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annotated genes in the REFSEQ database (~17,000), nearly
half are from such large-scale cDNA sequencing pro-
jects. Given that expressed sequence tags (ESTs) are
most often generated from highly expressed transcripts,
ab initio gene-prediction approaches need to combine
several sources of information, such as from compar-
isons of human and mouse sequences, to discover new
genes or rare transcripts. It is clear that further improve-
ments to gene prediction are much needed. Even if, one
day, all human genes were determined experimentally, it
would still be important to understand how the struc-
tures of genes are organized and defined, and how they
can be recognized. The ability to predict a gene structure
is both an intellectual and a practical challenge.

Because those interested in gene-prediction
approaches come from both biological and computa-
tional backgrounds, this review has been written for a
broad audience. It provides background information
and a survey of the latest developments in gene-
prediction programs. It also highlights the problems
that face the gene-prediction field and discusses future
research goals. I hope to stimulate the best minds in
both camps, so that new and creative gene-prediction
methods will be developed. Although the accuracy of
gene prediction has been steadily improving, the basic
algorithms that underlie the various approaches have
changed little since 1997. Although there have been

Biology has entered the genomic era. The celebrated
draft human genome is already one year old, and a pub-
licly available draft of the mouse genome has recently
been assembled (see links to the Ensembl mouse
genome server and the University of Santa Cruz
Genome Bioinformatics site). At the time of writing,
whole-genome sequences for more than 800 organisms
(bacteria, archaea and eukaryota, as well as many viruses
and organelles) are either complete or being determined
(see link to Entrez genome). Driven by this explosion of
genome data, gene-finding programs have also prolifer-
ated, particularly those that are designed for specific
organisms. However, the accuracy with which genes can
be predicted is still far from satisfactory: although, at the
nucleotide level, 80% of genes are accurately predicted,
at the exon level only 45% are predicted, and at the
whole-gene level only ~20%. This is why estimates of
the number of genes in the human genome are still
imprecise (ranging from 30,000 to 100,000 genes).

At present, the annotation of most human genes is
based on cDNA sequence data. Systematic ‘full-length’
cDNA sequencing programs, such as those at the
Mammalian Gene Collection (MGC) in the USA and at
RIKEN (The Institute of Physical and Chemical
Research) in Japan, are generating vitally important
experimental data towards defining complete gene 
sets for the human and mouse genomes. Of the best-
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all gene-prediction papers refer to four types of ‘exon’, as
shown in FIG. 2b; however, these are just the coding
regions of the exons. To avoid the misuse of these terms,
I refer to subclasses of exons in this article as 5′ CDS,
itexon, 3′ CDS and intronless CDS.

Finding internal coding exons
To determine exon–intron organization, an attempt can
be made to detect either the introns or the exons. In early
studies of pre-mRNA splicing, short splicing signals were
identified in introns (FIG. 3): the donor site (5′ splice site
or 5′ ss), which is characterized by the consensus
AG|GURAGU; the acceptor site (3′ ss), which is charac-
terized by the consensus YYYYYYYYYYNCAG|G; and
the less-conserved branch site, which is characterized by
CURAY10. These genetic elements direct the assembly of
the SPLICEOSOME by base pairing with the RNA compo-
nents of the splicing apparatus, which carries out the
splicing reaction (FIG. 3). Where short introns, which are
mostly found in lower eukaryotes (such as yeast), occur,
the intron seems to be recognized molecularly by the
interaction of the splicing factors, which bind to both
ends of it. Such intron-based gene-structure prediction
has also been used in some computer algorithms (for
example, POMBE in REF. 11). Recently, however, Lim and

many good reviews on this topic, and useful bench-
marks in the research (for example, REFS 1–8), a truly
fair comparison of the prediction programs is impos-
sible as their performance depends crucially on the
specific TRAINING DATA that are used to develop them.

Gene structure and exon classification
The main characteristic of a eukaryotic gene is the orga-
nization of its structure into exons and introns (FIG. 1).
Generally, all exons can be separated into four classes:
5′ exons, internal exons, 3′ exons and intronless exons
(or, simply, intronless genes) (FIG. 2). They can be further
subdivided into 12 mutually exclusive subclasses,
according to their coding content (FIG. 2a), and it has
been shown that these subclasses have different statisti-
cal properties9. Because a vertebrate gene typically has
many exons, internal coding exons (itexons, or internal
translated exons) compose the main subclass that has
been the focus of all gene-prediction programs.
However, the definition of the term ‘exon’ has become
confused, either unintentionally (due to lack of knowl-
edge) or intentionally (for convenience). This confusion
has led to the term ‘exon’ being used interchangeably
with the term ‘coding sequence’ (CDS), which fails to
take into account untranslated regions (UTRs). Almost

TRAINING DATA SET

The known examples of an
object (for example, an exon)
that are used to train prediction
algorithms, so that they learn the
rules for predicting an object.
They can be positive training
sets (consisting of true objects,
such as exons) or negative
training sets (consisting of false
objects, such as pseudoexons).

SPLICEOSOME

A ribonucleoprotein complex
that is involved in splicing
nuclear pre-mRNA. It is
composed of five small nuclear
ribonucleoproteins (snRNPs)
and more than 50 non-snRNPs,
which recognize and assemble
on exon–intron boundaries to
catalyse intron processing of the
pre-mRNA.
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Figure 1 | The central dogma of gene expression. In the typical process of eukaryotic gene expression, a gene is transcribed
from DNA to pre-mRNA. mRNA is then produced from pre-mRNA by RNA processing, which includes the capping, splicing and
polyadenylation of the transcript. It is then transported from the nucleus to the cytoplasm for translation. TSS, transcription start site;
TTS, transcription termination site.
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exons in a ‘sea’ of intronic DNA, where many cryptic
splice sites exist. This model has since been validated by
many experiments, and it proposes that an internal exon
is initially recognized by the presence of a chain of inter-
acting splicing factors that span it (FIG. 3). The binding of
these trans-acting factors to the pre-mRNA is responsi-
ble for the non-random nucleotide patterns that form
the molecular basis for all exon-recognition algorithms.
These sequence features are often divided into two
types: ‘signals’, which correspond to short cis-elements
or boundary sites (such as splice sites and branch
sites); and ‘content’, which corresponds to the
extended functional regions (such as exons and
introns). To evaluate each feature, one needs to define
a scoring function of the feature (also called a feature
variable). The best scoring function is the conditional
probability P(a|s) that the given sequence s contains
the feature a. According to the Bayes equation P(a|s) 
= P(s|a)P(a)/P(s) where P(s|a) (that is, the likelihood
P of s containing a). So, a training sample (sequence
set) with the known feature a is built, and then the
occurrence of a particular sequence s is counted.
Different features can then be integrated into a single
score for the whole object (an itexon in this case).
Genes are predicted by finding the gene structure that
has the highest score, given the sequence. Approaches
differ in their choice of features, scoring functions and
integration methods. Once the problem is phrased as
a statistical-pattern recognition problem, many statis-
tical or machine learning tools are available for recog-
nizing these patterns. Indeed, almost all of them have
been applied to the exon (or gene)-recognition prob-
lem. Here, I review just a few generic or popular
approaches.

Most early programs used the simple positional
weight matrix method (WMM, see BOX 1) to identify
splice-site signals. In recent programs, the correlation
among positions in a signal is also explored. The
weight array method (WAM) or Markov models 
(BOX 1) are used to explore adjacent correlations; deci-
sion-tree or maximal-dependence decomposition
(MDD) methods are used to explore non-adjacent
correlations; and artificial neural network (ANN)
methods are used to explore arbitrary, nonlinear
dependencies. These more complex models typically
yield significant, but not marked, improvements over
the simple WMM. However, major improvements
have come from designing programs that can com-
bine many related sequence features. Such features
can be combined at different levels. At the splice-site
level, the simplest way of combining features (such as
splice-site score with exon-content score on the one
hand and with intron-content score on the other
hand) is to use Fisher’s linear discriminant analysis
(LDA; BOX 1). In the LDA method, the total score is a
linear sum of the scores of individual features, and the
coefficients are determined by minimizing the predic-
tion error using a positive and a negative training data
set. This is equivalent to a perceptron method (for
example, see REF. 14), which identifies an optimal plane
surface to separate true positives from true negatives.

Burge12, in a systematic analysis of short introns, have
suggested that these standard splice sites might not be
sufficient for defining introns in the genomes of plants
and humans.

In vertebrates, the internal exons are small (~140
nucleotides on average), whereas introns are typically
much larger (with some being more than 100 kb in
length). In 1990, the ‘exon-definition’ model13 was pro-
posed to explain how the splicing machinery recognizes
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identify these boundaries, which results in predicted
genes being either truncated or fused together.
Determining the 3′ end of a gene is easier than deter-
mining its 5′ end. This is because most of the mRNA
and EST sequences in GenBank are truncated at their 
5′ ends. The exon-definition model can also be applied
to 3′ exons by replacing the 5′ ss with the poly(A) site
and by using the 3′-EXON LENGTH DISTRIBUTION — this is
because long internal exons are rare in vertebrates,
whereas 3′ exons frequently extend for many kilobases.
The molecular bridge in this case is the interaction
between the splicing factor U2AF65 and the carboxy-
terminal domain of the poly(A) polymerase, which rec-
ognizes the poly(A) signal (FIG. 3).

By aligning 3′ ESTs against genomic sequence, many
poly(A) sites have been identified. In this way, several
statistical features (including the well-known poly(A)
signal AAUAAA and the (G+U)-rich site) have been
identified in six species (yeast, rice, Arabidopsis, fly,
mouse and human) and used for poly(A)-site recogni-
tion22. More reliable 3′ ends have been obtained by
aligning mRNAs with genomic sequences. By using
such a training set, a QDA-based program called
POLYADQ was developed23, which can predict both
AAUAAA- and AUUAAA-dependent poly(A) sites in
the human genome.

Because almost all gene-prediction programs focus on
coding regions, they can only identify the 3′ CDS instead
of the real 3′ exon. However, any itexon-recognition
methods can be modified for this task by replacing the
donor-site signal with the STOP-codon signal (FIG. 2b),
together with the correct exon length distribution.

A true 3′-exon-prediction program, JTEF24 (BOX 2),
was developed recently using a QDA-based method,
which can predict the major subtype of 3′ exons — the
3′ tuexons (translated-then-untranslated 3′ exons,
which are those that contain the true STOP codon, see
FIG. 2a). Because it integrates several features across the 
3′ exon, JTEF has substantially improved the accuracy of

LDA is implemented in SPL — a splice-site recogni-
tion module of the HEXON program15. A new splice-
site detection program, GeneSplicer, has also been 
developed recently16 and is reported to perform
favourably when compared with many other pro-
grams (such as NetPlantGene, NetGene2, HSPL,
NNSplice, GENIO and SpliceView; BOX 2).

To discriminate CDS from intervening sequence, the
best content measures are the so-called frame-specific
hexamer frequencies (BOX 1), because they capture
codon-bias information and codon–codon correlations.
They also capture splice-site preferences, which are the
most characteristic exon–intron features17. For long
open reading frames (ORFs), such as in bacterial or
intronless genes, frame-specific hexamer frequencies
alone can detect most of the CDS regions. An alternative
approach18 is to use an interpolated Markov model
(IMM), in which the higher-order Markov probabilities
are estimated from an average of the lower-order ones.
Because the G+C content of mammalian genomes is
biased by ISOCHORES (for example, see REF. 19), all content
and signal measures need to be computed separately for
different G+C regions. Exon size is another important
feature variable because, for example, itexons have an
approximately LOG-NORMAL DISTRIBUTION9.

By combining splice-site features with exon–intron
features (such as CDS measures, exon size and others),
and by using a nonlinear quadratic discriminant analy-
sis (QDA), the itexon-prediction program MZEF20 has
done better at the single-exon level than has HEXON
(which is based on a LDA method) or GRAIL2 (which is
based on an ANN method21). However, to further
improve exon-prediction accuracy, exon–exon depen-
dencies also have to be incorporated, as discussed below.

Finding poly(A) sites and 3′ exons
The correct identification of the boundaries of a gene is
essential when searching for several genes in a large
genomic region. Many gene-prediction programs fail to
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A large region of mammalian
genomic DNA sequence in
which C+G compositions are
relatively uniform.
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The distribution of a random
variable, the logarithm of which
follows a normal distribution.
A normal log (length) implies a
strong fixed-length selection
pressure.
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sizes.
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Figure 3 | Exon-definition model. Typically, in vertebrates, exons are much shorter than introns. According to the exon-definition
model, before introns are recognized and spliced out, each exon is initially recognized by the protein factors that form a bridge
across it. In this way, each exon, together with its flanking sequences, forms a molecular, as well as a computational, recognition
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indicate that the presence of a stop codon before the last
intron often leads to the degradation of a transcript by
NONSENSE-MEDIATED DECAY (see recent reviews in REFS 25,26).

Finding promoters and 5′ exons
Identifying the 5′ end of a gene is one of the most diffi-
cult tasks in gene finding. This is mainly due to the 
difficulty of identifying the promoter and the transcrip-
tional start site (TSS) sequences. At present, of the
~17,000 human RefSeq genes that are in GenBank, only
~3,000 of them are annotated for the TSS. Most of the

poly(A)-site prediction in comparison with that by
either the poly(A)-site-specific program POLYADQ or
the more sophisticated mutiple-gene prediction pro-
grams (such as Genscan and GeneMark). At present, no
prediction program is available for the minor subtype of
3′ exons — the 3′ uexons (untranslated 3′ exons).
Developing the 3′-uexon prediction program will make
an important contribution to the gene-finding field.
However, this will be difficult to achieve, as some of the
annotated introns in 3′ UTRs might be annotation
errors, especially in the light of recent results, which

NONSENSE-MEDIATED DECAY

(NMD). A pathway ensuring
that mRNAs that have
premature stop codons are
eliminated as templates for
translation.

PSEUDOEXON

A pre-mRNA sequence that
resembles an exon, both in its
size and in the presence of
flanking splice-site sequences,
but that is never recognized as an
exon by the splicing machinery
(the spliceosome).

Box 1 | Gene-prediction terms and concepts 

Linear discriminant analysis and quadratic discriminant analysis
Two classical, statistical pattern-recognition methods that are used to categorize samples into two classes. Once samples
have been represented as points in space, linear discriminant analysis (LDA) finds an optimal plane surface that best
separates points that belong to two classes. Quadratic discriminant analysis (QDA) finds an optimal curved (quadratic)
surface instead. For example, if there are ten true exons and ten PSEUDOEXONS, and two feature variables — 5′ splice-site (ss)
score and 3′-ss score — these samples could be represented by 20 points in a two-dimensional space (the 5′-ss score on the
x axis and the 3′-ss score on the y axis). LDA (or QDA) would compute a straight (or curved) line through the space that
can best separate the two classes of exons (with the minimal classification error).

Perceptron method
A machine learning algorithm for pattern recognition or classification. Unlike LDA-based approaches, which calculate
theoretically the final best-discriminant plane, a perceptron method is based on a simple neural network that begins
with an arbitrary initial plane and then iteratively moves the plane in a way that tries to reduce the classification error at
each step.

Hidden Markov models
Probability models that were first developed in the speech-recognition field and later applied to protein- and DNA-
sequence pattern recognition. Hidden Markov models (HMMs) represent a system as a set of discrete states and as
transitions between those states. Each transition has an associated probability. Markov models are ‘hidden’ when one or
more of the states cannot be observed directly. HMMs are valuable in bioinformatics because they allow a search or
alignment algorithm to be built on firm probability bases, and it is straightforward to train the parameters (transition
probabilities) with known data.

Hexamer-coding measures
Some methods interpret sequences as successions of ‘words’ — so-called because nucleotides are not independent of each
other, but tend to occur together as if in a word — of length k (k-tuples); 6-tuples are called hexamers. In-frame hexamer
frequencies in a region of DNA have traditionally been used as a powerful way of discriminating coding regions from
non-coding regions, as some ‘words’ are more likely to be present in either type of DNA. A score s for a hexamer w, such as
CAGCAG, can be defined as s(w) = log(freq(w)). Because the frequency of CAGCAG is relatively high in exons, its score in
exons will be higher than that of, for example, TAATAA.

Weight matrix method and weight array method
Used for scoring a signal motif site. In the weight matrix method (WMM), a score s(x,b) is assigned to each position x for
each base pair b, such that the total score of a motif site can be calculated as the sum of scores at all positions in the site. In
the weight array method (WAM), a score s(x,w) is assigned to each position x for each word w of length k (when k = 1, the
two methods are the same).

Maximal-dependence decomposition (MDD) donor matrices
A set of donor splice-site weight matrices that are generated using the WMM, each of which is built for a different class of
splicing donor sites in such a way that the dependence between nucleotide positions is minimized.

Decision tree
A classification scheme, which can be used, for example, to split a sample into two subsamples according to some rule
(feature variable threshold). Each subsample can be further split, and so on.

Artificial neural networks
A collection of mathematical models that emulate some of the observed properties of biological nervous systems and
draw on the analogies of adaptive biological learning. The key element of the artificial neural network (ANN) model is
the novel structure of the information processing system. It is composed of many highly interconnected processing
elements that are analogous to neurons and are tied together with weighted connections that are analogous to synapses.
Once it is trained on known exon or intron sample sequences, it will be able to predict exons or introns in a query
sequence automatically.
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(~1,000 amino acids), and such a long ORF is rare
unless it has been selected for coding42. Although the
usual hexamer-coding measures, or even simpler
(species-independent) periodicity or entropy types of
coding measure, do well at predicting a large coding
region, they can still confuse an intronless gene for a
long, internal-coding exon. Many pseudogenes are
spliced copies of wild-type genes and, unless they have
accumulated nonsense mutations, it can be very difficult
to distinguish pseudogenes from intronless CDSs with-
out knowing about the wild-type gene or without ruling
out that the nonsense mutation-bearing region might
actually be an intron. To make such a distinction
requires experience and caution43. As current gene-pre-
diction programs are biased towards intron-containing
genes, many intronless genes might have been missed by
such programs. Many false-positive exon predictions
have also been caused by pseudogenes. Developing bet-
ter and more specialized algorithms to recognize them is
becoming increasingly important.

Exon assembly and single-transcript prediction
Just as integrating splice-site signals with coding mea-
sures at the single-exon level can increase the accuracy
of predicting individual splice sites, integrating various
exons into full transcripts can also increase the accuracy
with which individual exons can be predicted. The non-
random nature of DNA is such that molecular interac-
tions and functional selection have together created and
maintained subtle and complex interdependencies
among different parts of the structure of a gene (FIG. 3). If
these interdependencies are not incorporated into a pre-
diction model, the model will perform less accurately.
Because the first and last exons of a gene are the most
difficult to identify, most current assembly programs
only focus on coding fragments, such as the 5′ CDS,
defined by ATG–GT; the itexon, defined by AG–GT; the
3′ CDS, defined by AG–STOP; and the intronless CDS,
defined by ATG–STOP (FIG. 2b). A few programs (such as
Genscan) add two untranslated states: the ‘5′ UTR’,
defined by TSS–ATG, and the ‘3′ UTR’, defined by a
STOP–poly(A) site. However, it should be noted that
these ‘untranslated’ fragments are defined on a pre-
mRNA that might contain introns; the real UTRs are
defined on a mature (spliced) mRNA (FIG. 2a).

Given all possible gene fragments and their scores,
dynamic programming (DP) was originally used by
many programs to assemble a best (highest score) com-
bination of compatible parts into a full pre-mRNA
transcript (for example, see REFS 44,45). When scores for
different parts are not probabilities, appropriate
weighting has to be considered before the scores might
be combined. In Stormo and Haussler46, a general
method is provided for optimizing such weights.

More recently, fully probabilistic state models
(HMMs; BOX 1) have become preferable because, in
these models, all scores are probabilities themselves. The
weighting problem has become a matter of counting
relative observed state frequencies. In a HMM, a DNA
sequence is partitioned into disjointed fragments or
states (because of the duality of the regions and

cDNA-derived mRNA sequences in GenBank are trun-
cated at the 5′ end because of the falling-off of the
reverse transcriptase during cDNA production.
However, a recently reported new Database of
Transcriptional Start Sites (DBTSS) contains the 5′ ends
of ~8,000 human genes27; this resource will be extremely
useful for promoter studies.

Promoter activation and transcription initiation is a
complex process28. After chromatin around the pro-
moter has been remodelled into the hyperacetylated
and relaxed state that is associated with transcriptionally
active chromatin, the next step in transcription is the
binding of the pre-initiation complex to the core pro-
moter (which lies ~100 bp either side of the TSS). The
initiation of transcription is controlled mainly by tran-
scription factors that bind to the proximal region of the
promoter (which lies ~1 kb upstream of the TSS) and to
the first intron region.

There are many promoter- and TSS-prediction pro-
grams. In general, their performance is far from satisfac-
tory, especially with respect to the control of false-posi-
tive predictions (see, for example, REFS 29–32). For
low-resolution (~2-kb) mapping of TSS sequences that
are related to CpG islands in large genomic regions,
CpG_Promoter33 can be used. However, for the high-
resolution (~100-bp) mapping of a TSS in a 2-kb region,
Core_Promoter34 might be a better choice. For general-
purpose genome-wide promoter scans, Promoter-
Inspector35 is reported to have achieved the true-
positive-to-false-positive ratio of 2.3, compared with the
then best ratio of 0.6 for the TSSW program36 (BOX 1). A
new program, Eponine37, performs with similar sensitiv-
ity and specificity to PromoterInspector, and is able to
predict the location of the TSS better by exploiting sig-
nificant discriminating features (such as the TATA box
and nearby CpG islands). Further specificity can be
achieved for specific co-regulated groups of genes by
exploring specific correlations among several transcrip-
tion-factor-binding sites in a functional module38,39.

As in the case of 3′-exon prediction, almost all gene-
prediction programs can only predict the 5′ CDS (FIG. 2b).
This has been done by modifying the approach to pre-
dicting itexons, by replacing the 3′-ss signals with the
translational initiation signal ATG, using KOZAK rules (for
example, see REF. 40), together with the correct exon
length distribution.

Recently, a real 5′-exon prediction algorithm, FirstEF
(based on QDA), was published41. It separates the CpG-
related 5′ exons from the non-CpG-related ones, and
uses first-intron-specific MDD donor matrices. It can
predict both 5′ utexons and 5′ uexons. By integrating
many sequence features, it has also improved on the
accuracy of promoter and TSS predictions.

Finding intronless CDSs and pseudogenes
Predicting intronless CDSs might seem to be easy, but
this would only be true if most genes were intronless
and if few PSEUDOGENES existed (as in bacterial genomes
or the genome of Saccharomyces cerevisiae). For exam-
ple, many S. cerevisiae genes are defined as ORFs of
300 bp or more because an average protein is long

KOZAK SEQUENCE

The consensus sequence for
initiation of translation in
vertebrates.

PSEUDOGENE

A DNA sequence that was
derived originally from a
functional protein-coding gene
that has lost its function, owing
to the presence of one or more
inactivating mutations.
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The advantage of HMMs is that more states (such as
intergenic regions, promoters, UTRs, poly(A) and
frame- or strand-dependent exons and introns) can be
added, as well as flexible transitions between the states,
to allow partial transcripts, intronless genes or even
multiple genes to be incorporated into a model.
Multiple transcript predictions (which might corre-
spond to alternatively spliced transcripts) can also be
obtained by using sub-optimal parses. Because many
functional features that determine alternative splicing
have not been incorporated into existing programs, sub-
optimal parses (or assignments) are unlikely to repre-
sent alternative splicing events. Rather, they can serve as

boundaries, we refer to a region as a state and to a
boundary as a transition between states). If the condi-
tional probability P(s|q) of finding a base s in state q
(which might depend on neighbouring bases as specified
by the probability model) and the transition probability
T(q|q′) of finding state q after state q′, for any possible
assignment (called a parse Φ) of states {q

i
: i = 1,2,…,N}

(i enumerates positions) are known, the joint probability
is given by P(Φ, S) = P(s
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N
). The Viterbi algorithm (DP for a HMM)

can be used to find the most probable parse Φ* (REF. 47)

that corresponds to the optimal transcript (exon or
intron) prediction.

Box 2 | Useful internet resources 

Gene-prediction programs: comparative genomics 
Doublescan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.sanger.ac.uk/Software/analysis/doublescan
SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://bio.math.berkeley.edu/slam
Twinscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://genes.cs.wustl.edu

Gene-prediction programs (many with homology searching capabilities)
GeneMachine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://genome.nhgri.nih.gov/genemachine 
Genscan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://genes.mit.edu/GENSCAN.html 
GenomeScan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://genes.mit.edu/genomescan
Fgenesh, Fgenes-M, TSSW, TSSG, Polyah, SPL and 
RNASPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://genomic.sanger.ac.uk/gf/gf.shtml
Fgenesh, Fgenes-M, SPL and RNASPL . . . . . . . . . . . . . . . . . . . . http://www.softberry.com/berry.phtml
HMMgene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.cbs.dtu.dk/services/HMMgene 
Genie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.fruitfly.org/seq_tools/genie.html 
GRAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://compbio.ornl.gov/tools/index.shtml 
GeneMark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.ebi.ac.uk/genemark [OK?]
GeneID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www1.imim.es/software/geneid/geneid.html#top 
GeneParser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://beagle.colorado.edu/~eesnyder/GeneParser.html 
MZEF and POMBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://argon.cshl.org/genefinder/ [OK?]
AAT, MZEF with homology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://genome.cs.mtu.edu/aat.html 
MZEF with SpliceProximalCheck . . . . . . . . . . . . . . . . . . . . . . . . http://industry.ebi.ac.uk/~thanaraj/MZEF-SPC.html 
Genesplicer, Glimmer and GlimmerM . . . . . . . . . . . . . . . . . . . . http://www.tigr.org/~salzberg
WebGene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.itba.mi.cnr.it/webgene
GenLang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.cbil.upenn.edu/genlang/genlang_home.html 
Xpound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ftp://igs-server.cnrs-mrs.fr/pub/Banbury/xpound

Gene-prediction programs: alignment based
Procrustes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www-hto.usc.edu/software/procrustes/index.html 
GeneWise2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.sanger.ac.uk/Software/Wise2 
SplicePredictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://bioinformatics.iastate.edu/cgi-bin/sp.cgi 
PredictGenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://cbrg.inf.ethz.ch/subsection3_1_8.html 

Finding ORFs and splice sites
DioGenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.cbc.umn.edu/diogenes/index.html 
OrfFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.ncbi.nlm.nih.gov/gorf/gorf.html 
YeastGene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://tubic.tju.edu.cn/cgi-bin/Yeastgene.cgi 
CDS: search coding regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://bioweb.pasteur.fr/seqanal/interfaces/cds-simple.html 
Neural network splice site prediction . . . . . . . . . . . . . . . . . . . . . http://www.fruitfly.org/seq_tools/splice.html 
NetGene2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.cbs.dtu.dk/services/NetGene2

Last exon, promoter or TSS prediction
FirstEF, Core_Promoter, CpG_Promoter, Polyadq 
and JTEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.cshl.edu/mzhanglab
Eponine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.sanger.ac.uk/Users/td2/eponine
Neural network promoter prediction . . . . . . . . . . . . . . . . . . . . . http://www.fruitfly.org/seq_tools/promoter.html 
Transcription element search system . . . . . . . . . . . . . . . . . . . . . http://www.cbil.upenn.edu/tess
Signal Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://bimas.dcrt.nih.gov/molbio/signal

AAT, analysis and annotation tool; ORF, open reading frame; TSS; transcription start site.
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sensors for splice signals, as well as for coding content.
Like HMMgene and Genie, Genscan is also based on a
GHMM2. It also allows exon-specific length distribution
to be predicted (that is, the model generates blocks of
base pairs — a whole exon and exons predicted to be of
average length receive high probability scores). By con-
trast, the intrinsic length distribution for a standard
HMM is geometric, which results in the exon score
decaying exponentially with exon length. But, the splice-
site sensors in Genscan are more advanced than those
used in the other programs. Fgenesh50, another GHMM-
based algorithm, uses LDA (BOX 1) as the exon sensor.
The coding-content sensors all use a fifth-order Markov
chain (in this approach, the probability score for any base
pair depends on the previous five base pairs; BOX 1).
These GHMM programs also model promoters, poly(A)
signals and the 5′ UTRs or 3′ UTRs (including possible
introns) in a relatively simple way (FIG. 4).

Recently, another gene-prediction program, GRPL51,
has been developed. It is based on reference point logis-
tic (RPL) regression, which is a generalization of logistic
regression52 that can be used in complex classification
problems to model the conditional probability that an
object belongs to a specified class given its observed fea-
tures. In tests of this program, GRPL matches the per-
formance of Genscan at the nucleotide level (with
respect to the correct prediction of exons and introns),
but does slightly worse than Genscan at the exon level. A
more recent test of many programs (such as Fgenes,
GeneMark, Genie, Genscan, HMMgene, Morgan and
MZEF; BOX 2) on 195 newly sequenced DNAs showed
that the accuracy of gene prediction (the average of sen-
sitivity plus specificity) is ~70–90% at the nucleotide
level and ~40–70% at the exon level6. In practice, com-
bining the predictions of several programs can yield
even greater accuracy53.

Multiple genes, partial genes and both strands 
It is easy to add more states or transitions between states
to HMM-based models so that multiple genes, partial
genes and genes on both strands can be predicted
together. These features are essential when annotating
genomes or large chunks of sequence data, such as large
contigs, in an automated fashion. The technique of pre-
dicting multiple genes on both strands was initially
implemented in Genscan2, and was later adopted in
other HMM-based algorithms, such as GeneMark54 and
Fgenesh50. The advantage of modelling both strands
simultaneously is that it avoids the prediction of genes
that overlap on the two strands as being two separate
genes, which are presumed to be rare in mammalian
genomes. More importantly, it makes the prediction of
‘shadow exons’ (exons that are predicted to be in the cor-
rect region but on the wrong DNA strand) much less
likely. This can arise because coding-biased sequence
composition can look distinct from intron or intergenic
sequence to the predictor — the extent to which this
effect occurs depends on the organism (see, for example,
REF. 55). Most gene-prediction algorithms can achieve
~80% sensitivity and specificity at the exon level when
tested on single-gene data sets56, but these statistics drop

a stability indicator: if many sub-optimal parses are very
close (in terms of their probabilities) to the optimal one,
the optimal prediction might not be very reliable.

Because HMMs are fully probabilistic, a score (con-
ditional probability) can be obtained for any part of a
gene. For example, the likelihood of finding an exon in a
particular interval might be calculated by a ‘forward’
and a ‘backward’ algorithm47. Because of the inter-
dependency of exons, the quality (probability score) of
an exon also depends on other exons or even on the
entire sequence. As a result, HMM-based exon-assembly
methods explore exon–exon correlations and so predict
exons more accurately than when predictions are based
on single, isolated exons.

HMMgene48 is based on HMM and can be optimized
to predict exons to a high degree of accuracy. The Genie
program was the first to introduce a generalized HMM49

(GHMM; BOX 1) and used neural networks as individual
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Esngl
+

(single-exon
gene)
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(pro)
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Reverse strand: mirror reflection of above

Figure 4 | Different states and transitions in the Genscan
hidden Markov model. Genscan is a gene-prediction
algorithm that, like other hidden Markov models (HMMs),
models the transition probabilities from one part (state) of a
gene to another. Here, each circle or square represents a
functional unit (a state) of a gene on its forward strand (for
example, Einit is the 5′ coding sequence (CDS) and Eterm is the
3′ CDS, and the arrows represent the transition probability
from one state to another. The Genscan algorithm is trained by
pre-computing the transition probabilities from a set of known
gene structures. Test sequence data can then be run one base
position at a time, and the model will predict the optimal state
for that position. The model for the reverse strand (beneath the
dashed line) is in mirror symmetry to the model shown, with
respect to the horizontal axis. Please note that these ‘UTRs’
(untranslated regions) might contain introns and so should not
be confused with the standard UTR. E, exon; I, intron; pro,
promoter. Modified with permission from REF. 2 © (1997)
Elsevier Science. 
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Combining similarity scores
The use of database search-and-alignment programs,
such as BLASTX60 and Sim4 (REF. 61), in gene finding has
been popular because matching a sequence to a known
protein or cDNA/EST can greatly improve the accuracy
of gene prediction. Traditionally, ab initio gene predic-
tion and similarity searches are run independently, and
a curator then combines the results manually for gene
annotation. Many people have tried to integrate these
methods automatically62–67.

The ‘splice alignment’ program — Procrustes62 —
is based on the observation that the detection of exon
boundaries in a gene can be improved if a close pro-
tein homologue for that gene exists. Similarly, the
Ensembl automatic gene annotation engine —
GeneWise66 — combines a gene-prediction HMM
with the protein-profile HMM (Pfam) to achieve
simultaneous gene prediction and alignment.
Although these methods can be highly accurate, they
predict exactly one gene per genomic sequence,
require close homologues to identify complete
genes68 and are computationally intensive, requiring a
prescan with, for example, BLASTX to first identify
candidate regions. To provide a first layer of annota-
tion on the human draft, a new algorithm
GenomeScan was developed recently69, which com-
bines exon or intron and splice-signal models with
similarity to known protein sequences in an inte-
grated model. Initial comparisons of GenomeScan
with Procrustes and GeneWise seemed to favour
GenomeScan69, because Procrustes and GeneWise
both predict partial genes, which results in the termi-
nal exons being frequently truncated. However, if the
prediction of internal exons (or splice sites) is consid-
ered, the performance of Procrustes and GeneWise is
comparable with that of GenomeScan. Because the
quality of an EST-derived sequence is generally very
poor, it must be very carefully combined with any
automatic gene-prediction algorithms70. In general,
similarity searches can boost the accuracy of gene
prediction by a few per cent. For example, GRPL+ is
the similarity-enhanced version of GRPL51, and has
shown a 5% increase in prediction accuracy over
GRPL.

Comparative genomics methods
The value of comparative genomics is illustrated by the
sequencing of the mouse genome for the purpose 
of annotating the human genome. The availability of
closely related genomes makes it possible to carry out
genome-wise comparisons and analyses of synteny.
When two genomes have only recently diverged, the
order of many genes, gene numbers, gene positions and
even gene structures (exon–intron organization, splice
site usage, and so on) remain highly conserved. New
genes can also be identified from direct genome com-
parisons. By comparing the genomes of several closely
related species, conserved regulatory regions can also be
easily identified71. For these reasons, making use of com-
parative genomic data will be a key challenge for the
gene-prediction field.

to ~60% sensitivity and specificity when these programs
are run on large-scale genomic DNA data sets57.

By integrating features across several genes, a feature
(such as an exon) in one gene becomes dependent on the
features of other genes.And that is why, when a few start-
ing or ending bases of the input sequence are deleted, it
can change the overall prediction of gene structure.
There is very little biological evidence for the existence of
correlations among exons in different genes, except for
genes at some tightly linked loci, such as the locus con-
trol region of the β-globin locus or where a pair of genes
is controlled by a common promoter.A probability score
only makes sense when: first, the underlying model is
correct, and second, the training samples are not biased.
As our knowledge about the dependencies between
genes is very limited, multiple-gene models are unlikely
to be accurate. As most algorithms cannot even predict
the first and last exons, the splitting and fusing of genes
occurs quite often, even with the best programs, when
they are run on large genomic data sets.An accurate pre-
diction of multiple genes will only be possible once we
have a better understanding of the long-range features of
chromosomes. These long-range features include insula-
tor and boundary elements, and matrix- and 
scaffold-attachment regions58, which all allow a chromo-
some to be broken up into its transcriptionally indepen-
dent domains59.

BLASTX

Basic local alignment tool
(BLAST) is a computer program
for comparing DNA and protein
sequences. The BLASTX version
compares a nucleotide query
sequence that is translated in all
reading frames with a protein
sequence database.

E0,0 E0,1 E0,2 E1,0 E1,1 E1,2 E2,0 E2,1 E2,2

EI,0 EI,1 EI,2 E0,F E1,F E2,FEsing

I0 I1

Intergenic
region

I2

Reverse strand: mirror reflection of above

Figure 5 | A generalized pair hidden Markov model. A
generalized pair hidden Markov model (GPHMM) for aligning
and predicting exons using genomic DNA sequences from two
related organisms. The main difference between this model
and the usual HMM (such as Genscan) is that an exon pair
(one from each organism) is generated according to some joint
distribution. ‘E’ represents an exon-pair state. The internal
exon pairs are shown at the top. Eij indicates the state that can
create an exon-pair connecting an upstream i-phase intron (Ii)
and a downstream j-phase intron (Ij) (where i, j = 0, 1 or 2). EIi

indicates the first exon state that can create an initial exon-pair
that connects a downstream i-phase intron, and EjF indicates
the last exon-pair state that can create a final exon-pair that
connect to an upstream j-phase intron. Esing indicates a simple
exon state (an intronless gene). Modified with permission from
REF. 79 © (2002) Mary Ann Liebert, Inc.
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coding regions (M. Zhang, unpublished data), they
have been the main source of false-positives in most
comparative-genomics approaches. To reduce such
errors, SLAM has introduced the conserved non-
coding sequence (CNS) state. Although the CNS state
allows SLAM to detect some homologous regulatory
regions, the lack of a precise definition of CNS and a
known CNS training set makes it the weakest point of
this model. These programs and the programs that
are now being developed, such as Doublescan (BOX 2),
will have a great impact on finding new genes in ver-
tebrate genomes, and, more importantly, will provide
a testable list of genes for high-throughput experi-
mental validation and refinement.

Future challenges
Gene-prediction algorithms have been steadily improv-
ing in the past decade, but there is still a long way to go.
This is reflected by the fact that we still do not know
how many genes are in the human genome79, and fluc-
tuations in the estimates of this number are now as big
as the mean. In BOX 3, I list some of the key problems
that remain to be solved in this field.

Bioinformatics is driven by genomic data, and the
lack of high-throughput experimental approaches to
identify genes and their functions has become the main
bottleneck of this field80. However, computational biolo-
gists should not be deterred by not yet having experi-
mental confirmation of their gene predictions, because
many transcripts are hard to detect owing to their low
abundance. We should work closely with our bench-
partners, and together, many ‘false-positives’ (~30–50%)
might be turned eventually into real positives (for
example, see REF. 81). Although I have concentrated here
on the computational side of this field, experimental
approaches are equally, if not more, important. More
functional-genomics methods for finding genes — such
as using genomic microarrays to create transcription
maps82–84, sequencing full-length cDNAs and improving
SAGE protocols (for example, see REF. 85) — are desper-
ately needed. Furthermore, gene finding would not be
complete without also identifying alternative transcripts
and regulatory cis-elements. In this regard, functional-
genomics approaches, such as ChIP (chromatin
immunoprecipitation)-chip analyses (see the recent
review by Horak and Snyder86) and large-scale analyses
of alternative splicing (see, for example, REFS 87,88) have
become the methods of choice. New algorithms will be
needed to analyse such new data computationally.
Together with the availability of the genomes of several
species for comparative analyses, the gene-finding field
is at its most exciting time. Despite large-scale genomic
efforts, traditional single-gene dissections are still
needed for understanding the details of gene-expression
mechanisms. Only with sufficient mechanistic data can
gene prediction be transformed from being statistical to
being biological in nature79. Everyone in the field is
working towards the ultimate dynamic model that can
identify the consecutive exons of a gene, from its 5′- to
its 3′-ends, as if they were being co-transcriptionally rec-
ognized and spliced89,90.

To accommodate large genomic sequences, the tra-
ditional visualization tools, such as the simple dotplot,
have been extended recently to more sophisticated 
programs, such as VISTA/AVID72 and PipMaker73,
which both display the alignment of two or more
genomes in the form of simple percentage-identify
plots (for example, regions with 70% identity and
above are shown). ROSETTA74 is the first automated
program that annotates human genes by using syn-
tenic mouse genomic DNA. WABA (wobble aware
bulk aligner75) has taken advantage of the third base
wobble in coding exons to improve alignment, and
has been successfully applied to aligning the genomes
of two closely related worms, Caenorhabditis briggsae
and Caenorhabditis elegans.

Computational tools for comparative genomics
are being developed by several groups, and recently
developed programs include CEM76, TWINSCAN57,
SGP-1 (REF. 77) and SLAM (M. Alexandersson et al.,
unpublished data) (BOX 2). By using comparisons
between human and mouse, these groups have shown
that gene-prediction accuracy can be further
improved by using two closely related genomes.
SLAM uses a generalized pair HMM (GPHMM or
dual-HMM, REF. 78), which can simultaneously pre-
dict a pair of ‘orthologous’ base pairs according to a
dual-HMM model (FIG. 5) in a syntenic region. This
places the annotation and alignment problem on an
equal footing. The mathematical beauty of the dual-
HMM is quite appealing, but in its practical imple-
mentation, SLAM suffers from many restrictions (but
perhaps also benefits by being faster to compute). For
example, it is assumed that the same number of
exons exist in each organism and in the same order in
a region of conserved synteny, and certain key
approximations of the genome-wide alignment
(which are derived from a pre-processing step to
reduce the computational complexity of the exact
GPHMM) are used. As about one-half of the con-
served regions between human and mouse are not in

Box 3 | Future challenges for the gene-prediction field

• To create better algorithms for identifying general, as well as tissue- or developmental-
specific, classes of promoters.

• To achieve a greater understanding of CpG islands and methylation patterns.

• To have a better characterization of the splicing enhancers and silencers that mediate
alternative splicing, to allow models to predict alternative exons or aberrant splicing
events.

• To identify short exons, and to predict very long exons, more accurately.

• To identify non-translated exons.

• To predict polyadenylation sites and transcriptional termination sites.

• To identify mRNA features that are related to mRNA editing, nonsense-mediated decay,
stability and transport.

• To predict genes that encode non-coding RNAs.

• To predict insulators and boundary elements, and matrix-attachment and scaffold-
attachment regions.

• To predict replication origins and recombination hot spots.



© 2002 Nature Publishing Group
708 |  SEPTEMBER 2002 | VOLUME 3 www.nature.com/reviews/genetics

R E V I EW S

1. Claverie, J.-M. Computational methods for the
identification of genes in vertebrate genomic
sequences. Hum. Mol. Genet. 6, 1735–1744 (1997).

2. Burge, C. & Karlin, S. Prediction of complete gene
structure in human genomic DNA. J. Mol. Biol. 268,
78–94 (1997). 
In this paper, the popular Genscan gene-
prediction algorithm was first reported.

3. Milanesi, L. & Rogozin, I. B. in Guide to Human
Genome Computing 2nd edn (ed. Bishop, M. J.)
215–260 (Academic, New York, 1998).

4. Krogh, A. in Guide to Human Genome Computing 2nd
edn (ed. Bishop, M. J.) 261–274 (Academic, New York,
1998).

5. Pavy, N. et al. Evaluation of gene prediction software
using a genomic data set: application to Arabidopsis
thaliana sequences. Bioinformatics 15, 887–899
(1999).

6. Rogic, S., Mackworth, A. K. & Ouellette, F. B. F.
Evaluation of gene-finding programs on mammalian
sequences. Genome Res. 11, 817–832 (2001).

7. Solovyev, V. V. in Current Topics in Computational
Molecular Biology (eds Jiang, T., Xu, Y. & Zhang, M. Q.)
201–248 (MIT Press, Cambridge, Massachusetts,
2002).
An up-to-date introduction and review on
computational gene-prediction methods. 

8. Brent, M. R. Predicting full-length transcripts. Trends
Biotechnol. 20, 273–275 (2002).

9. Zhang, M. Q. Statistical features of human exons and
their flanking regions. Hum. Mol. Genet. 7, 919–932
(1998).

10. Senapathy, P., Shapiro, M. B. & Harris, N. L. Splice
junctions, branch point sites, and exons: sequence
statistics, identification and application to genome
project. Methods Enzymol. 183, 252–278 (1990).
A good introduction to the statistical features of
splicing signals and exons.

11. Chen, T. & Zhang, M. Q. POMBE: a fission yeast gene-
finding and exon–intron structure prediction system.
Yeast 14, 701–710 (1998). 

12. Lim, L. P. & Burge, C. B. A computational analysis of
sequence features involved in recognition of short
introns. Proc. Natl Acad. Sci. USA 98, 11193–11198
(2001).
A systematic study of the sequence features that
might define a short intron.

13. Robberson, B. L., Cote, G. J. & Berget, S. M. Exon
definition may facilitate splice site selection in RNAs with
multiple exons. Mol. Cell. Biol. 10, 84–94 (1990).

14. Ripley, B. D. Pattern Recognition and Neural Networks
(Cambridge Univ. Press, Cambridge, UK, 1996).

15. Solovyev, V. V., Salamov, A. A. & Lawrence, C. B.
Predicting internal exons by oligonucleotide
composition and discriminant analysis of spliceable
open reading frames. Nucleic Acids Res. 22, 248–250
(1994).

16. Pertea, M., Lin, X. & Salzberg, S. L. GeneSplicer: a new
computational method for splice site prediction. Nucleic
Acids Res. 29, 1185–1190 (2001).

17. Fickett, J. W. & Tung, C.-S. Assessment of protein
coding measures. Nucleic Acids Res. 20, 6441–6450
(1992).
This is a comprehensive assessment of protein-
coding measures, which are used in many gene-
prediction algorithms.

18. Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O.
Microbial gene identification using interpolated 
Markov models. Nucleic Acids Res. 26, 544–548
(1998).

19. Bernardi, G. The human genome: organization and
evolutionary history. Annu. Rev. Genet. 29, 445–476
(1995).

20. Zhang, M. Q. Identification of protein coding regions in
the human genome based on quadratic discriminant
analysis. Proc. Natl Acad. Sci. USA 94, 565–568
(1997).

21. Uberbacher, E. C. & Mural, R. J. Locating protein
coding segments in human DNA sequences by a
multiple sensor-neural network approach. Proc. Natl
Acad. Sci. USA 88, 11261–11265 (1991).

22. Graber, J. H., Cantor, C. R., Mohr, S. C. & Smith, T. F. In
silico detection of control signals: mRNA 3′-end-
processing sequences in diverse species. Proc. Natl
Acad. Sci. USA 96, 14055–14060 (1999).

23. Tabaska, J. E. & Zhang, M. Q. Detection of
polyadenylation signals in human DNA sequences.
Gene 231, 77–86 (1999).

24. Tabaska, J. E., Davuluri, R. V. & Zhang, M. Q.
Identifying the 3′-terminal exon in human DNA.
Bioinformatics 17, 602–607 (2001).

25. Schell, T., Kulozik, A. E. & Hentze, M. W. Integration of
splicing, transport and translation to achieve mRNA
quality control by the nonsense-mediated decay
pathway. Genome Biol. 3, ReviewS1006 (2002).

26. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to
silence and understanding nonsense: exonic
mutations that affect splicing. Nature Rev. Genet. 3,
285–298 (2002).

27. Suzuki, Y. et al. DBTSS: database of human
transcriptional start sites and full-length cDNAs.
Nucleic Acids Res. 30, 328–331 (2002).

28. Carey, M. & Smale, S. T. Transcriptional Regulation in
Eukaryotes: Concepts, Strategies, and Techniques
(Cold Spring Harbor Laboratory Press, New York,
2000).

29. Fickett, J. W. & Hatzigeorgiou, A. G. Eukaryotic
promoter recognition. Genome Res. 7, 861–878
(1997).
The first comparison of promoter prediction
programs.

30. Werner, T. Models for prediction and recognition of
eukaryotic promoters. Mamm. Genome 23, 168–175
(1999).

31. Ohler, U. & Niemann, H. Identification and analysis of
eukaryotic promoters: recent computational
approaches. Trends Genet. 17, 56–60 (2001).

32. Zhang, M. Q. in Current Topics in Computational
Molecular Biology (eds Jiang, T., Xu, Y. & Zhang, M. Q.)
249–268 (MIT Press, Cambridge, Massachusetts,
2002).

33. Ioshikhes, I. P. & Zhang, M. Q. Large-scale human
promoter mapping using CpG islands. Nature Genet.
26, 61–63 (2000).

34. Zhang, M. Q. Identification of human gene core
promoters in silico. Genome Res. 8, 319–326 (1998). 

35. Scherf, M., Klingenhoff, A. & Werner, T. Highly specific
localization of promoter regions in large genomic
sequences by PromoterInspector: a novel context
analysis approach. J. Mol. Biol. 297, 599–606 (2000).

36. Solovyev, V. & Salamov, A. The Gene-Finder computer
tools for analysis of human and model organisms
genome sequences. Proc. ISMB 5, 294–302 (1997).

37. Down, T. A. & Hubbard, T. J. P. Computational
detection and location of transcription start sites in
mammalian genomic DNA. Genome Res. 12, 458–461
(2002).

38. Frech, K., Quandt, K. & Werner, T. Muscle actin genes:
a first step towards computational classification of
tissue specific promoters. In Silico Biol. 1, 29–38
(1998).

39. Kel, A., Kel-Margoulis, O., Banemko, V. & Wingender,
E. Recognition of NFATp/AP-1 composite elements
within genes induced upon the activation of immune
cells. J. Mol. Biol. 288, 353–376 (1999).

40. Kozak, M. A progress report on translational control in
eukaryotes. SciSTKE 2001, PE1 (2001).

41. Davuluri, R. V., Grosse, I. & Zhang, M. Q.
Computational identification of promoters and first
exons in the human genome. Nature Genet. 29,
412–417 (2001).
The first report of a first-exon prediction
algorithm. 

42. Fickett, J. W. ORFs and genes: how strong a
connection? J. Comput. Biol. 2, 117–123 (1995).

43. Harrison, P. M. et al. Molecular fossils in the human
genome: identification and analysis of the
pseudogenes in chromosomes 21 and 22. Genome
Res. 12, 272–280 (2002).

44. Gelfand, M. S. & Roytberg, M. A. Prediction of the
exon–intron structure by a dynamic programming
approach. Biosystems 30, 173–182 (1993).

45. Snyder, E. E. & Stormo, G. D. Identification of coding
regions in genomic DNA sequences: an application of
dynamic programming and neural networks. Nucleic
Acids Res. 11, 607–613 (1993).

46. Stormo, G. D. & Haussler, D. Optimally parsing a
sequence into different classes based on multiple
types of evidence. Proc. Int. Conf. ISMB 2, 369–375
(1994).

47. Rabiner, L. R. A tutorial on hidden Markov models and
selected applications in speech recognition. Proc. IEEE
77, 257–286 (1989).

48. Krogh, A. Two methods for improving performance of
an HMM and their application for gene finding. Proc.
Int. Conf. Intell. Syst. Mol. Biol. 5, 179–186 (1997).

49. Kulp, D., Haussler, D., Reese, M. G. & Eeckman, F. H. 
A generalized hidden Markov model for the recognition
of human genes in DNA. Proc. Int. Conf. Intell. Syst.
Mol. Biol. 4, 134–142 (1996).

50. Salamov, A. & Solovyev, V. Ab initio gene finding in
Drosophila genome DNA. Genome Res. 10, 516–522
(2000).

51. Hooper, P. M., Zhang, H. & Wishart, D. S. Prediction of
genetic structure in eukaryotic DNA using reference
point logistic regression and sequence alignment.
Bioinformatics 16, 425–438 (2000).

52. Cox, D. R. & Snell, E. J. Analysis of Binary Data 2nd
edn (Chapman & Hall, London, 1989).

53. Rogic, S., Mackworth, A. K. & Ouellette, F. B. F.
Improving gene recognition accuracy by combining
predictions from two gene-finding programs.
Bioinformatics (in the press). 

54. Lukashin, A. V. & Borodovski, M. GeneMark.hmm: new
solutions for gene finding. Nucleic Acids Res. 26,
1107–1115 (1998).

55. Reese, M. G., Kulp, D., Tammana, H. & Haussler, D.
Genie — gene finding in Drosophila melanogaster.
Genome Res. 10, 529–538 (2000).

56. Burset, M. & Guigo, R. Evaluation of gene structure
prediction programs. Genomics 34, 353–367 (1996).
The first comprehensive evaluation of gene-
prediction programs using a common standard
training set. 

57. Korf, I., Flicek, P., Duan, D. & Brent, M. R. Integrating
genomic homology into gene structure prediction.
Bioinformatics 17(Suppl.), 140–148 (2001).

58. Frisch, M. et al. In silico prediction of scaffold/matrix
attachment regions in large genome sequences.
Genome Res. 12, 349–354 (2002).

59. Zhan, H. C., Liu, D. P. & Liang, C. C. Insulator: from
chromatin domain boundary to gene regulation. Hum.
Genet. 109, 471–478 (2001).

60. Gish, W. & States, D. J. Identification of protein coding
regions by database similarity search. Nature Genet. 3,
266–272 (1993).

61. Florea, L. et al. A computer program for aligning a
cDNA sequence with a genomic DNA sequence.
Genome Res. 8, 967–974 (1998).

62. Gelfand, M. S., Mironov, A. & Pevner, P. Gene
recognition via spliced sequence alignment. Proc. Natl
Acad. Sci. USA 93, 9061–9066 (1996).

63. Kulp, D., Haussler, D., Reese, M. G. & Eeckman, F. H.
Integrating database homology in a probabilistic gene
structure model. Pacif. Symp. Biocomput. 232–244
(1997).

64. Xu, Y. & Uberbacher, E. C. Gene prediction by pattern
recognition and homology search. Proc. Int. Conf. Intell.
Syst. Mol. Biol. 4, 241–251 (1996).

65. Krogh, A. Using database matches with HMMgene for
automated gene detection in Drosophila. Genome Res.
10, 523–528 (2000).

66. Birney, E. & Durbin, R. Using GeneWise in the
Drosophila annotation experiment. Genome Res. 10,
547–548 (2000).

67. Gotoh, O. Homology-based gene structure prediction:
simplified matching algorithm using a translated codon
(tron) and improved accuracy by allowing for long gaps.
Bioinformatics 16, 190–202 (2000).

68. Guigo, R. et al. An assessment of gene prediction
accuracy in large DNA sequences. Genome Res. 10,
1631–1642 (2000).
A comparison of ab initio and alignment-based
gene-prediction programs.

69. Yeh, R. F., Lim, L. P. & Burge, C. B. Computational
inference of homologous gene structures in the human
genome. Genome Res. 11, 803–816 (2001).

70. Reese, M. G. et al. Genome annotation assessment in
Drosophila melanogaster. Genome Res. 10, 483–501
(2000).

71. Pennacchio, L. A. & Rubin, E. M. Genomic strategies to
identify mammalian regulatory sequences. Nature Rev.
Genet. 2, 100–119 (2001).

72. Mayor, C. et al. VISTA: visualizing global DNA sequence
alignment of arbitrary length. Bioinformatics 16,



© 2002 Nature Publishing Group
NATURE REVIEWS | GENETICS VOLUME 3 | SEPTEMBER 2002 | 709

R E V I EW S

1046–1047 (2000).
73. Schwartz, S. et al. PipMaker — a web server for

aligning two genomic DNA sequences. Genome Res.
10, 577–586 (2000).

74. Batzoglou, S. et al. Human and mouse gene structure:
comparative analysis and application to exon
prediction. Genome Res. 10, 950–958 (2000).

75. Kent, W. J. & Zahler, A. M. Conservation, regulation,
synteny, and introns in a large C. briggsae–C. elegans
genomic alignment. Genome Res. 10, 1115–1125
(2000).

76. Bafna, V. & Huson, D. H. The conserved exon method
for gene finding. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8,
3–12 (2000).

77. Wiehe, T., Gebauer-Jung, S., Mitchell-Olds, T. & Guigo,
R. SGP-1: prediction and validation of homologous
genes based on sequence alignments. Genome Res.
11, 1574–1583 (2001).

78. Pachter, L., Alexandersson, M. & Cawley, S.
Applications of generalized pair hidden Markov models
to alignment and gene finding problems. J. Comput.
Biol. 9, 389–399 (2002).

79. Claverie, J.-M. From bioinformatics to computational
biology. Genome Res. 10, 1277–1279 (2000).

80. Zhang, M. Q. Predicting full-length transcripts. Nature
Biotechnol. 20, 275 (2002). 

81. Miyajima, N., Burge, C. B. & Saito, T. Computational
and experimental analysis identifies many novel human

genes. Biochem. Biophys. Res. Commun. 272,
801–807 (2000). 

82. Shoemaker, D. D. et al. Experimental annotation of the
human genome using microarray technology. Nature
409, 922–927 (2001).

83. Frazer, K. A. et al. Evolutionarily conserved sequences
on human chromosome 21. Genome Res. 11,
1651–1659 (2001).

84. Kapranov, P. et al. Large-scale transcriptional activity in
chromosomes 21 and 22. Science 296, 916–919
(2002).

85. Lee, S. et al. Correct identification of genes from serial
analysis of gene expression tag sequences. Genomics
79, 598–602 (2002).

86. Horak, C. E. & Snyder, M. ChIP-chip: a genomic
approach for identifying transcription factor binding
sites. Methods Enzymol. 350, 469–483 (2002).

87. Clark, T. A., Sugnet, C. W. & Ares, M. Jr. Genomewide
analysis of mRNA processing in yeast using splicing-
specific microarrays. Science 296, 907–910 
(2002).

88. Yeakey, J. M. et al. Profiling alternative splicing on fiber-
optic arrays. Nature Biotechnol. 20, 353–358 
(2002).

89. Goldstrohm, A. C., Greenleaf, A. L. & Garcia-Blanco, M.
A. Co-transcriptional splicing of pre-messenger RNAs:
considerations for the mechanism of alternative
splicing. Gene 277, 31–47 (2001).

90. Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating
mRNA processing with transcription. Cell 108,
501–512 (2002).
A recent review on the interdependence of
transcription and RNA processing.

Acknowledgements
My lab is supported by National Institutes of Health (NIH) grants. 
I thank L. Pachter and M. Alexandersson for providing their manu-
script before publication; and R. Guigo and M. Brent for presenting
their recent comparative analysis of human and mouse drafts at the
1% Workshop of NIH/NHGRI in July 2002. I also thank the anony-
mous reviewers for many helpful suggestions.

Online links

FURTHER INFORMATION
Ensembl mouse genome server:
http://www.ensembl.org/Mus_musculus
Entrez genome:
http://www.ncbi.nlm.nih.gov/Entrez/Genome/org.html
Mammalian Gene Collection:
http://mgc.nci.nih.gov/Info/ProjectSummary
RIKEN: http://www.gsc.riken.go.jp/e/FANTOM
University of Santa Cruz Genome Bioinformatics site:
http://genome.ucsc.edu
Access to this interactive links box is free online.



© 2002 Nature Publishing Group

ON L I N E

• With the recent explosion in the availability of genome data, gene-
finding programs have proliferated. However, the accuracy with which
genes can be predicted is still far from satisfactory. This review pro-
vides background information and surveys the latest developments in
gene-prediction programs. It also highlights the problems that face the
gene-prediction field and discusses future research goals.

• The main characteristic of a eukaryotic gene is its organization into
exons and introns. The ‘exon-definition’ model explains how the splic-
ing machinery recognizes exons in a sea of intronic DNA. It indicates
that an internal exon is initially recognized by a chain of interacting
splicing factors that span it. The binding of these factors to pre-mRNA
is responsible for the non-random nucleotide patterns that form the
molecular basis of all exon-recognition algorithms.

• Correctly identifying the boundaries of a gene is essential when search-
ing for several genes in a large genomic region. It is relatively easy to
find internal exons, but many gene-prediction programs fail to identify
gene boundaries. Determining the 3′ end of a gene is easier than deter-
mining its 5′ end, mainly because of the difficulty of identifying the
promoter and transcriptional start-site sequences, and because the 5′
ends of cDNA sequences are often truncated.

• As current gene-prediction programs are biased towards intron-con-
taining genes, many intronless genes might have been missed by such
programs. Many false-positive exon predictions have also been caused
by pseudogenes. Developing better and more specialized algorithms to
recognize them is becoming increasingly important.

• Hidden Markov model (HMM)-based programs can be used to pre-
dict multiple genes, partial genes and genes on both strands, all at the
same time. These features are essential when annotating genomes or
large chunks of sequence data, such as large contigs, in an automated
fashion.

• By comparing the genomes of several closely related species, conserved
regulatory regions can be identified easily. For these reasons, making
use of comparative genomic data is an important future challenge for
the gene-prediction field.

• More functional genomics methods for finding genes are desperately
needed to improve gene prediction. Only with sufficient mechanistic
data can gene prediction be transformed from being statistical to being
biological in nature. The field is working towards the ultimate
dynamic model that can identify the consecutive exons of a gene, from
its 5′ to its 3′ ends, as if they were being co-transcriptionally recognized
and spliced.
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