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1 Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is a way of permuting the characters of a string 7" into
another string BWT(T'). This permutation is reversible; one procedure exists for turning 7" into
BWT(T) and another exists for turning BWT(T') back into 7. The transformation was originally
discovered by David Wheeler in 1983, and was published by Michael Burrows and David Wheeler
in 1994 [1].

The BWT has two main applications: compression and indexing. We will discuss both. First
we discuss the transformation from 7" to BWT(T).

1.1 BWT via the BWM

T denotes the string we would like to transform, and m = |T| (the length of T'). We assume that T
ends with a terminator character, denoted $. We define $ to be a character that does not appear
elsewhere in 7', and which is lexicographically prior to all other characters. In the case of DNA
strings, for example, the alphabet order with $ might be $ < A< C <G < T.

Take T' = abaaba$. First, we write down the rotations of T: the distinct strings we can make
from T by repeatedly taking a character from one end and sticking it on the other:

$ a b a a b a
a $ a b a a b
b a $ a b a a
a b a$ a b a
a a b a $ a b
b a a b a $ a
a b aa b a $

By writing them stacked vertically, we’ve created an m x m matrix. Now we sort the rows of
the matrix lexicographically (i.e. alphabetically):

$ a b a a b a
a $ a b a a b
a a b a$ a b
a b a$ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a



This is the Burrows-Wheeler Matrix (BWM(T')). The final column of BWM(T), read from
top to bottom, is BWT(T). So for T' = abaaba$, BWT(T) = abba$aa.

1.2 BWT via the suffix array

The Burrows-Wheeler Matrix seems to be related to the suffix array: to make a suffix array of T,
SA(T), we sort T’s suffixes, and to make BWM(T'), we sort T’s rotations. The relationship is
clearer when we write them side by side:

BWM: SA: Suffixes given by SA:
$abaaba 6 $

a$abaab 5 a$

aaba$ab 2 aaba$

aba$aba 3 aba$

abaaba$ 0 abaaba$

ba$abaa 4 ba$

baaba$a 1 baaba$

They correspond to the same ordering. Look at, for example, where the $s appear in each row
of the comparison. So another way of defining BWT'(T') is via the suffix array SA(T"). Let BWTi]
denote the character at 0-based offset ¢ in BWT(T') and let SA[i] denote the suffix at 0-based offset
iin SA(T).

T[SA[i| —1] if SA[i] >0 (1)
$ if SA[i] =0

Here is a Python implementation of this method for building BWT(T).

BWTIi] = {

def suffixArray(s):
""" Given T return suffix array SA(T). We use Python’s sorted
function here for simplicity, but we can do better. """
# Empty suffix ’’ plays role of $.
satups = sorted([(s[i:], i) for i in xrange(O, len(s)+1)])
# Extract and return just the offsets
return map(lambda x: x[1], satups)

def bwt(t):
""" Given T, returns BWT(T), by way of the suffix array. """
bw = []
for si in suffixArray(t):
if si == 0:
bw.append(’$’)
else:
bw.append (t[si-1])
return ’’.join(bw) # return string-ized version of list bw




1.3 Burrows-Wheeler Transform in compression

How is the Burrows-Wheeler Transform useful for compression? First, it’s reversible. Transfor-
mations used in compression must be reversible to allow both compression and decompression.
Second, characters with similar right-contexts in T tend to come togehter in BWT(T). This can,
for instance, bring several occurrences of the same character together in a tight bunch. This is hard
to see in small examples; in the following example, this bunching is more obvious:

>>> bwt("tomorrow and tomorrow and tomorrow")
‘wwwdd nnoooaatttmmmrrrrrrooo $ooo’

This makes BWT(T') more compressible. For example, we could take BWT(T) and shrink it
(reversibly) with run-length encoding (RLE). Software tools for compression and decompression
employ various methods to shrink BWT(T), including move-to-front transforms, run-length en-
coding, Huffman coding, and arithmetic coding. The popular bzip2 compression tool [3] uses these
and other methods.

1.4 Reversing the Burrows-Wheeler Transform with the LF Mapping

We said the BWT is reversible, but it’s far from obvious at first glance how to reverse it. Recall that
BWT(abaaba3$) = abba$aa. It seems at first glance that information about which a in BWT(T)
corresponds to which a in T has been lost.

But the BWT has an important property called the LF Mapping. Consider again the BWM for
T = abaaba$:

$ a b a a b a
a $ a b a a b
a a b a$ a b
a b a$ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

We re-write T, this time giving each character (except $) a subscript: T' = agboaiazbias$. The
subscript equals the number of times that character occurs previously in T'. The first occurrence
of a becomes ag, the second occurrnce of ¢ becomes c¢q, etc. We call the subscript the character’s
“rank.” We don’t rank $ since there’s only one.

Now we re-write the BWM including the ranks. Ranks don’t affect lexicographical order. E.g.
ap and aggg are equal as far as the ordering of the rows of BW M (T') is concerned.

$ aq bo aj ag bl as
as $ ap bo ap ag b1
ar ax by a3 $ ap by
a9 bl as $ ag bo aj
ag b() a; ag bl as $
b1 as $ ap b(] a; ag
b() a; ag bl as $ ag



The LF Mapping states: the i*" occurrence of a character ¢ in the last column has the same
rank as the i occurrence of ¢ in the first column. E.g. look at the as in the last column above,
starting at the top. They have ranks 3, 1, 2 and 0 in that order. Now look at the ranks of the a in
the first column above; they have the same order: 3, 1, 2, 0. Same for the bs.

Why does this property hold? Let M be BW M(T) for some T'. Let M’ be the matrix obtained
by rotating all the rows of M to the right by one position. The first column of M’ equals the last
column of M.

Pick any character ¢ and compare the ranks of the cs in the first column of M and the ranks of
the cs in the first column of M’. The ranks appear in the same order because the sort treats those
rows identically; in M the rows are sorted starting at the first position, and in M’ the rows are tied
with respect to their first position and sorted starting at the second position. Because of this, and
because the first column of M’ equals the last column of M, the LF Mapping property follows.

Now let’s see how to reverse the BWT. First, let’s re-rank the characters. Before we ranked
them according to how many times the same character occurred previously in 7. Call this the
T-ranking. Now we re-rank according to how many times the same character occurred previously
in BWT(T). Call this the B-ranking. Here is BWT(T) with B-ranks: agbobia;$azas.

How are ranks represented? Let’s define an array rank parallel to BWT(T') that stores the
rank of each character. Here is an illustation of the first and last columns of BW M (T), along with
rank.

F L rank
$ a 0
a b 0
a b 1
a a 1
a $ 0
b a 2
b a 3

Informally, to recover T' from BWT(T): start in the first row, which must have $ in the first
column. Rows are rotations of T', so the last column of the first row contains the character to the
left of $ in T: a in this case. We know from the rank array that this is the a of rank 0: ag. Now
how to recover the character to the left of ag? We can do this if we know which row begins with
ag. But the LF Mapping tells us this. Because ag has rank 0, it must correspond to the first a in
the first column, i.e. the a in the second row. So we advance to the second row. Now we look in
the last column and rank array and see that by precedes ag. by corresponds to the first b in the
first column, so we advance to the sixth row. We proceed in this way until we reach the row with
$ in the last column. In this example, we would visit the rows in this order, assuming the first row
has index 0: (0, 1, 5, 3, 2, 6, 4), and we successfully recreate the original string from right to left:
a3b1a1a2b0a0$.

A Python implementation is below. For now, we assume it’s reasonable to pre-calculate the
rank array for T. If T is very long, this is not reasonable, since rank will (usually) take much more
memory than BWT(T). Methods like bzip2 compensate by compressing the text in relatively
small blocks and decompressing a block at a time.



def rankBwt(bw):

""" Given BWT string bw, returns a parallel list of B-ranks. Also
returns tots, a mapping from characters to # times the
character appears in BWT. """

tots = dict()

ranks = []

for ¢ in bw:
if c not in tots:

tots[c] = 0
ranks.append(tots[c])
tots[c] += 1

return ranks, tots

def firstCol(tots):

""" Return a map from characters to the range of cells in the first
column containing the character. """

first = {}

totc = 0

for c, count in sorted(tots.iteritems()):
first[c] = (totc, totc + count)
totc += count

return first

def reverseBwt (bw):
"uv Make T from BWT(T) """
ranks, tots = rankBwt (bw)
first = firstCol(tots)

rowi = 0
t = "g"
while bw[rowi] != ’$’:
¢ = bw[rowi]
t=c+t
rowi = first[c] [0] + ranks[rowi]
return t

Quick example of this implementation in action:

>>> bw = bwt("Tomorrow_and_tomorrow_and_tomorrow")
>>> bw

’w$wwdd__nnoooaattTmmmrrrrrrooo__ooo’

>>> reverseBwt (bw)
’Tomorrow_and_tomorrow_and_tomorrow$’

2 The FM Index

In 2000, six years after the BWT was published, Paolo Ferragina and Giovanni Manzini published
a paper [2] describing how the BWT, together with some small auxilliary data structures, can be
used as a space-efficient index of T'. It generally uses less than half the space required to store m



integers. They named it the FM Index. Just as the LF Mapping was the key to understanding how
the BWT is reversible, it’s also the key to how it can be used as an index.

Let’s start by considering just the first column (F) and last column (L) of the BWM, as well
as the rank array.

F L rank
$ a O
a b 0
a b 1
a a 1
a $ 0
b a 2
b a 3

We will refine this to obtain the FM Index.

3 Searching

Say we are searching for occurrences of a string P = aba. Like the suffix array, the BWM is sorted.
This implies that any rows having P as a prefix will be consecutive.

We proceed first by finding the rows beginning with the shortest proper suffix of P: a in this
case. The first column is part of our index, so this is trivial. These are the rows in the 0-based
range [1, 5). Let’s visualize this in the context of the whole matrix:

F L rank
$ a b a a b a 0
a $ a b a a b 0
a a b a $ a b 1
a b a$ a b a 1
a b a a b a $ 0
b a $ a b a a 2
b a a b a $ a 3

Remember: even though we just drew the entire matrix, our index so far contains just F, L
and rank.

Now we must find all rows beginning with the next-longest proper suffix of P: ba. Observe the
shaded characters in the L above. We see two bs, indicating there are two instances where a is
preceeded by b. Also, the LF Mapping and rank array tell us which rows have ba as a prefix: the
rows beginning with by and by; i.e. the first two rows in the “b section”.



F L rank
$ a b a a b a 0
a $ a b a a b 0
a a b a $ a b 1
a b a $ a b a 1
a b aa b a $ 0
b a $ a b a a 2
b a a b a $ a 3

Now we find rows beginning with the final suffix, aba. Again we look at the shaded characters
in the last column. We see that the occurrences of ba are preceded by a2 and as, giving us the
range of rows prefixed by P:

F L rank
$ a b a a b a 0
a $ a b a a b 0
a a b a $ a b 1
a b a $ a b a 1
a b a a b a $ 0
b a $ a b a a 2
b a a b a $ a 3

This is called backwards matching. In short, we apply the LF Mapping repeatedly to find the
range of rows prefixed by successively longer proper suffixes of P until the range becomes empty,
in which case P does not occur in 7T, or until we run out of suffixes. If we run out of suffixes, the
size of the range equals the number of times P occurs in 7.

Here is a Python implementation:



def countMatches(bw, p):
""" Given BWT(T) and a pattern string p, return the number of times
p occurs in T. """
ranks, tots = rankBwt (bw)
first = firstCol(tots)
1, r = first[p[-1]]

i = len(p)-2

while i >= 0 and r > 1:
c = plil
# scan from left, looking for occurrences of c
j=1

while j < r:
if bw[j] == c:
1 = first[c][0] + ranks[j]

break

j+=1
if j ==1r:

l=1r

break # no occurrences -> no match
r =1
while bw[r] != c:

r =1
r = first[c][0] + ranks[r] + 1
i-=1

return r - 1

And some example output:

>>> bw = bwt("Tomorrow_and_tomorrow_and_tomorrow")
>>> bw

'w$wwdd__nnoooaattTmmmrrrrrrooo__ooo’

>>> countMatches (bw, "tomorrow")

2

>>> countMatches (bw, "Tomorrow")
1

>>> countMatches(bw, "tomorrow")
2

>>> countMatches(bw, "omorrow")
3

>>> countMatches(bw, "and")

2

>>> countMatches(bw, "r")

6

>>> countMatches(bw, "o")

9

>>> countMatches(bw, "xyz")

0

A drawback is that, in each step, we are scanning a range of elements in L. This is O(m) (where
m = [T]).



We can make this O(1) by augmenting the rank array in the following way. Instead of a m x 1
rank array, we store a m x |X| rankAll matrix. In each row of rankAll, we store an integer for
each character of the alphabet equal to the number of times that character has been observed up
to and including that position in BWT(T). For example:

rankAll
a

SR Q2 2 Y
Q QL oD N
== O 0O O %
=W NN =

NNNDNNRFRO S

Now, instead of scaning the last column, we can simply look up the appropriate character of
rankAll at the left and right extremes of our range. If there is no difference between the two
lookups, then the character does not occur. If there are one or more occurrences of the character,
the lookups will give the ranks of those occurrences.

Here is a Python implementation of this refinement:



def rankAl1Bwt (bw):

""" Given BWT string bw, returns a map of lists. Keys are
characters and lists are cumulative # of occurrences up to and
including the row. """

tots = {}

rankAll = {}

for ¢ in bw:
if c not in tots:

tots[c] = 0
rankAll[c] = []

for ¢ in bw:
tots[c] += 1
for ¢ in tots.iterkeys():

rankAll[c].append(tots([c])
return rankAll, tots

def countMatches2(bw, p):

""" Given BWT(T) and a pattern string p, return the number of times
p occurs in T. """

rankAll, tots = rankAl1Bwt (bw)

first = firstCol(tots)

if p[-1] not in first:
return O # character doesn’t occur in T

1, r = first[p[-11]

i = len(p)-2
while i >= 0 and r > 1:
c = plil
1 = first[c][0] + rankAll[c][1-1]

r = first[c][0] + rankAll[c] [r-1]
i-=1
return r - 1 # return size of final range

4 Rank checkpoints

So far we have assumed that it’s reasonable to pre-calculate and store the ranks array or rankAll
matrix. But this is probably not reasonable for large 1. Dividing T into blocks, as is done in
compression, is not a good option since our goal is to build an index over all of T

Instead we discard most but not all of the rows from the rankAll matrix. For instance, we
might keep one in every 32 rows and discard the rest. We call the retained rows rank checkpoints.
Now each time we would like to look up rankAll[c|[i], we are in one of two cases: (1) row i was
not discarded, in which case we do the lookup as usual, or (2) row i was discarded, in which
case we scan characters in L starting at ¢ and moving forward (or backward) until we reach the
next rank checkpoint. If we count x occurrences of ¢ on our way to a checkpoint at row 7/, then
rankAll[c][i'] — z gives the same value we would have found in rankAll[c][i] — .

If checkpoints are spaced at most C' rows from each other, where C' is a small constant, then
this operation is O(1). In which case, backward search for a pattern P of length n is O(n) time.
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5 Looking up offsets

So far we have discussed how to use the FM Index to determine whether and how many times
a substring P occurs within 7', but we have not discussed how to find where P occurrs, i.e. the

substring’s offset into T.

If our index included the suffix array SA(T), we could simply look this up in SA(T).

For

example, here was the range we ended up with after searching for P = aba within BWT (abaaba$):

F

SR Q2 2 &8

Q QT LR

M Q T

a

QL TR

b

QTR L R

PH Q T @

L SA(T)
a 6
b 5
b 2
a 3
$ 0
a 4
a 1

SA(T) tells us these matches occurred at T offsets 0 and 3.
However, the suffix array takes m integers, and we would like to use less space than that. We
again use the idea of discarding most of the entries and re-creating them as needed: Instead of
storing every entry of SA(T), we store, say, every 4. If we want to look up SA[3] but find it has

been discarded (discarded rows given “-” below):
F
$ a b a a
a $ a b a
a a b a $
a b a 3% a
a b a a b
b a $ a b
b a a b a

We can use the LF Mapping to step one position to the left in the text:

F

SR Q2 Q &

QTR »

Q LR Q@ T &

SR Q L TR

QO AR R

L Q TR

L Q TR @

Q@ QL oo N

L

a

QL T

nn
S
3

SA(T)
6

We're still in a discarded row, so we keep stepping until we reach a retained row. This happens

after two more steps:
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F L SA(T)
$ a b a a b a 6
a $ a b a a b -
a a b a $ a b —
a b a$ a b a -
a b a a b a $ 0
b a $ a b a a -
b a a b a $ a -

SA(T) at this row equals 0 and it took us 3 steps to get here, so we conclude the row we started
from had offset 3.

Note that if we retain an entry of SA(T") every C positions of T', where C' is a small constant,
then looking up the text offset associated with a row of the BW M is O(1).
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