
184 6 Dynamic Programming Algorithms

6.9 Alignment with Gap Penalties

Mutations are usually caused by errors in DNA replication. Nature fre-

quently deletes or inserts entire substrings as a unit, as opposed to deleting

or inserting individual nucleotides. A gap in an alignment is defined as a con-

tiguous sequence of spaces in one of the rows. Since insertions and deletions

of substrings are common evolutionary events, penalizing a gap of length x

as −σx is cruel and unusual punishment. Many practical alignment algo-

rithms use a softer approach to gap penalties and penalize a gap of x spaces

by a function that grows slower than the sum of penalties for x indels.

To this end, we define affine gap penalties to be a linearly weighted score

for large gaps. We can set the score for a gap of length x to be −(ρ + σx),

where ρ > 0 is the penalty for the introduction of the gap and σ > 0 is the

penalty for each symbol in the gap (ρ is typically large while σ is typically

small). Though this may seem to be complicating our alignment approach, it

turns out that the edit graph representation of the problem is robust enough

to accommodate it.

Affine gap penalties can be accommodated by adding “long” vertical and

horizontal edges in the edit graph (e.g., an edge from (i, j) to (i + x, j) of

length−(ρ+σx) and an edge from (i, j) to (i, j +x) of the same length) from

each vertex to every other vertex that is either east or south of it. We can then

apply the same algorithm as before to compute the longest path in this graph.

Since the number of edges in the edit graph for affine gap penalties increases,

at first glance it looks as though the running time for the alignment algorithm

also increases from O(n2) to O(n3), where n is the longer of the two string

lengths.11 However, the following three recurrences keep the running time

down:

↓
si,j= max

{

↓
si−1,j −σ

si−1,j − (ρ + σ)

→
s i,j= max

{

→
s i,j−1 −σ

si,j−1 − (ρ + σ)

11. The complexity of the corresponding Longest Path in a DAG problem is defined by the
number of edges in the graph. Adding long horizontal and vertical edges imposed by affine
gap penalties increases the number of edges by a factor of n.



6.10 Multiple Alignment 185

si,j = max











si−1,j−1 + δ(vi, wj)
↓
si,j
→
s i,j

The variable
↓
si,j computes the score for alignment between the i-prefix of

v and the j-prefix of w ending with a deletion (i.e., a gap in w), while the

variable
→
s i,j computes the score for alignment ending with an insertion (i.e.,

a gap in v). The first term in the recurrences for
↓
si,j and

→
s i,j corresponds to

extending the gap, while the second term corresponds to initiating the gap.

Essentially,
↓
si,j and

→
s i,j are the scores of optimal paths that arrive at vertex

(i, j) via vertical and horizontal edges correspondingly.

Figure 6.18 further explains how alignment with affine gap penalties can

be reduced to the Manhattan Tourist problem in the appropriate city grid. In

this case the city is built on three levels: the bottom level built solely with

vertical ↓ edges with weight −σ; the middle level built with diagonal edges

of weight δ(vi, wj); and the upper level, which is built from horizontal edges

→ with weight −σ. The lower level corresponds to gaps in sequence w, the

middle level corresponds to matches and mismatches, and the upper level

corresponds to gaps in sequence v. Also, in this graph there are two edges

from each vertex (i, j)middle at the middle level that connect this vertex with

vertex (i + 1, j)lower at the lower level and with vertex (i, j + 1)upper at the

upper level. These edges model a start of the gap and have weight −(ρ + σ).

Finally, one has to introduce zero-weight edges connecting vertices (i, j)lower

and (i, j)upper with vertex (i, j)middle at the middle level (these edges model

the end of the gap). In effect, we have created a rather complicated graph,

but the same algorithm works with it.

We have now introduced a number of pairwise sequence comparison prob-

lems and shown that they can all be solved by what is essentially the same

dynamic programming algorithm applied to a suitably built Manhattan-style

city. We will now consider other applications of dynamic programming in

bioinformatics.

6.10 Multiple Alignment

The goal of protein sequence comparison is to discover structural or func-

tional similarities among proteins. Biologically similar proteins may not ex-

hibit a strong sequence similarity, but we would still like to recognize resem-



186 6 Dynamic Programming Algorithms

−σ −σ −σ −σ

−σ −σ −σ −σ

−σ −σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−σ −σ −σ

−(ρ + σ)

−(ρ + σ)

+0

+0

Figure 6.18 A three-level edit graph for alignment with affine gap penalties. Every
vertex (i, j) in the middle level has one outgoing edge to the upper level, one outgo-
ing edge to the lower level, and one incoming edge each from the upper and lower
levels.


