
Reminder: sequence alignment in

sub-quadratic time

• Last week: Sequence alignment in sub-quadratic

time for unrestricted Scoring Schemes.

1) utilize LZ78 parsing

2) utilize Total Monotonicity property of highest

scoring paths in the alignment graph. (SMAWK)

• Today: Another algorithm for sub-quadratic

sequence alignment under restricted, discrete

scoring schemes

Another technique to Align

Sequences in Subquadratic Time?

• For limited edit scoring schemes, such as

LCS, use “Four-Russians” Speedup

• Another idea for exploiting repetitions: Divide

the input into very small parts, pre-compute

the DP for all possible values the small parts

and store in a table. Then, speed up the

dynamic programming via Table Lookup.

The “Four-Russians” technique for
speeding up for dynamic programming

Dan Gusfield: The idea comes from a

paper by four authors … concerning

boolean matrix multiplication.

The general idea taken from this paper

has come to be known in the West as

The Four-Russians technique, even

though only one of the authors is Russian.

http://g.bookpool.com/g/98/0521585198.gif

Arlazarov, Dinic, Kronrod and Faradzev

Masek & Paterson applied the “Four Russians” to the string edit problem

6

Previous Results [Masek and Paterson 1980]

- An O(n)/ log n time global alignment algorithm.

- Constant size alphabet.

-Restricted to discrete scoring schemes.

Can the quadratic complexity of the optimal alignment value

computation be reduced without relaxing the problem?

2

Open Problem [Masek and Paterson 1980]

Can a better algorithm be found for the constant alphabet case,

which does not restrict the scoring matrix values?

Partitioning Alignment Grid into Blocks of

equal size t

partition

n n/t

n/t

t

tn

How Many Points Of Interest?

How many points of interest? O(n2/t)

n/ t rows with n vertices each

n/ t columns with n vertices each

LZ-78 compression blocks of size t

Outline

• Demonstrate the “Four Russians” technique on a

simpler problem: Block Alignment.

• Extend “Four Russians” to the standard sequence

alignment problem: the “tabulation explosion”

challenge….

• Discuss “discrete scoring schemes” and the “unit

step” property. Example of LCS.

• Four Russians algorithm for sub-quadratic

sequence alignment under discrete scoring

schemes

Start with a Simpler Problem:

Block Alignment

valid invalid

Block Alignment: legitimate

operations

• Block alignment of sequences u and v:

1.An entire block(i.e. substring) in u is

aligned with an entire block in v.

2.An entire block(substring) is inserted.

3.An entire block(substring) is deleted.

• Block path: a path that traverses every t x t

square through its corners

Block Alignment: Examples

valid invalid

Block Alignment Problem

• Goal: Find the longest block path through an

edit graph

• Input: Two sequences, u and v partitioned

into blocks of size t. This is equivalent to an

n x n edit graph partitioned into t x t subgrids

• Output: The block alignment of u and v with

the maximum score (longest block path

through the edit graph)

• How do we solve this in two-stages by

partitioning to t by t blocks?

Stage 1: compute the mini-alignments

n/t

Block pair represented by

each small square

Solve mini-alignmnent problems

s1,1

s1,3

s1,2

Constructing Alignments within Blocks

• To solve: compute alignment score ßi,j for each

pair of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

• How many blocks are there per sequence?

(n/t) blocks of size t

• How many pairs of blocks for aligning the two
sequences?

(n/t) x (n/t)

• For each block pair, solve a mini-alignment
problem of size t x t

Stage 1: compute the mini-alignments

n/t

Block pair represented by

each small square

Solve mini-alignmnent problems

s1,1

s1,3

s1,2

How many blocks?

(n/t)*(n/t) = (n2/t2)

Stage 2: dynamic programming

• Let si,j denote the optimal block alignment
score between the first i blocks of u and first j
blocks of v

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 + i,j

block is the penalty

for inserting or

deleting an entire

block

i,j is score of pair

of blocks in row i

and column j.

Block Alignment Runtime

• Indices i,j range from 0 to n/t

• Running time of algorithm is

O([n/t]*[n/t]) = O(n2/t2)

if we don’t count the time to compute each i,j

Block Alignment Runtime (cont’d)

• Computing all i,j requires solving

(n/t)*(n/t)= n2/t2 mini block alignments,

each of size (t*t) = t2

• So computing all i,j takes time

O(n2/t2 * t2) = O(n2)

• This is the same as dynamic programming

• How do we speed this up? (utilize repetitive

mini-blocks…)

Four Russians Technique

• Let t = log(n), where t is block size, n is

sequence size.

• Instead of having (n/t)*(n/t))= n2/t2 mini-

alignments, construct 4t x 4t mini-alignments

for all pairs of strings of t nucleotides (huge

size), and put in a lookup table.

• However, size of lookup table is not really

that huge if t is small. Let t = (logn)/4. Then

4t x 4t = 4(logn)/4 x 4(logn)/4 = 4(logn)/2 = 2(logn) = n

t

t

Look-up Table for Four Russians Technique

Lookup table “Score”

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA
…

A
A
A
A
A
A

A
A
A
A
A
C

A
A
A
A
A
G

A
A
A
A
A
T

A
A
A
A
C
A

…

each sequence

has t nucleotides

size is only n,

instead of

(n/t)*(n/t)

Let t = (logn)/4. Then the number of entries

In the lookup table: 4t x 4t = n

Computing the scores for each entry in the table requires

dynamic programming for a (log n) by (log n) alignment: (logn)2

Altogether: n (logn)2 (instead of O(n2)…)

New Recurrence

• The new lookup table Score is indexed by a
pair of t-nucleotide strings, so

si,j = max
si-1,j - block

si,j-1 - block

si-1,j-1 + Score(ith block of v, jth block of u)

O(logn) time

Four Russians Speedup Runtime

• Since computing the lookup table Score of

size n takes O(n (logn)2) time, the running

time is mainly limited by the n2/t2 accesses to

the lookup table

• Each access takes O(logn) time

• Overall running time: O([n2/t2]*logn)

• Since t = logn, substitute in:

• O([n2/{logn}2]*logn) = O(n2/logn)

So Far… (restriced to block alignment)

• We can divide up the grid into blocks and run

dynamic programming only on the corners of

these blocks

• In order to speed up the mini-alignment

calculations to under n2, we create a lookup

table of size n, which consists of all scores for

all t-nucleotide pairs

• Running time goes from quadratic, O(n2), to

subquadratic: O(n2/logn)

Outline

• Demonstrate the “Four Russians” technique on a

simpler problem: Block Alignment.

• Extend “Four Rusians” to the standard

sequence alignment problem: the “tabulation

explosion” challenge….

• Discuss “discrete scoring schemes” and the “unit

step” properties of scores for neighboring cells in

the DP table for these schemes. Example of LCS.

• Four Russians algorithm for sub-quadratic

sequence alignment under discrete scoring

schemes

Four Russians Speedup for LCS

• Unlike the block partitioned graph, the LCS
path does not have to pass through the
vertices of the blocks.

block alignment longest common subsequence

Block Alignment vs. LCS

• In block alignment, we only care about the

corners of the blocks.

• In LCS, we care about all points on the edges

of the blocks, because those are points that

the path can traverse.

• Recall, each sequence is of length n, each

block is of size t, so each sequence has (n/t)

blocks.

How Many Points Of Interest?

How may blocks?

(n/t)*(n/t) = (n2/t2)

How many points of interest? O(n2/t)

n/t rows with n vertices each

n/t columns with n vertices each

block alignment longest common subsequence

Traversing Blocks for LCS (cont’d)

• If we used regular dynamic programming to
compute the grid, it would take quadratic,
O(n2) time, but we want to do better.

• Use the “Four Russians” Tabulation!

we know

these scores

we can calculate

these scores

t x t block

I = ((1, 1, 2, 3), (1, 2, 3, 4), abc, bba)

O = (4, 3, 3, 3, 2, 2, 3)

Traversing Blocks for LCS
• New Problem: Given alignment scores si,* in the first

row and scores s*,j in the first column of a t x t mini
square, compute alignment scores in the last row and
column of the minisquare.

• To compute the last row and the last column score, we
use these 5 variables:

• 1. value in upper left cell.

1. alignment scores si,* in the first row

2. alignment scores s*,j in the first column

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

Four Russians Speedup

• Build a lookup table for all possible values of

the four variables:

1. all possible scores for the first row s*,j

2. all possible scores for the first column s*,j

3. substring of sequence u in this block (4t possibilities)

4. substring of sequence v in this block (4t possibilities)

• For each quadruple we store the value of the

score for the last row and last column.

I = (1,1, 2, 3), (1, 2, 3, 4), abc, bba)

O = (4, 3, 3, 3, 2, 2, 3)

* 4t * 4t nt * nt = (4n)2t This will be a huge table!

we need another trick…

Outline

• Demonstrate the “Four Russians” technique on a

simpler problem: Block Alignment.

• Extend to the standard sequence alignment

problem: the “tabulation explosion” challenge….

• Discuss “discrete scoring schemes” and the

“unit step” propertty.

• Four Russians algorithm for sub-quadratic

sequence alignment under discrete scoring

schemes

T = B C B A D B D C D

 S = A B C B D B D D

The Longest Common Subsequence

X = LCS(S,T) = BCBDBDD

L = |LCS(S,T)| = |BCBDBDD| = 7

C

B

D

B

4

2

3

1 1

1

1

1

1

1

1
1

1

1

1

C

B

B C B A D B D DC
1 2 3 4 5 6 7 8

1

9

C

5

1

1

1

1 1

1

1
1

6

7

|T| = n

0

0

Diagonal blue arrows are

match points {(i,j)| S[i] = T[j]}

Assigned a score of 1.

Horizontal black arrows are

deletions from T.

Assigned a score of 0.

Vertical black arrows are

 deletions from S

Assigned a score of 0.

The LCS Alignment Graph

|S| = m

Classical Dynamic Programming: O(n m)

 (Crochemore, Landau, Ziv-Ukelson O(n m/ log m))

0 1 1 2 3 4 4 4 4 4

I0 I1 I3 I4 I5 I6 I7 I8 I9

0 1 2 3 3 4 4 5 5 6

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9

1

I2

Output row O

Input row I

C

B

D

B

B C B D B D DC

4

0

0

1 2 3 4 5 6 7 8

1

2

3

9

0 1 2 3 4 5 6 8 9

1 1

1

1

1

1

1

1
1

1

1

7

A

I0

I1

I3

I4

I5

I2

I6 I7 I8 I9

0

1

2

3

4

Observation. Due to the unit-step

 properties of LCS, both I and O are

 monotonically non-decreasing series,

 and their values go up by unit steps.

 [Hunt-Szymanski-77].

Theorem (Hunt-Szymanski 77)

Alignment scores in LCS are

monotonically increasing,

and adjacent elements

can’t differ by more than 1

Reducing Table Size

• Alignment scores in LCS are monotonically

increasing, and adjacent elements can’t differ

by more than 1

• Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not

because 2 and 4 differ by more than 1 (and

so do 5 and 8)

• Therefore, we only need to store quadruples

whose scores are monotonically increasing

and differ by at most 1

Efficient Encoding of Alignment Scores

• Instead of recording numbers that correspond
to the index in the sequences u and v, we
can use binary to encode the differences
between the alignment scores

0 1 2 2 3 4

1 1 0 0 1 1

original encoding

binary encoding

We need to precompute only (0,(0,1,1),(1,1,1), abc, bba)

Reducing Lookup Table Size

• 2t possible “steps” (t = size of blocks)

• 4t possible strings

• Lookup table size is (2t * 2t)*(4t * 4t) = 26t

• Computing each entry in the table: t2

• Total Table Construction Time: 26t t2

• Let t = (logn)/6;

• Table construction time is:

• 26((logn)/6) (logn)2 = n (logn)2

Reducing Lookup Table Size

• Let t = (logn)/6;

Stage 1: Table construction time is:

26((logn)/6) (logn)2 = n (logn)2

Stage 2: alignment graph computation time is:

O([n2/t2]*t) = O([n2/{logn}2]*logn)

=O(n2/logn)

Summary

• We take advantage of the fact that for each

block of t = O(log n), we can pre-compute all

possible scores and store them in a lookup

table of size n, whose values can be

computed in time O(n (logn)2).

• We used the Four Russian speedup to go

from a quadratic running time for LCS to

subquadratic running time: O(n2/logn)

