Reminder: sequence alignment in
sub-guadratic time

Last week: Sequence alignment in sub-quadratic
time for unrestricted Scoring Schemes.
1) utilize LZ78 parsing

2) utilize Total Monotonicity property of highest
scoring paths in the alignment graph. (SMAWK)

Today: Another algorithm for sub-quadratic
sequence alignment under restricted, discrete
scoring schemes



Another technique to Align
Sequences in Subquadratic Time?

For limited edit scoring schemes, such as
LCS, use “Four-Russians” Speedup

Another idea for exploiting repetitions: Divide
the input into very small parts, pre-compute
the DP for all possible values the small parts
and store in a table. Then, speed up the
dynamic programming via Table Lookup.



The “Four-Russians” technigue for
speeding up for dynamic programming
Dan Gusfield: The idea comes from a

paper by four authors ... concerning &'I‘!.{;?:lillg:ﬁ‘?r‘i':
boolean matrix multiplication. {

The general idea taken from this paper |
has come to be known in the West as
The Four-Russians technique, even
though only one of the authors is Russian.

Z



http://g.bookpool.com/g/98/0521585198.gif

Arlazarov, Dinic, Kronrod and Faradzev

Masek & Paterson applied the “Four Russians” to the string edit problem



Can the quadratic complexity of the optimal alignment value
computation be reduced without relaxing the problem?

Previous Results [Masek and Paterson 1980]
- An O(n” / log ) time global alignment algorithm.

- Constant size alphabet.

-Restricted to discrete scoring schemes.

Open Problem [Masek and Paterson 1980]

Can a better algorithm be found for the constant alphabet case,
which does not restrict the scoring matrix values?



Partitioning Alignment Grid into Blocks of

equal size t

i

n/t

partition

> nlt




How Many Points Of Interest?

LLZ-78 compression blocks of size t

How many points of interest? O(n?/t)

O(h n/log n) rows of n vertices + n/ t rows with n vertices each
O(h n /log n) columns of n vertices

n/ t columns with n vertices each



Outline

Demonstrate the “Four Russians” technique on a
simpler problem: Block Alignment.

Extend “Four Russians” to the standard sequence
alignment problem: the “tabulation explosion”
challenge....

Discuss “discrete scoring schemes” and the “unit
step” property. Example of LCS.

Four Russians algorithm for sub-quadratic
sequence alignment under discrete scoring
schemes



Start with a Simpler Problem:
Block Alignment

valid invalid



Block Alignment: legitimate
operations

Block alignment of sequences u and v:

1.An entire block(i.e. substring) in u Is
aligned with an entire block in v.

2.An entire block(substring) is inserted.
3.An entire block(substring) is deleted.

Block path: a path that traverses every t x t
sqguare through its corners



Block Alignment: Examples

valid invalid



Block Alignment Problem

Goal: Find the longest block path through an
edit graph
Input: Two sequences, u and v partitioned

Into blocks of size t. This is equivalent to an
n X n edit graph partitioned into t x t subgrids

Output: The block alignment of u and v with
the maximum score (longest block path
through the edit graph)

How do we solve this in two-stages by
partitioning to t by t blocks?




Stage 1: compute the mini-alignments

n/t
A

° Solve mini-alignmnent problems

< \
-

Block pair represented by
each small square




Constructing Alignments within Blocks

To solve: compute alignment score £;; for each
pair of blocks [U;_1yssq-- Uil @Nd Vi qysgaq - Vil
How many blocks are there per sequence?

(n/t) blocks of size t

How many pairs of blocks for aligning the two
seguences?

(n/t) x (n/t)

For each block pair, solve a mini-alignment
problem of size t x t



Stage 1: compute the mini-alignments

n/t
A

° Solve mini-alignmnent problems

< \
~

Block pair represented by
each small square

How many blocks?
(n/t)*(n/t) = (n?/t?)



Stage 2: dynamic programming

Let s;; denote the optimal block alignment

score between the first | blocks of u and first |
blocks of v

) Oyock 1S the penalty

[ Siqi- O
-1) Tblock for inserting or

S: . = max
j - -
Sij-1” Oblock - deleting an entire
] block
S;i:1 T D _ _
1)1 'B'" ) f3,; is score of pair
\.

of blocks in row i
and column j.



Block Alignment Runtime

Indices I,] range from O to n/t

Running time of algorithm is
O( [n/t]*[n/t]) = O(n?/t?)

If we don’t count the time to compute each ,Bi,j



Block Alignment Runtime (conta)

Computing all £ ; requires solving
(n/Y)*(n/t)= n?4/t? mini block alignments,
each of size (t*t) = t?
So computing all 4;takes time

O(n?4/t?* t?) = O(n?)
This Is the same as dynamic programming

How do we speed this up? (utilize repetitive
mini-blocks...)



Four Russians Technique t{

Let t = log(n), where t is block size, nis
seguence size.

Instead of having (n/t)*(n/t) )= n?/t> mini-
alignments, construct 4t x 4 mini-alignments
for all pairs of strings of t nucleotides (huge
size), and put in a lookup table.

However, size of lookup table is not really

that huge if tis small. Lett = (logn)/4. Then
At x 4t = 4(Iogn)/4 X 4(Iogn)/4 — 4(Iogn)/2 — 2(Iogn) =n



Look-up Table for Four Russians Technique

each sequence
has t nucleotides

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA

J

‘

Lookup table “Score”

size is only n,
Instead of
(n/t)*(n/t)

Let t = (logn)/4. Then the number of entries
In the lookup table: 4t x 4t =n

Computing the scores for each entry in the table requires
dynamic programming for a (log n) by (log n) alignment: (logn)?
Altogether: n (logn)? (instead of O(n?)...)



New Recurrence

The new lookup table Score is indexed by a
pair of t-nucleotide strings, so

)
Si-1j ~ Oblock

) Sij-1 ~ Oblock O(logn) time
S;.1j.1 T Score(i™ block of v, j™ block of u)

\




Four Russians Speedup Runtime

Since computing the lookup table Score of
size n takes O( n (Iogn)2 ) time, the running
time is mainly limited by the n?/t? accesses to
the lookup table

Each access takes O(logn) time
Overall running time: O( [n%/t?]*logn )
Since t = logn, substitute In:

O( [n?/{logn}?]*logn) = O(n?4/logn )



So Far... (restriced to block alignment)

We can divide up the grid into blocks and run
dynamic programming only on the corners of
these blocks

In order to speed up the mini-alignment
calculations to under n?, we create a lookup
table of size n, which consists of all scores for
all t-nucleotide pairs

Running time goes from quadratic, O(n?), to
subquadratic: O(n4/logn)



Outline

Demonstrate the “Four Russians” technique on a
simpler problem: Block Alignment.

Extend “Four Rusians” to the standard
sequence alignment problem: the “tabulation
explosion” challenge....

Discuss “discrete scoring schemes” and the “unit
step” properties of scores for neighboring cells in
the DP table for these schemes. Example of LCS.

Four Russians algorithm for sub-quadratic
sequence alignment under discrete scoring
schemes



Four Russians Speedup for LCS

Unlike the block partitioned graph, the LCS
path does not have to pass through the
vertices of the blocks.

block alignment longest common subsequence



Block Alignment vs. LCS

In block alignment, we only care about the
corners of the blocks.

In LCS, we care about all points on the edges
of the blocks, because those are points that
the path can traverse.

Recall, each sequence is of length n, each
nlock Is of size t, so each sequence has (n/t)
nlocks.




How Many Points Of Interest?

block alignment longest common subsequence
YRR SR G

R mn S

[SmR amR am

Ll

How may blocks? How many points of interest? O(n?/t)

* — 2/+2
(n/)*(n/t) = (n/t) n/t rows with n vertices each

n/t columns with n vertices each



9

6

21314

3

2131415

3

|

|

2134516 7]8

|

S51414|3

0

6




9

213451678

|

0




9

8

617

S

4




9

S]16]171|8

3|4

2

|

0




9

8

2134151617

|

0

61514 |4




Traversing Blocks for LCS (cont'd)

If we used regular dynamic programming to
compute the grid, it would take quadratic,
O(n?) time, but we want to do better.

Use the “Four Russians” Tabulation!

we can calculate

we know
- < these scores

these scores \/

t X t block




| [
v v

1=((1, 1, 2,3), (1, 2,3,4), abc, bba)

0=(4,3,33,2,2, 3)



Traversing Blocks for LCS

New Problem: Given alignment scores s;. In the first
row and scores s, In the first column of a t X t mini
square, compute allgnment scores in the last row and
column of the minisquare.

To compute the last row and the last column score, we
use these 5 variables:

1. value in upper left cell.

1. alignment scores s;. In the first row

2.alignment scores s, in the first column

3. substring of sequence u in this block (4! possibilities)
4. substring of sequence Vv in this block (4! possibilities)



Four Russians Speedup

Build a lookup table for all possible values of
the four variables:
1. all possible scores for the first row s,
2. all possible scores for the first column s, |
3. substring of sequence u in this block (4! possibilities)
4. substring of sequence v in this block (4t possibilities)

For each quadruple we store the value of the
score for the last row and last column.



| [
v v

1=(1,1, 2, 3), (1, 2, 3,4), abc, bba)

This will be a huge table!

Nt * nt * At * At = (4n)2t )
(4n) we need another trick...

0=(4,3,3 3,22 3)



Outline

Demonstrate the “Four Russians” technique on a
simpler problem: Block Alignment.

Extend to the standard sequence alignment
problem: the “tabulation explosion™ challenge....

Discuss “discrete scoring schemes” and the
“unit step” propertty.

Four Russians algorithm for sub-quadratic
sequence alignment under discrete scoring
schemes



The Longest Common Subsequence

T = B CBADBD CD

. . |
S =A BCB DBD D

X = LCS(S,T) = BCBDBDD

L =|LCS(S,T)| = |BCBDBDD| = 7



The LCS Alignment Graph

Diagonal blue arrows are
match points {(i,))| S[1]=T[] ]
Assigned a score of 1.

Horizontal black arrows are
deletions from T.
Assigned a score of 0.

Vertical black arrows are
deletions from S
Assigned a score of 0.

Classical Dynamic Programming: O(n m)
(Crochemore, Landau, Ziv-Ukelson O(n m/log m))



Theorem (Hunt-Szymanski 77)
Alignment scores in LCS are
monotonically increasing,

and adjacent elements

can’t differ by more than 1

"B '"c 'B
0 1 2

] |
3 4 8 9
— —
1 1
1 v
N
, Y
1

-

| v v
AD5B6D

Y




Reducing Table Size

Alignment scores in LCS are monotonically
increasing, and adjacent elements can't differ

by more than 1

Example: 0,1,2,2,3,4 Is ok; 0,1,2,4,5,8, Is not
because 2 and 4 differ by more than 1 (and
so do 5 and 8)

Therefore, we only need to store quadruples
whose scores are monotonically increasing
and differ by at most 1



Efficient Encoding of Alignment Scores

Instead of recording numbers that correspond
to the index Iin the sequences u and v, we
can use binary to encode the differences
between the alignment scores

original encoding

O] 1|2 |2 )| 3| 4
C_, 1110 0| 1|1/ binaryencoding




I1y1 2 3 313 4 5
b b

2 4
b b

3 5
a a

4 0

(1.(0,1,1),(1,1,1),abe.bba) (3,(0.1,1),(1,1.1),abc,bba)

If we have two blocks with representations (a. b, ¢, s, t) and
(a', b, c,s, t),then the blocks are “equivalent”:



We need to precompute only (0,(0,1,1),(1,1,1), abc, bba)

a b ¢ a b ¢

111 2 3 313 4 5
b b

212 112 414 314
b b

313 2|2 515 4|4
a a

413 3 3 615 5 5

(1.(0,1,1),(1,1,1).abc.bba) (3.(0.1.1).,(1.1,1),abc.bba)

If we have two blocks with representations (a, b, ¢, s, t) and
(a’, b, c,s, t),then the blocks are “equivalent”: The value of
each cell in the 2nd block is equal to the value of the
corresponding cell in the 1st block plus a' — a.



Reducing Lookup Table Size

(1,(0.1,1).(1,1.1).abc.bba)
2t possible “steps” (t = size of blocks)
4t possible strings
« Lookup table size is (2t * 2Y)*(4t * 4t) = 26t
. Computing each entry in the table: t?
- Total Table Construction Time: 26t{2
Let t = (logn)/6;
» Table construction time is:
. 26(logn)/6) (jogn)? = £ (logn)?



Reducing Lookup Table Size

Let t = (logn)/6;
Stage 1: Table construction time Is:
26((ogn)/6) (logn)2 = 1 (logn)?
Stage 2: alignment graph computation time is:
O( [n?/t?]*t ) = O( [n?/{logn}?]*logn)
=0O( n4/logn)




Summary

We take advantage of the fact that for each
block of t = O(log n), we can pre-compute all
possible scores and store them in a lookup
table of size n, whose values can be
computed in time O(n (logn)?).

We used the Four Russian speedup to go
from a quadratic running time for LCS to
subquadratic running time: O(n?4/logn)



