplied 
to the decoder. We were able to recover all 200 MB of data (zero-byte 
difference when compared to the original digital data) stored in the 
DNA with median coverage of only 5 reads per DNA sequence, with 
different files ranging from 4 to 14 reads per DNA sequence. If we 
include unusable reads in the calculation, the median goes up to 6.2 
reads per DNA sequence. This is half as much as the minimum cover-
age ever reported in decoding digital data from DNA (Fig. 1d). The 
impact is lower cost because decoding from lower coverages allows 
for a larger number of different DNA sequences to be read with the 
same sequencing kit. To understand the effect of coverage on our 
ability to decode files with no bit errors, we supplied the decoder with 
increasing coverage of reads, and measured the ‘used error resilience’ 
for several of our files (Fig. 3e). As expected, the ratio decreased with 
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coverage because the total number of errors and erasures decreases 
with extra read information.

DNA assembly for nanopore sequencing
To further stress-test our decoding algorithm, we sequenced two 
files (32 KB and 1.3 KB) using the Oxford Nanopore Technologies 
(ONT) MinION sequencer (Fig. 4). The compactness and potential 
for scalability makes nanopore-based sequencing an intriguing option 
for integration in future stand-alone DNA data storage systems. A 
key advantage is a very long read length of potentially thousands of 

nucleotides; however, with current technology, only a limited number 
of reads can be obtained from a single sequencing flow cell. To best 
utilize these characteristics, we developed a protocol to concatenate 
multiple oligonucleotides into longer reads (Fig. 4a,b). Using this 
approach, we successfully recovered a 32-KB file sequenced with 
nanopore technology at a coverage of 36× and a 1.3-KB file at a cov-
erage of 80× despite a high coordinate error rate of ~12%, computed 
using exhaustive minimum edit distance. We observed that reads of 
incorrect length constituted over 88% of all reads, and ignoring those 
reads makes recovering the files impossible even at maximal available  
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of reads for different nucleotide types in the payload region. Almost half of the insertions are associated with type G and about a third of the substitutions 
are associated with type T. Deletions are evenly distributed. (d) Error rates depend not only on nucleotide type but also on the type of neighboring 
nucleotides. Each dot corresponds to a 3-mer in the payload region colored according to the central base: black for A, red for C, green for G, and blue for 
T. The horizontal bars represent the weighted mean of the dots in that particular column, as not all 3-mer appear the same number of times. Again, types 
G and T are associated with higher error rates. (e) Estimating the minimal coverage required for decoding. Each curve corresponds to a different file, each 
color corresponds to a different sequencing run, and numbers in the legend correspond to the average insertion, deletion, and substitution errors for the 
corresponding sequencing run. Redundant information is more scarce at lower coverages, resulting in higher ‘used error resilience’.
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coverages of 74× and 147×, respectively, indicating the importance 
of using as many reads as possible (Fig. 4d), a unique feature of our 
proposed decoder. Results above bode well for building an integrated, 
scalable DNA data storage system that is tolerant of the high error 
rates that could accumulate over millennia.

DISCUSSION
Given the current trends in data production and the rapid pace of 
progress of DNA manipulation technologies, DNA data storage has 
the potential to complement or eventually replace tape, the densest 
commercially available storage medium for archival storage.

The global demand for synthetic DNA in 2015 was estimated to 
be 4.8 billion bases of single-stranded oligos and ~1 billion bases 
of longer double-stranded oligos, or just under 6 Gigabases in total 
(http://www.synthesis.cc/synthesis/2016/03/on_dna_and_transistors). 
To provide a sense of scale, the size of the largest known eukaryo-
tic genome is about 149 Gigabases14. The first practical ‘DNA drive’ 
should have a throughput of at least a few kilobytes per second. At the 
coding density demonstrated here, this is a few kilobases per second, 
or the equivalent of the entire synthetic DNA industry annual pro-
duction in just 2 weeks. Clearly, synthetic DNA production will have 
to increase to meet this goal. We contend this is attainable because 
the synthetic DNA needed for data storage can be significantly more 
error prone than DNA used by life sciences, and very few copies per 
sequence are required. This is due to error-correcting algorithms such 
as the one described in this paper.

Even at kilobyte-per-second throughput, a DNA drive can be inter-
esting because of the long-term durability and relevance DNA can offer 

to the preservation of high value-per-bit data. However, large-scale, 
deployed storage technologies today offer throughputs of hundreds of 
megabits per second, which will be more challenging to match. At this 
point, even DNA sequencing technologies, which are currently capable 
of reading megabases per second, will require improvement. The cost 
per bit offered by current storage devices is also much lower than what 
is possible with DNA today. Luckily, both DNA synthesis and sequenc-
ing technologies use array-based designs, which are readily replicable 
and amenable to scaling. This scaling increases the number of DNA 
sequences that can be read or written at a time, simultaneously increas-
ing throughput and decreasing costs. Additional cost reductions can 
be obtained by optimizing fluidic delivery and exploiting large-scale 
efficiencies in the chemistry of reagents. We expect to see substantial 
activity in these areas in the upcoming years.

This paper describes large-scale random access, low redundancy, 
and robust encoding and decoding of information stored in DNA, as 
well as a notable increase in the volume of data stored (200 MB, the 
largest synthetic DNA pool available to date). To encourage more 
work in this area, we will be making samples available to select groups 
interested in DNA data storage.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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sequencing. (a) A file of interest is amplified using PCR with primers 
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amplification products are mixed in a Gibson assembly reaction 
and amplified using primers corresponding to the unique overhangs 
present at the 5′ and 3′ of the Gibson assembly product. (b) Amplicon 
consisting of concatenated oligonucleotides is sequenced using the 
MinION and thousands of reads are generated. (c) Per-position average 
read error profile averaged over all 88 strands of a 1.3-KB file and their 
corresponding 2D reads. Error rates are higher than in Illumina-sequenced 
reads. (d) Estimating the minimal coverage required for decoding. Higher 
error rates are offset by higher coverage, making decoding the original 
stored data possible.
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ONLINE METHODS
Selectively amplifying DNA. Whenever we received a pool of synthetic DNA, 
we rehydrated the pool in 1× TE buffer and used the following protocol to 
amplify each file individually (please see Supplementary Fig. 5 for more 
workflow information):

Mix 10 ng of ssDNA pool (1 µL) with 1 µL of 100 µM of the forward primer 
(with a 25 nucleotide random overhang, see Supplementary Note 9 for ration-
ale and Supplementary Fig. 5 for a simple schematic) and 1 µL of 100 µM of 
the reverse primer (with no overhang), 25 µL of 2× Kapa HiFi enzyme mix,  
20 µL of molecular grade water, and 2 µL of 1.25 mg/mL acetylated bovine 
serum albumin. All primers were ordered from Integrated DNA Technologies. 
This 50 µL mix was then mixed with the 300 µL oil surfactant mixture detailed 
in the EURx ePCR kit. The resulting mixture was then attached to a benchtop 
vortexer in a refrigerator and vortexed for 5 min at the highest setting.

After vortexing, the now milky-appearing product was split evenly into 
three PCR tubes and placed in a thermocycler with the following protocol: (1) 
95 °C for 3 min, (2) 98 °C for 20 s, (3) 62 °C for 20 s, (4) 72 °C for 15 s, (5) go 
to step 2 a varying number of times depending on the proportion of the pool 
being amplified, (6) 72 °C for 30 s. The reaction was then purified according 
to the instructions in the EURx ePCR kit. Total yield typically ranged between 
30 ng and 1 µg because ePCR yield is directly proportional to the size of 
the file. The reverse micelles that make up the emulsion should all theoreti-
cally have the same amount of primer and one strand of DNA, so the larger 
the file, the greater the proportion of micelles have targeted strands. Recall 
that regardless of file size, 10 ng of the pool was used (see Supplementary  
Table 3 for the percent of the amplified pool each file comprised). This resulted in  
~80 k copies of each strand present at the start of each ePCR reaction.

When necessary, qPCR was performed to determine the ideal number of 
cycles to amplify a file according to the following recipe: mix 1 ng of ssDNA 
pool (1 µL) with 0.5 µL of 10 µM of the forward primer (with no overhang) and 
0.5 µL of 10 µM of the reverse primer (with no overhang), 10 µL of 2× Kapa 
HiFi enzyme mix, 7 µL of molecular grade water, and 1 µL of 20× Eva Green. 
The thermocycling protocol was: (1) 95 °C for 3 min, (2) 98 °C for 20 s, (3)  
62 °C for 20 s, (4) 72 °C for 15 s, then repeat steps 2–4 as needed.

After amplification with ePCR, the length of the dsDNA products was con-
firmed with a Qiaxcel fragment analyzer, with sample concentration measured 
by Qubit 3.0 fluorometer.

Ligation of amplified DNA files for sequencing. After ePCR, amplified 
products were ligated to the Illumina sequencing adapters with a modified 
version of Illumina TruSeq Nano ligation protocol and TruSeq ChIP Sample 
Preparation protocol. Briefly, samples were first converted to blunt ends with 
the ERP2 reagent and directions provided in the Illumina TruSeq Nano kit, 
then purified with AMPure XP beads according to the TruSeq ChIP protocol. 
An ‘A’ nucleotide was added to the 3′ends of the blunt DNA fragments with 
the TruSeq Nano’s A-tailing ligase and protocol, followed by ligation to the 
Illumina sequencing adapters with the TruSeq Nano reagents and protocol. 
We then cleaned the samples with Illumina sample purification beads and 
enriched the sample using PCR to yield enough product for sequencing. The 
length of enriched products was confirmed using a Qiaxcel bioanalyzer.

Sample preparation for sequencing. When multiple separate samples were 
prepared for sequencing, these samples were mixed proportionally (e.g., a 
10,000 oligonucleotide file to be sequenced with a 500,000 file would comprise 
1.96% of the DNA material in this mix). The mixed sample was then prepared 
for sequencing by following the NextSeq System Denature and Dilute Libraries 
Guide. The sequencing sample was loaded into the sequencer at 1.3 pM, with 

a 10 to >20% PhiX spike-in as a control (PhiX is a reliable, adaptor-ligated, 
well-characterized genomic DNA sample provided by Illumina).

Sequencing with Oxford Nanopore Technologies MinION. First, we used 
PCR to amplify an oligonucleotide library with primers containing orthogo-
nal overhang sequences. Then, we combined the amplified products into one 
Gibson assembly reaction where each overhang allowed for multiple library 
members to be concatenated. Finally, we used PCR to amplify the resulting 
concatenated product with primers that hybridize to each respective end of 
the assembly product. Using this approach, we generated a 3-fragment and a 
6-fragment assembly for a 1.3-KB and a 32-KB file, respectively.

To amplify the original file and add the overhangs, a 100-fold diluted sample 
of ssDNA library was amplified using a KAPA SYBR FAST qPCR kit with the 
following thermal profile: (1) 95 °C for 3 min, (2) 98 °C for 20 s, (3) 69 °C for  
20 s, (4) 72 °C for 20 s. The total number of cycles of steps 2–4 was determined 
by monitoring the fluorescence of the qPCR instrument as the amplification 
reached the plateau phase. Each amplification reaction was performed sepa-
rately with primers containing distinct overhang regions necessary for a subse-
quent Gibson assembly reaction. Overhang sequences were designed using the 
NUPACK15 design module to avoid secondary structure formation. After ampli-
fication, each reaction was purified using Agencourt AMPure XP. Subsequently, 
amplification products mixed at equal molar ratio were added to NEB Gibson 
assembly master mix (1:1 volume ratio) and incubated at 50 °C for 30 min.

Upon AMPure XP clean-up, the ligated product was amplified using the 
same qPCR protocol described above. Amplification was performed with 
primers corresponding to unique overhang sequences present at the 5′ and 
3′ ends of the DNA. After amplification, a DNA band corresponding to the 
expected size was gel-extracted from a 2% agarose gel and quantified by a 
Qubit 3.0 fluorometer. The final product had the expected size corresponding 
to the number of fragments and overhangs used in the assembly.

Sequencing sample preparation of the 1.3-KB file was performed accord-
ing to the Oxford Nanopore Technologies (ONT) Amplicon (R9) protocol for 
2D sequencing. Metrichor sequencing metrics indicated 37,478 reads with 
workflow successful exit status out of 130,573 total reads. Sequencing sample 
preparation of the 32-KB file was performed according to the Oxford Nanopore 
Technologies (ONT) Amplicon (R9.4) protocol for 1D2 sequencing. ONT 
Albacore basecalling software yielded 57,012 1D2 reads. In both cases, these 
reads were then successfully decoded into the original digital file.

Code availability. Supplementary Note 7 provides details on how to repro-
duce the clustering results using off-the-shelf software, as the custom code 
is proprietary.

Life Sciences Reporting Summary. Further information on experimental 
design is available in the Life Sciences Reporting Summary.

Data availability. We have made available two files that enable the repro-
duction of the key parts of our decoding pipeline. MANIFEST describes the 
content and its use. The first file (id20.fastq.gz) is a FASTQ file containing 
reads associated with a single file and the second (id20.refs.txt.gz) contains 
a list of references corresponding to these reads. The data can be used freely 
and are available via http://misl.cs.washington.edu/data and https://github.
com/uwmisl/data-nbt17.

15. Zadeh, J.N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. 
Chem. 32, 170–173 (2011).
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Erratum: Random access in large-scale DNA data storage
Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin Makarychev, Miklos Z Racz,  
Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, Christopher N Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian, 
Kendall Stewart, Gagan Gupta, Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze & Karin Strauss
Nat. Biotechnol. 36, 242–248 (2018); published online 19 February 2018; corrected after print 6 March 2018

In the version of this article initially published, the references in the reference list were in the wrong order; the references have been renumbered 
as follows: 3 as 2; 5 as 3; 6 as 8; 7 as 9; 8 as 11; 9 as 6; 10 as 12; 11 as 5; 12 as 13; 13 as 7; 16 as 10; and no. 2, “Hoch, J.A. & Losick, R. Panspermia, 
spores and the Bacillus subtilis genome. Nature 390, 237–238 (1997),” has been deleted. In addition, on p.242, end of paragraph 2, the citation in 
“experiments7” has been deleted. The errors have been corrected in the HTML and PDF versions of the article.
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