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• 1 Molecular/cellular network Biology (1)
• 2 DNA/Amino acid Sequence Alignment (2)
• 3 Phylogenetic Tree building methods (2)
• 4 Clustering biological data (2)
• 5 Genome sequencing (1)
• 6 Assembling genomes (1)
• 7 Finding genome parts/Hidden Markov models (1)
• 8 Computing/storing information using DNA (1)
• 9 Simulation of biological reactions (1)
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Bioinformatics (algorithms): sections and topics (12 lectures)

Some notes on deep learning in bioinformatics will be given at the end of the course but 
they are not part of the assessment/examination.
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Bioinformatics and computational biology: Applied Algorithms and 
Interesting biological problems computer scientists should look at

Key 
concepts 
Biology 1 Alignme

nt 

2

Building 
trees 3

Clusterin
g  4

Genome 
sequenci

ng 4Genome 
Assembl

y 5

Parts  
identifica

-tion 7

DNA 
computin

g
Storage 8

Example
questions

Bioinformatics offers an opportunity
to help understand biology and 
medicine more accurately.
Bioinformatics is an effective way to 
blend biological and medical
concepts and programming tools to 
help understand biology and 
medicine better. A researcher must 
identify the widest variety of data 
that makes an organism. Second, 
she must know the context in which
the disruption of information causes
a disease.

Bioinformatics is nowadays about 
algorithms and/or machine learning 
methods. In the course we focus on 
algorithms. The course has 9 sections 
(figure right).

Biological
Reactions 9
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General references for the course

largely based on P. Compeau and P. Pevzner: 
Bioinformatics algorithms; note that there are few 
blogs about these widely used text books.

also R. Durbin, at et al.: Biological Sequence 
Analysis: Probabilistic Models of Proteins and 
Nucleic Acids.

Some of the slides are produced on the 
basis of chapters from the books below
(with agreement with the authors)
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Biological background 

Section 1

Ø Structures and Models of DNA and proteins

Ø Multiple layers of information
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Central Dogma and Genetic Code

In transcription, the information in the DNA of 
every cell is converted into small, portable RNA 
messages.

During translation, these messages travel from 
where the DNA is in the cell nucleus to the 
ribosomes where they are ‘read’ to make specific 
proteins using a genetic code (right).

Gene expression is a tightly regulated process 
that increases or decreases the amount of 
proteins made.

The central dogma of molecular biology 
explains the flow of genetic information, 
from DNA to RNA, to make a functional 
product, a protein.

The central dogma suggests that DNA 
contains the information needed to make 
all of our proteins, and that RNA is a 
messenger that carries this information to 
the ribosome
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The figure in the left shows the DNA compaction; the figure in the right the overall functional
impact of DNA
DNA -> RNA -> Proteins
DNA encodes genes, most of which encode for proteins (via the genetic code)
Proteins perform much of the work of the cell.
RNA acts as an intermediate step
(it also has other functions as well)
Huge amount of data now available, need algorithms to make sense of it.

Central dogma of biology



8

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), DNA

ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC 

>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN 
ALAHKYH 

A gene cab be seen as a string of DNA producing a “meaningful signal” 
for the cell/individual; most genes act as instructions to make proteins 
(others do not code for proteins); below the DNA sequence in Fasta 
format of the beta globin gene. It codes for a subunit (sequence below) of 
the hemoglobin protein. 

Healthy Individual

Databases: www.ebi.ac.uk, http://www.ncbi.nlm.nih.gov/  and others in China, Japan etc

http://www.ebi.ac.uk/
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>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC 

>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]

MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN 
ALAHKYH 

Individual with Sickle Cell Anemia
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General structure of the gene

There is a pairing rule:
A-T; C-G; the two
strands of DNA are 
oriented differently

Examples of 
sequence containing
an exon-intron
boundary
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Clustering amino 
acids accordingly to 
physical and 
chemical properties: 
this provides
evidences for effects
of changes in 
proteins

Proteins: sequences of amino acids

Right: 
Cartoon of 
the different
propensity of 
amino 
acids(amino 
acids as
animals) for 
the cell
external, 
membrane 
and cell
internal
environments

PAM: point 
accepted
mutations
matrices
represent
statistics of 
amino acid 
replacemen
t rates 
(logs) in 
evolution
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Proteins : from sequence to 3d structure (different representation)

Left: a) amino acid sequence; b) secondary
structure; c) 3d structure; 4) quaternary structure
(complex of proteins)

Below: various representations of
3d structure (a good free software is pymol)

Below: various representations of
secondary structures
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Structures and Models of DNA and proteins (historical and current)

sources: Photograph 51’, March 1953, by Rosalind Franklin; pencil sketch of the DNA 
double helix by Francis Crick; replica of Crick and Watson’s 1953 DNA Double Helix Model, 
source https://blog.sciencemuseum.org.uk/why-the-double-helix-is-still-relevant/

5-CCTGAGCCAACTATTGATGAA-3
3-GGACTCGGTTGATAACTACTT-5

USEFUL ABSTRACTIONS: 
DNA  AS A STRING,
A PROTEIN AS A LABELLED GRAPH
DNA AND PROTEINS AS NETWORKS 

Experimental data



Unsurprisingly, Graph Neural Networks have achieved remarkable
results in biological modelling

Drug molecules Protein structure Protein-protein
interaction networks

Gene regulatory
networks

Slide credit: Chaitanya Joshi

Graphs are everywhere in biology



1979 today

High-performance computing Genome sequencing

2006 today
Who has a computer?

1960s: Major research institutes

1970s: University departments

1980s: Companies and schools

2019: Almost everybody & always

Whose genome has been sequenced?

1996: First bacterium (E. coli)

2001: Human reference genome

2007: First personal genomes

2020: Millions personal genomes

Parallel Technological evolution

Your genome in your mobile for few hundred pounds: 

https://www.genome.gov/sequencingcosts
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Determining the sequence of DNA is cheap and quick

Oxford 
nanopore

The algorithms we study have impact 
on precision and personalised 
medicine:  

Cancer: Disease stratification based 
on driver mutations

Rare diseases: Most patients now 
receive a genetic diagnosis

Drugs: Patient-specific prediction of 
efficacy and side effects

Garage genomics
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Data Repository: http://www.ebi.ac.uk; http://www.ncbi.nlm.nih.gov/ ; 
http://genome.ucsc.edu/ www.ensembl.org 

DNA is big data

http://www.ebi.ac.uk
http://www.ensembl.org
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Each DNA base encodes 2 bits information  (because you have to 
choose between purines and pyrimidines and then within 
each class).

You have 46 chromosomes in each (autosomal) cell. 
If you tease out those 46 (double) strands and place them end to end 
they'd be about 2 meters long - but that's just one cell.  Every time a cell 
replicates it has to copy 2 meters of DNA reliably. 3 billion base pairs,  2 
meters long, 2nm thick, folded into a 6μm ball/cell.

As there are about 3.7×1013 cells in the human body (and hence 1.7×1015 
chromosomes or strands), your entire DNA would stretch about 7.4×1010 
km or fifty thousand million miles (133 Astronomical Units long)  and the 
DNA in the current human population would be 20 million light years long 
(the Andromeda Galaxy is 2.5 Million light years).

Big numbers also as information content: lower bound on the total 
information content in the biosphere: 5.3 × 1031 (±3.6 × 1031) megabases 
(Mb) of DNA.  Taking the rate of DNA transcription as an analogy for 
processing speed,  further estimated Earth's computational power: 1015 
yottaNOPS (1024 Nucleotide Operations Per Seconds).

Then you can take into account all the other flow of information processing 
such as proteomics, metabolomics etc

Dense information
Purines 
(1 bit)

Pyrimidines
(1 bit)



Left: A gene regulatory network with three genes A, B, C; three mRNAs 1, 2, 3; and 
three proteins X, Y, and Z. Gene A regulates gene B by protein X at transcription, gene 
B regulates gene C at translation by protein Y, and gene C regulates gene A at post 
translation by protein Z to modify protein X; right: effect of mutations.
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Gene and protein interactions as graphs

Mutations can disrupt the graph
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Gene and protein interactions build devices

This complex protein arrangement allows
bacteria to swim in different directions. Similar
assemblies are found in sperm cells, in the 
fallopian tubes (where eggs need to be moved
from the ovary to the uterus), and in the 
respiratory tract (where cilia clear the airways of 
mucus and debris).



The transcriptional regulatory network (1,378 nodes) 
follows a conventional hierarchical picture, with a few 
top regulators and many workhorse proteins. The 
Linux call graph (12,391 nodes), on the other hand, 
possesses many regulators; the number of workhorse 
routines is much lower in proportion. The regulatory 
network has a broad out-degree distribution but a 
narrow in-degree distribution. The situation is reversed 
in the call graph, where we can find in-degree hubs, 
but the out-degree distribution is rather narrow. Yan et 
al. PNAS  2010,  107, 20.

Cells versus Computers 
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Central dogma revisited and Regulation Feedback

The original Central Dogma compared with 
modern understanding. In the original concept of 
the Central Dogma, transcription, translation, 
and enzymatic catalysis were proposed to form a 
linear chain of processes, although nobody
doubted the role of regulation. We know now that
a complex feedback structure at every level is
crucial for appropriate cell functioning.

Linear pathway with feedback. (A) Reaction
scheme with feedback inhibition of the initial
step by the end product. (B) Comparison of 
responses to a sudden and persistent
demand of metabolite D, starting at time t = 
8. With feedback (D+), the concentration of 
D oscillates and converges to a level of 
about two-thirds of the initial value. Without
feedback (D−), the concentration of D sinks
to less than one-quarter.
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ABOVE: Idealized promoter for a gene involved 
in making hair. Proteins that bind to specific 
DNA sequences in the  promoter region together 
turn a gene on or off.  These proteins are 
themselves regulated by their own promoters 
leading to a gene regulatory network with many 
of the same properties as a neural network. We 
use chips (right) to measure the 
activity of all the genes (rows) in 
different  conditions (gene 
Expression, columns).

The Cell is a Computer in 
Soup



Toggle switch (cro and cl are genes; 
Pr and Prm are binding sites for the
proteins of genes cro and cl)

protein binding
regulatory elements

Logic gates: The Cell as an an information processing device



Recurring motifs in signal transduction
systems. (a) A signaling cascade. (b) A 
negative feedback loop. (c) A positive 
feedback loop. (d) An incoherent feedforward
circuit. (e) A coherent feedforward circuit. (f) 
A composite system with interlinked positive 
and negative feedback loops.
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Network Motifs

Different ways of representing a metabolic network using a 
directed graph illustrated for a simple network of two reactions. 
Metabolite graph,  Reaction graph and (c) Bipartite graph



The detailed  inventory  of  genes,  proteins, and 
metabolites is not sufficient  to  understand  the  cell’s 
complexity 

Information  storage,  information  processing,  and  the  
execution  of  various  cellular  programs  reside in  
distinct  levels  of  organization:  the  cell’s  genome, 
transcriptome, proteome and metabolome.

For example, the proteome organizes  itself  into  a  
protein  interaction  network  and  metabolites  are  
interconverted through an intricate metabolic web.

The  elementary  building  blocks  organize  themselves 
into small recurrent patterns, called pathways  in  
metabolism  and  motifs  in  genetic-regulatory  
networks.  In  turn, motifs  and  pathways  are  
seamlessly integrated to form functional modules. 

These  modules are  nested, generating  a  scale-free  
hierarchical architecture . Although  the  individual 
components  are  unique  to  a  given  organism,the  
topologic  properties  of  cellular  networks share 
surprising similarities with those of natural  and  social  
networks. 

Complexity  of living systems: the cell, the fundamental unit in biology, 
as a network of genes and proteins

From Oltvai and Barabási
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Bacterium

1 micron

l = 0.25 micron
in Pentium II 

Human 
chromo
some. 

1 micron

Scales of electronic and bio devices

proteins inside 
a bacterium
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CS –Bio parallelism

Cells: see
https://www.humancellatlas.org/

Pathways: see
https://www.genome.jp/kegg/pathway.html

https://www.rhea-db.org/

https://www.ncbi.nlm.nih.gov/
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Cells versus Computers 

Challenges: quantify information in a cell; building 
computers inspired by cells information flow



• DNA,  RNA and proteins can:
•  Organise themselves to self assemble different types of devices 

(mechanisms such rotors, motors) or structures with different 
shapes across time and space scales.

• Organise other types of molecules such as lipids, sugars and 
artificial ones.

• Organise large set of reactions (such as metabolic networks) and 
Execute different kinetics 

•  Self-Assemble control devices

Nature is programmed for self-assemble; 
Bioinformatics is needed to identify the key elements 
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Size: 24 to 200 nanometers 
they’re 10 to 100 times smaller 
than the average bacterium, 
much too small to see with an 
ordinary light microscope.

We absorb about 30 billion 
phages into our bodies every 
day. They form an integral part 
of our microbial ecosystem. 

Nature is programmed for self 
assembly
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The genome contains both the instructions for assembly and for the parts and it is shipped 
with the virus



Classical models in medicine are organ centered; 
Multi organs: a process oriented model would be more 
effective; Processes are mechanistically related

Deep Learning could integrate with Bioinformatics as Data-driven approaches could 
integrate different subtle signals and generate body scale knowledge
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https://www.humancellatlas.org

https://tabula-sapiens-portal.ds.czbiohub.org/

https://www.genome.gov/Funded-Programs-
Projects/Genotype-Tissue-Expression-Project

The figure shows 
the  differences
between single cell
and classic
microarray analysis

Single cell/ single tissue repositories



• import sys
import argparse
import scanpy

from matplotlib import pyplot as plt

args_parser = argparse.ArgumentParser(description='Get expression matrix for a given h5ad file 
from Tabula Sapiens')
args_parser.add_argument('--path', type=str, help='Path of the h5ad file')
args_parser.add_argument('--list_of_genes', nargs="+", help='List of genes expected for the 
expression matrix. (default: ALL, warning this may take a lot of time) ')
args_parser.add_argument('--output', type=str, help='Path of the output png.')

if len(sys.argv)==1:
    args_parser.print_help(sys.stderr)
    sys.exit(1)

args = args_parser.parse_args()

df = scanpy.read_h5ad(args.path)

fig = scanpy.pl.matrixplot(df, args.list_of_genes, groupby='donor', return_fig=True)

fig.savefig(args.output)
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Extracting Single cell data from h5ad file
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Ethical aspects of Bioinformatics
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The use of Bioinformatics reduces Animal Experimentation

Decades ago, legislation on the use of animals was enacted
in many countries involving three R’s: Reduction, refinement, 
and replacement of animal models.
Ever since this was enacted, there was a sudden buzz about
laboratory animals and their use to be reduced, refined, and 
replaced wherever possible, for ethical and scientific reasons. 
The three R’s concept was put forward by W.M.S. Russell and 
R.L. Burch in 1959 in The Principles of Humane Experimental
Technique. 
With bioinformatics, the generation of high-throughput data in 
the form of genomics, transcriptomics, and metabolomics, 
biology has essentially transformed into a computational
problem. 
Due to this reason, we believe that the role of computation in 
biology leading to reducing, refining, and replacing animal
experiments needs to be increased. 



The Genetic Information Nondiscrimination
Act (abbreviated GINA) is federal legislation in 
the United States that protects individuals
against discrimination based on their personal 
genetic information, as it applies to health 
insurance and employment. These protections
are intended to encourage Americans to take 
advantage of genetic testing as part of their
medical care. GINA was signed into law on 
May 22, 2008.

Bioinformaticians have the responsibility of a 
correct use of the technology for reading (and 
writing) DNA information.

Bioinformatics could disclose sensitive information on your genome (even
through the genome of your relatives)
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Practice and glossary
(not examinable)
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to code :

BioJava – www.biojava.org
BioPerl  – www.bioperl.org
BioPython – www.biopython.org
BioCorba – www.biocorba.org
BioRuby – www.bioruby.org
BioHaskell – www.biohaskell.org
C++ www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/
 http://www.bioinformatics.org/biococoa/wiki/pmwiki.php

https://biopython.org/

http://www.biojava.org/
http://www.bioperl.org/
http://www.biopython.org/
http://www.biocorba.org/
http://www.bioruby.org
http://www.bioruby.org
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/
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Where to find Data :



• Bioinformatics: Developing algorithms and methods for analyzing DNA, RNA 
and protein sequence, structure and function. This includes tasks like sequence
alignment, database searching, phylogenetic tree construction, structure
prediction, and genomic annotation.

• Computational Biology:  involves the development and application of 
mathematical modeling, computational simulation techniques, and data 
analytics to address biological questions. It allows researchers to integrate 
diverse datasets, test hypotheses, predict behaviors of biological systems. 

• Systems Biology: Using computational models to study interactions within
biological systems and predict systemic behaviors. This provides insights into
properties that emerge at the systems-level.

• Synthetic Biology: Redesigning and engineering novel biological systems, such
as genetic circuits or metabolic pathways. Computational tools aid in designing
circuits.

• Biomedical engineering: Creating computational models and analytic tools to 
aid innovations in biomaterials, medical devices, tissue engineering, imaging 
and diagnostics.
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Glossary



• Sequence analysis: Algorithms for searching databases, performing
multiple sequence alignments and identifying homologous rela-
tionships. Provides evolutionary and functional insights.

• Structure prediction: Methods for predicting 3D protein structure
from sequence using comparative/homology modeling or ab initio
simulation.

• Function prediction: Using sequence motifs, structural comparison, 
machine learning etc. to annotate protein function. Improves
characterization of unstudied proteins.

• Evolutionary analysis: Phylogenetic approaches for studying protein
family evolution. Reveals evolutionary relationships and divergence.

• Mutation analysis: Evaluating effect of mutations on protein
structure and function using energy-based or machine learning 
models. Interprets genetic variations.

43

Glossary
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What is in a name/Different layers of information
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Check the chapters
corresponding to the
slides

Reference for this section and for the course

A nice free book : cell biology by the numbers
http://book.bionumbers.org/
Others:
https://www.cs.helsinki.fi/group/genetics/Genetics_for_CS_March_04.pdf
http://tandy.cs.illinois.edu/Hunter_MolecularBiology.pdf 
Biology and Computers: A lesson in what is possible
https://ethw.org/; https://www.wehi.edu.au/wehi-tv/; good resources at 
https://www.ncbi.nlm.nih.gov/home/tutorials/  and ebi.ac.uk

http://book.bionumbers.org/
https://www.cs.helsinki.fi/group/genetics/Genetics_for_CS_March_04.pdf
https://ethw.org/
https://www.wehi.edu.au/wehi-tv/
https://www.ncbi.nlm.nih.gov/home/tutorials/
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Recent books (not necessary for the course)
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Measuring sequence similarity through the use of 
alignment algorithms

Section 2

Ø Algorithm: Longest Common Subsequence
Ø Algorithm: Needleman Wunch
Ø Algorithm: Smith-Waterman

Ø Overlap detection
Ø Affine Gaps

Ø Banded alignment
Ø Algorithm: Hirshberg –linear memory alignment
Ø Algorithm: Four Russians
Ø Algorithm: Nussinov



• 1 Molecular/cellular network Biology
• 2 DNA/Amino acid Sequence Alignment

• 3 Phylogenetic Tree building methods
• 4 Clustering biological data
• 5 Genome sequencing
• 6 Assembling genomes
• 7 Finding genome parts/Hidden Markov models
• 8 Computing/storing information using DNA
• 9 Simulation of biological reactions
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Ø Dotplot
Ø Longest Common Subsequence
Ø Global and Local alignment
Ø Needleman Wunch
Ø Smith-Waterman
Ø Affine Gaps
Ø Banded Alignment
Ø Hirshberg –linear memory
Ø Four Russians: faster time
Ø RNA alignment – Nussinov
Ø Alignment free
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What is sequence alignment



A T - G T T A T A       
  A T C G T - C - C
 +1+1  +1+1        =4
 

Alignment of two sequences is a two-row matrix: 

1st row:  symbols of the 1st sequence (in order) interspersed by “-” 
2nd row: symbols of the 2nd sequence (in order) interspersed by “-” 

matches  insertions  deletions  mismatches
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What Is the Sequence Alignment?



Left: Dot plot for comparing ATATTACTAT to itself; Each matrix entry is either
blank for mismatch, or a dot for match. Notice first of all the stretch of dots 
along themain diagonal.  Match plot: it would be helpful if we could just plot 
these longer matches rather than all the dots they consist of. Right: Match plot 
of -globin mRNA from chimp and human with minimal match length 5 51

Easiest way to compare sequences: a Dotplot



Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008). 
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950 

Why biologists need algorithms to do the alignment
The sequence and structures of genes and proteins are conserved in nature. It is common to 
observe strong sequence similarity between a protein and its counterpart in another species
that diverged hundreds of millions of years ago. Accordingly, the best method to identify the 
function of a new gene or protein is to find its sequence- related genes or proteins whose
functions are already known.

sequence changes in 
the bacteria causing
plague. Different
regions of the genome
of the bacterium could
be represented with 
different colours. This
makes easier to show 
changes (you can 
retrieve sequences at
www.ebi.ac.uk).

https://commons.wikimedia.org/w/index.php?curid=30550950
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All genomes are littered with repeated sequences of different length
(they form families) so alignment of large sequences is difficult

Left: mapping human 
chromosomes
onto mouse chromosome
reveal many similar regions
(low resolution).
Right: a higher resolution, 
each region reveals many
local rearrangements



A T - G T T A T A       
  A T C G T - C - C
 
 

Matches in alignment of two sequences (ATGT) form their 
Common Subsequence 

Longest Common Subsequence Problem: Find a longest 
common subsequence of two strings.

• Input: Two strings.
• Output: A longest common subsequence of these 

strings.
54

Longest Common Subsequence

A subsequence is a sequence that appears in the same relative order, but not necessarily
contiguous. 



Alignment :  2 * k matrix ( k > m, n )

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w

T

T

A T G T T A T
A T C G T A

v  :
w :

m = 7 
n = 7 

4 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:

55

C

Alignment: 2 row representation 



Longest Common Subsequence (LCS) – the simplest form of 
sequence alignment – allows only insertions and deletions (no 
mismatches). In the LCS Problem, we score 1 for matches and 0 for 
indels; in real analysis we consider penalising indels and 
mismatches with negative scores.

•  Given two sequences v = v1 v2…vm and w = w1 w2…wn

•  The LCS of v and w is a sequence of positions in 

 v: 1 < i1 < i2 < … < it < m

and a sequence of positions in 

 w: 1 < j1 < j2 < … < jt < n

such that it -th letter of v equals to jt-th letter of w and t is 
maximal.
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Longest Common Subsequence



CA T -- C T G A T

-- T G C T -- A -- C

elements of v

elements of w

--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in red
positions in v:
positions in w: 

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

0

0

(0,0)à (1,0)à (2,1)à (2,2)à (3,3)à (3,4)à (4,5)à (5,5)à (6,6)à (7,6)à (8,7)

57

Longest Common Subsequence



The Edit distance between two strings is the minimum number of  operations 
(insertions, deletions, and substitutions) to transform one string into the other

V =  ATATATAT
W =  TATATATA

Hamming distance:                    Edit distance: 
      d(v, w)=8                               d(v, w)=2 

Computing Hamming distance             Computing edit distance 

           is a trivial task                             is a non-trivial task

               

W =  TATATATA-
Just one shift

Make it all line up

V  =   -ATATATAT

Hamming distance 
always compares 
 i-th letter of v  with
 i-th letter of w

Edit distance 
may compare 
 i-th letter of v  with
 j-th letter of w
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Edit distance



TGCATAT à ATCCGAT in 4 steps

TGCATAT   à (insert A at front)
ATGCATAT à (delete 6th T)
ATGCATA   à (substitute G for 5th A)
ATGCGTA   à (substitute C for 3rd G)
ATCCGAT (Done)
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Edit Distance: Example



Old Alignment
   0122345677
v=  AT_GTTAT_  
w=  ATCGT_A_C
   0123455667  

New Alignment
   0122345677
v=  AT_GTTAT_  
w=  ATCG_TA_C
   0123445667
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Two similar alignments; the score is 5 for both the alignment paths.

Alignment as a Path in the Edit Graph



T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a 
common 
subsequence.

Every diagonal 
edge adds an extra 
element to 
common 
subsequence

LCS Problem: Find 
a path with 
maximum number 
of diagonal edges
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LCS Problem as - Edit Graph 



Let vi   =   prefix of v of length i:    v1 … vi

and wj  =  prefix of w of length j:   w1 … wj

The length of LCS(vi,wj) is computed by:

si,j = MAX 
si-1,j    + 0 
si,j -1   + 0 
si-1,j -1 + 1,    if  vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0
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0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V

      0 1 2  2  3 4

V =    A T -  G T

          |  |     |

W=    A T C G –

       0 1 2  3 4 4

Every Path in the Grid Corresponds 
to an Alignment 

Computing LCS
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The above recursive program prints out the longest common subsequence using the 
information stored in b. The initial invocation that prints the solution to the problem is 
PRINTLCS(b, v, n,m).

LCS pseudocode

A speedup is the Method of Four Russians, to partition the matrix into small square blocks of 
size t × t for some parameter t, and to use a lookup table to perform the algorithm quickly within
each block. The algorithm may be performed by operating on only (n/t)2 blocks instead of on n2

matrix cells, where n is the side length of the matrix. In order to keep the size of the lookup tables
(and the time needed to initialize them) sufficiently small, t is typically chosen to be O(log n). 



                           si-1, j  - σ 
                           si, j-1 - σ 
                           si-1, j-1 + 1, if vi=wj

                           si-1, j-1  - μ, if vi≠wj

Dynamic Programming Recurrence for the 

si, j= max 
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General Alignment Graph
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Notice three possible cases:

1. xi aligns to yj
 x1……xi-1   xi

 y1……yj-1   yj

2. xi aligns to a gap
 x1……xi-1  xi

 y1……yj    -

3. yj aligns to a gap
  x1……xi    -
  y1……yj-1  yj

       m, if xi = yj
F(i,j) = F(i-1, j-1) + 
        -s, if not

         
F(i,j) = F(i-1, j) - d
  

         
F(i,j) = F(i, j-1) - d
  

F[i-1,j-1] F[i,j-1]
F[i-1,j] F[i,j]

Towards an algorithm to align biological sequences

Dynamic Programming: A method for reducing a complex problem to a set of identical sub-
problems .The best solution to one sub-problem is independent from the best solution to the other
sub-problem.It is a way of solving problems (involving recurrence relations) by storing partial
results.
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• How do we know which case is correct?

Inductive assumption:
 F(i, j-1), F(i-1, j), F(i-1, j-1) are optimal

Then,
    F(i-1, j-1) + s(xi, yj)
 F(i, j) = max  F(i-1,   j) – d
    F(  i, j-1) – d

Where  F(xi, yj) = m, if xi = yj; -s, if not

F[i-1,j-1] F[i,j-1]

F[i-1,j] F[i,j]

Alignment



• Global Alignment: tries to find the longest path between vertices 
(0,0) and (n,m) in the edit graph.

• Local Alignment—better alignment to find highly conserved 
segments; The Local Alignment Problem tries to find the longest path 
among paths between arbitrary vertices (i,j) and (i’, j’) in the edit 
graph

|  || |  ||  | | | |||    || | | |  | ||||   |
--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc
67

Global 
alignment

Local 
alignment

Alignment



Global Alignment Problem: Find the highest-scoring 
alignment between two strings by using a scoring matrix.

• Input: Strings v and w as well as a matrix score.

• Output: An alignment of v and w whose alignment 
score (as defined by the scoring matrix score) is 
maximal among all possible alignments of v and w.

68

Global Alignment



The Needleman-Wunsch Algorithm (Global alignment)

Complexity:  Space: O(mn);  Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

d is a penalty

F[i-1,j-1] F[i,j-1]
F[i-1,j] F[i,j]
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Changes:

1. Initialization
For all i, j,
 F(i, 0) = 0
 F(0, j) = 0

2. Termination
    maxi F(i, N)
FOPT = max   maxj F(M, j)

x1 ………………………………  xM

y n
 …

…
…

…
…

…
…

…
…

…
…

…
  y
1

Maybe it is OK to have an unlimited # of gaps in the beginning and end:

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

The Overlap Detection variant
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Local Alignment= Global Alignment in a subrectangle



Local Alignment Problem: Find the highest-scoring local 
alignment between two strings.

• Input: Strings v and w as well as a matrix score.
 
• Output: Substrings of v and w whose global alignment 

(as defined by the matrix score), is maximal among all 
global alignments of all substrings of v and w.
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Local Alignment Problem
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Idea: Ignore badly aligning regions: Modifications to 
Needleman-Wunsch

e.g. x = aaaacccccgggg
 y = cccgggaaccaacc
Initialization: F(0,0)=F(0, j) = F(i, 0) = 0    

 
                          0 
Iteration: F(i, j) = max  F(i – 1, j) – d
      F(i, j – 1) – d
      F(i – 1, j – 1) + s(xi, yj)  
Termination:
1. If we want the best local alignment…

   FOPT = maxi,j F(i, j)
2. If we want all local alignments scoring > t 

  For all i, j find F(i, j) > t, and trace back

The local alignment: Smith-Waterman algorithm
T.F. Smith, M.S.Waterman, Identification of common molecular subsequences, J Mol Biol vol 147,195-197, 1981.

David Waterman



• Alignment 1: score = 22 (matches) - 20 (indels)=2.

• Alignment 2: score = 17 (matches) - 30 (indels)=-13.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T-----
                  local alignment
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Which Alignment is Better? 

Biologists are interested in the local alignment to detect a region 
common to two genes which could suggest the same regulatory control:
Perhaps the two similar regions are bound to the same proteins



• We previously assigned a fixed penalty σ to 
each indel.

• However, this fixed penalty may be too severe 
for a series of 100 consecutive indels.

• A series of k indels often represents a single 
evolutionary event (gap) rather than k events:

GATCCAG      GATCCAG 
GA-C-AG      GA--CAG

a single gap 
(higher score) 

two gaps 
(lower score) 

75

Scoring Gaps



#matches − μ · #mismatches − σ · #indels
A T - G T T A T A
 A T C G T - C – C                                                                                     
+1+1-2+1+1-2-3-2-3=-7

A  C  G  T  −
A  +1 −µ −µ −µ -σ
C  −µ +1 −µ −µ -σ
G  −µ −µ +1 −µ -σ
T  −µ −µ –µ +1 -σ
−  -σ -σ -σ -σ  

Scoring matrix

A  C  G  T  −
A  +1 −3 −5 −1 -3
C  −4 +1 −3 −2 -3
G  −9 −7 +1 −1 -3
T  −3 −5 –8 +1 -4
−  -4 -2 -2 -1  

Even more general scoring matrix76

Mismatches and Indel Penalties 



7-5

example: Y (Tyr) often mutates into F (score +7) but rarely mutates into P (score -5)  77

Margaret Dayhoff

Scoring matrices to compare amino acid sequences: PAM250 is a log odds matrix

Y

Positive exchange values 
denote mutations that are 
more likely than randomly 
expected, while negative 
numbers correspond to 
avoided mutations compared 
to the randomly expected 
situation
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A scoring matrix contains values proportional to the probability that amino acid i mutates into
amino acid j for all pairs of amino acids. 

Scoring matrices are constructed by assembling a large and diverse sample of verified pairwise
alignments (or multiple sequence alignments) of amino acids. Scoring matrices should reflect
the true probabilities of mutations occurring through a period of evolution. 

PAM (point accepted mutations) matrices are based on global alignments of closely related
proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than
1% divergence. At an evolutionary interval of PAM1, one change has occurred over a length of 
100 amino acids. 

Other PAM matrices are extrapolated from PAM1. For PAM250, 250 changes have occurred for 
two proteins over a length of 100 amino acids. All the PAM data come from closely related
proteins (>85% amino acid identity).

A log odds matrix is the logarithmic form of the relatedness odds matrix. 
Sij is the score for aligning any two residues in a pairwise alignment. 
Mij is of the observed frequency of substitutions for each pair of amino acids. 
fi is the probability of amino acid residue i occurring in the second sequence by chance.

Sij=10 log (Mij/fj).

Scoring matrices



Glossary

• Gaps: Regions identified by “-” that represent indels.
• Indels: Insertions and deletions of character.
• Matches: Corresponding regions between two different sequences.
• Mismatches: Regions with non-identical characters in different

sequences.
• Gap penalty (GP): Parameter needed to assign a score to a gap.
• Identity: Percentage of similar characters between two sequences.
• Similarity: Degree of resemblance between sequences based on 

identity.
• Homology: Evolutionary hypothesis between two sequences that

can be derived from a common ancestor
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σ

ε

σ

ε

0

0

loweri-1,j  - ε                                     
middlei-1,j - σ                                                                                                                  loweri,j = max {    

upperi,j-1  - ε                                     
middlei,j-1  - σ                                                                                                                  upperi,j = max {                                                                                                                 

loweri,j 
middlei-1,j-1  + score(vi,wj)  
upperi,j
                                                                                                                  

middlei,j = max { 

How can we emulate this 
path in the 3-level? 

80
bottom level
(insertions)

middle level
(matches/mismatches)

upper level
(deletions)

σ  - the gap opening penalty 
ε  - the gap extension penalty

σ > ε, start a gap is penalized more than extending it.
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Initialization: same
Iteration:
        F(i-1, j-1) + s(xi, yj)
   F(i, j) = max   maxk=0…i-1F(k,j) – g(i-k) 
       maxk=0…j-1F(i,k) – g(j-k)

Termination: same

Running Time:  O(N2M)  (assume N>M)
Space:  O(NM)

g(n)

Current model: a  gap of length n incurs penalty n´d
Gaps usually occur in bunches  so we use  a convex gap 
penalty function:
g(n): for all n, g(n + 1) - g(n) £ g(n) - g(n – 1) 

g(n)

Models of gaps; Alignment with gaps



A compromise: affine gaps
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 g(n) = d + (n – 1) ´ e
   |       |
  gap      gap
  open    extend
To compute optimal alignment, at position i,j, need to “remember” best 
score if gap is open  and best score if gap is not open

F(i, j):score of alignment x1…xi to y1…yj  if    xi aligns to yj 
G(i, j):score if  xi, or yj, aligns to a gap

d
e

g(n)

Initialization: F(i, 0) = d + (i – 1)´e;    F(0, j) = d + (j – 1)´e

Iteration:
                                                 F(i – 1, j – 1) + s(xi, yj)
   F(i, j) = max 
                                                 G(i – 1, j – 1) + s(xi, yj)

                                                   F(i – 1, j) – d 
                                                   F(i, j – 1) – d 

 
   G(i, j) = max 
                                                   G(i, j – 1) – e
                                                   G(i – 1, j) – e
Termination: same
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Assume we know that x and y are very similar; If the optimal alignment of x 
and y has few gaps, then the path of the alignment will be close to the 
diagonal

Assumption: # gaps(x, y)  < k(N)  ( say N>M )

 xi 
 |    implies   | i – j | < k(N)
 yj

Time, Space: O(N ´ k(N))  << O(N2)

F[i+1, i+k/2 +1]F[i+1, i+k/2]
Out of rangeF[i,i+k/2]

Note that for diagonals, i-j = constant.

Banded Dynamic Programming: a special case
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Initialization:
 F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1…M
  For j = max(1, i – k)…min(N, i+k)

   F(i – 1, j – 1)+ s(xi, yj)
 F(i, j) = max F(i, j – 1) – d, if j > i – k(N)
   F(i – 1, j) – d, if j < i + k(N)

Termination: same

Easy to extend to the affine gap case

x1 …………………………  xM

y N
 …

…
…

…
…

…
…

…
…

…
  y
1

k(N)

Banded Dynamic Programming
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Comparison of global and local alignments
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Comparison of local and global alignments
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Computing Suffix(i)
• suffix(i) is the length of the longest path from (i,m/2) to (n,m)
• suffix(i) is the length of the longest path from (n,m) to (i,m/2) 

with all edges reversed
• Compute suffix(i) by dynamic programming in the right half 

of the “reversed” matrix

store suffix(i) column

0         m/2      m



Length(i) = Prefix(i) + Suffix(i)
• Add prefix(i) and suffix(i) to compute length(i):

• length(i)=prefix(i) + suffix(i) 
• You now have a middle vertex of the maximum 

path (i,m/2) as maximum of  length(i)

middle point found

0        m/2     m

0

i

Computing Length(i)
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A

T

T

C

A

A

A        C        G        G        A        A

middle column
(middle=#columns/2)
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Middle Column of the Alignment



A

T

T

C

A

A

A        C        G        G        A        A

middle node 
(a node where an optimal alignment path crosses the middle column) 
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Middle Node of the Alignment



AlignmentPath(source, sink)
      find MiddleNode 
      

A

T

T

C

A

A

A        C        G        G        A        A
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Divide and Conquer Approach to Sequence Alignment



AlignmentPath(source, sink)
      find MiddleNode 
      AlignmentPath(source, MiddleNode)
      

A

T

T

C

A

A

A        C        G        G        A        A
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Divide and Conquer Approach to Sequence Alignment



The only problem left is how to find this middle node in linear space!

AlignmentPath(source, sink)
      find MiddleNode 
      AlignmentPath(source, MiddleNode)
      AlignmentPath(MiddleNode, sink)

A

T

T

C

A

A

A        C        G        G        A        A
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Divide and Conquer Approach to Sequence Alignment



Finding the longest path in the alignment graph 
requires storing all backtracking pointers – O(nm) 
memory. 

Finding the length of the longest path in the 
alignment graph does not require storing any 
backtracking pointers – O(n) memory. 
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Divide and Conquer Approach to Sequence Alignment



A          C          G          G          A          A
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A
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Recycling the Columns in the Alignment Graph
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A        C        G        G        A        A

i-path – a longest  path among paths that visit the i-th node in the middle column

4-path that visits the node 
(4,middle) 

In the middle column 
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Can We Find the Middle Node without Constructing the Longest 
Path? 
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length(i):
length of an i-path:

length(0)=2
length(4)=4  
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Can We Find The Lengths of All i-paths? 
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Can We Find The Lengths of All i-paths? 
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length(i)=fromSource(i)+toSink(i)

length(i):
length of an i-path  

A        C        G        G        A        A
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Can We Find The Lengths of i-paths? 
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fromSource(i)                toSink(i)
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Computing FromSource and toSink  
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How Much Time Did It Take to Find the Middle Node ?  



A

C

T

T

A

A

T

T

G        A        G        C        A        A        T         T

How much time would it take to conquer 2 subproblems? 

Each subproblem 
can be conquered 

in time 
proportional to 

its area: 

area/4+area/4=
area/2
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Laughable Progress: O(nm) Time to Find ONE Node!  
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T

A

A

T

T
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How much time would it take to conquer 4 subproblems? 

Each subproblem 
can be conquered 

in time 
proportional to 

its area: 

area/8+area/8+
area/8+area/8=

area/4
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Laughable Progress: O(nm+nm/2) Time to Find THREE Nodes!  
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How much time would it take to conquer ALL subproblems? 

area+
area/2

+area/4
+area/8

+area/16
+….+

<
2·area

127

• O(nm+nm/2+nm/4) Time to Find NEARLY ALL Nodes!  
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G        A        G        C        A        A        T         
T

Middle Edge: 
an edge in an 

optimal 
alignment path 
starting at the 
middle node 
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The Middle Edge  



Middle Edge in Linear Space Problem. Find a middle edge 
in the alignment graph in linear space.

• Input: Two strings and matrix score. 
 
• Output: A middle edge in the alignment graph of 

these strings (as defined by the matrix score).
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The Middle Edge Problem 
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LinearSpaceAlignment(top,bottom,left,right)
   if left = right
      return alignment formed by bottom-top edges “↓”
   middle ← ⌊(left+right)/2⌋ 
   midNode ← MiddleNode(top,bottom,left,right)
   midEdge ←  MiddleEdge(top,bottom,left,right)   
   LinearSpaceAlignment(top,midNode,left,middle)
   output midEdge
   if midEdge = “→“ or midEdge = “↘” 
      middle  ← middle+1
   if  midEdge = “↓“ or midEdge = “↘”
      midNode  ← midNode+1
  LinearSpaceAlignment(midNode,bottom,middle,right)

Recursive LinearSpaceAlignment

132



Total Time: area+area/2+area/4+area/8+area/16+…
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Measuring sequence similarity through the use of 
alignment algorithms

RECAP



• Alignment 1: score = 22 (matches) - 20 (indels)=2.

• Alignment 2: score = 17 (matches) - 30 (indels)=-13.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T-----
                  local alignment

135

Which Alignment is Better? 

Biologists are interested in the local alignment to detect a region 
common to two genes which could suggest the same regulatory control:
Perhaps the two similar regions are bound to the same proteins



Old Alignment
   0122345677
v=  AT_GTTAT_  
w=  ATCGT_A_C
   0123455667  

New Alignment
   0122345677
v=  AT_GTTAT_  
w=  ATCG_TA_C
   0123445667

136
Two similar alignments; the score is 5 for both the alignment paths.

Alignment as a Path in the Edit Graph



The Needleman-Wunsch Algorithm (Global alignment)

Complexity:  Space: O(mn);  Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

d is a penalty
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Computing FromSource and toSink  
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How Much Time Did It Take to Find the Middle Node ?  



Total Time: area+area/2+area/4+area/8+area/16+…



• Partition the n x n grid into blocks of size t x t
• We are comparing two sequences, each of size n, and 

each sequence is sectioned off into chunks, each of 
length t

• Sequence u = u1…un becomes 
                 |u1…ut| |ut+1…u2t| … |un-t+1…un| 
    and sequence v = v1…vn becomes 
                 |v1…vt| |vt+1…v2t| … |vn-t+1…vn|

Can we compute the edit distance faster than O(nm)? yes: The Four 
Russians Technique (Arlazarov, V., Dinic, E., Kronrod, M., Faradžev, I.)  

Key concept: Divide the input into very small parts, pre-compute the values
using Dynamic Programming for all possible small parts and store them in a 
table. Then, speed up the dynamic programming via Table Lookup. 



Partitioning Alignment Grid  into Blocks

partition

n n/t

n/t

t

tn

• Block alignment of sequences u and v:
1. An entire block in u is aligned with an entire block in v
2. An entire block is inserted
3. An entire block is deleted

• Block path: a path that traverses every t x t square through its corners

valid invalid

Goal: Find the longest 
block path through an 
edit graph
Input: Two sequences, u 
and v partitioned into 
blocks of size t.  This is 
equivalent to an n x n edit 
graph partitioned into t x 
t subgrids
Output: The block 
alignment of u and v with 
the maximum score 
(longest block path 
through the edit graph



Let si,j denote the optimal block alignment score between the first i 
blocks of u and first j blocks of v

si,j = max
si-1,j - sblock
si,j-1 - sblock
si-1,j-1 - bi,j

sblock is the penalty 
for inserting or 
deleting an entire 
block

bi,j is score of pair of 
blocks in row i and 
column j.

• To solve: compute alignment score ßi,j for each pair of blocks |u(i-
1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

• How many blocks are there per sequence? 
     (n/t)  blocks of size t
• How many pairs of blocks for aligning the two sequences?  
     (n/t) x (n/t)
• For each block pair, solve a mini-alignment problem of size t x t

Constructing Alignments within Blocks 



Block Alignment Runtime

• Indices i,j range from 0 to n/t

• Running time of algorithm is 

              O( [n/t]*[n/t]) = O(n2/t2) 

   if we don’t count the time to compute each bi,j

• Computing all bi,j requires solving (n/t)*(n/t) mini block 
alignments, each of size (t*t)

• Computing all bi,j takes time  O([n/t]*[n/t]*t*t) = O(n2)
• How do we speed this up?

n/t

Block pair 
represented by each 
small square

Solve mini-alignmnent 
problems



Four Russians Technique
Let t = log(n), where t is block size, n is sequence size. Instead of 
having (n/t)*(n/t) minialignments, construct 4t x 4t minialignments for 
all pairs of strings of t nucleotides (huge size), and put in a lookup 
table. However, size of lookup table is not really that huge if t is small.  
Let t = (logn)/4.  Then 4t x 4t = n

Lookup table “Score”

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA

…

A
A
A
A
A
A

A
A
A
A
A
C

A
A
A
A
A
G

A
A
A
A
A
T

A
A
A
A
C
A

…

each sequence 
has t nucleotides

size is only n, 
instead of 
(n/t)*(n/t)

si,j = max
si-1,j - sblock
si,j-1 - sblock
si-1,j-1 – Score(ith block of v, jth block of u)

The new lookup 
table Score is 
indexed by a 
pair of t-
nucleotide 
strings



Four Russians Speedup Runtime

We can divide up the grid into blocks and run dynamic programming 
only on the corners of these blocks. In order to speed up the mini-
alignment calculations to under n2, we create a lookup table of size n, 
which consists of all scores for all t-nucleotide pairs.

Since computing the lookup table Score of size n takes O(n) time, the 
running time is mainly limited by the (n/t)*(n/t) accesses to the lookup 
table; 
Each access takes O(logn) time. Overall running time: 
O( [n2/t2]*logn ); Since t = logn, substitute in: O( [n2/{logn}2]*logn) > 
O( n2/logn ).



More explanations: Four Russians Speedup for LCS
Unlike the block partitioned graph, the LCS path does not have 
to pass through the vertices of the blocks.

block alignment longest common subsequence

In block alignment, we only 
care about the corners of the 
blocks. In LCS, we care about 
all points on the edges of the 
blocks, because those are 
points that the path can 
traverse. Recall, each 
sequence is of length n, each 
block is of size t, so each 
sequence has (n/t) blocks.

block alignment has 
(n/t)*(n/t) = (n2/t2) 
points of interest

LCS alignment 
has O(n2/t) points 
of interest



Traversing Blocks for LCS
Given alignment scores si,* in the first row and scores s*,j in 
the first column of a t x t mini square, compute alignment 
scores in the last row and column of the minisquare.
To compute the last row and the last column score, we use 
these 4 variables:

– alignment scores si,* in the first row
– alignment scores s*,j in the first column
– substring of sequence u in this block (4t possibilities)
– substring of sequence v in this block (4t possibilities

If we used this to compute the grid, it would take quadratic, 
O(n2) time, but we want to do better.

we know these 
scores

we can calculate 
these scores

t x t block



Four Russians Speedup
• Build a lookup table for all possible values of the four variables: 

1. all possible scores for the first row s*,j 
2. all possible scores for the first column s*,j
3. substring of sequence u in this block (4t possibilities)
4. substring of sequence v in this block (4t possibilities)

• For each quadruple we store the value of the score for the last row 
and last column.

• This will be a huge table, but we can eliminate alignments scores that 
don’t make sense: Alignment scores in LCS are monotonically 
increasing, and adjacent elements can’t differ by more than 1

0 1 2 2 3 4

1 1 0 1 1

original encoding

binary encoding

• Instead of recording numbers that correspond to the index in the 
sequences u and v, we can use binary to encode the differences 
between the alignment scores



Reducing Lookup Table Size

• 2t possible scores (t =  size of blocks)
• 4t possible strings

– Lookup table size is (2t * 2t)*(4t * 4t) = 26t

• Let t = (logn)/4;
– Table size is: 26((logn)/4) = n(6/4) = n(3/2)

• Time = O( [n2/t2]*logn )
• O( [n2/{logn}2]*logn) > O( n2/logn )

Summary: We take advantage of the fact that for each block of t = log(n), we can 
pre-compute all possible scores and store them in a lookup table of size n(3/2). We 
used the Four Russian speedup to go from a quadratic running time for LCS to 
subquadratic running time: O(n2/logn).



The Four-Russian Algorithm

 x = AACT
 y = CACT

5 6 5 4

5 5 6 5

4 5 5 6
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Example
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Can we predict the RNA secondary structure from  sequence? 
Sort of self alignment of one molecule which is termed folding

The three levels of organization of RNA structure a) sequence; b) secondary structure; 
c)  Tertiary structure



153Source: https://www.sciencedirect.com/science/article/pii/S0958166916301082#fig0020

Biologists need algorithms to compute RNA local folding as this could 
highlight important cell functions

RNA as lego bricks: many
foldings -> many functions in the 
cell

The basic local foldings



154 bifurcationi,j pair j unpairedi unpaired

i j
j-1i+1

i
ji+1

j
j-1i

i k

jk+1

• Secondary Structure :  
– Set of paired positions on interval [i,j]
– This tells which bases are paired in the subsequence from xi to xj

• Every optimal structure can be built by extending optimal substructures.
• Suppose we know all optimal substructures of length less than j-i+1.
 The optimal substructure for [i,j] must be formed in one of four ways:

1. i,j paired
2. i unpaired
3. j unpaired
4. combining two substructures

 Note that each of these consists of extending or joining substructures of length 
less than j-i+1.

Biologists need algorithms to compute RNA local folding 
as this could highlight important cell functions



Example:   GGGAAAUCC

0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0

G  G   G    A   A   A    U   C  C
j

i

G
 G

 G
 A

  A
  A

 U
  C

 C

0i)(i, & 01)-i(i, == ggtionInitialisa

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

U

A A

C
A

C
G
G

G

Starting with all subsequences of
length 2, to length L:

Where d(i,j) = 1 if xi and xj
are a complementary base pair,
and d(i,j) = 0, otherwise.

γ(i,j) is the maximum number
of base pairs in segment [i,j]
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RNA Secondary Structure: The Nussinov Folding Algorithm
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms for loop 
matchings, SIAM J. Appl. Math

final structure

Ruth Nussinov



Nussinov Folding Algorithm:
After scores for subsequences of length 2
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Nussinov Folding Algorithm:
After scores for subsequences of length 3
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Nussinov Folding Algorithm
 After scores for subsequences of length 4
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Two optimal substructures for same subsequence
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Nussinov Folding Algorithm
 After scores for subsequences of length 5
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Nussinov Folding Algorithm
 After scores for subsequences of length 6
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Nussinov Folding Algorithm
 After scores for subsequences of length 7
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Nussinov Folding Algorithm
 After scores for subsequences of length 8
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Nussinov Folding Algorithm
 After scores for subsequences of length 9
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Nussinov Folding Algorithm
 Traceback

G  G   G    A   A   A    U   C  C

G
 G
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Nussinov algorithm: 
fill-stage

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1 2 3 4 5 6 7 8 9

G 1

G 2

C 3

C 4

A 5

G 6

U 7

U 8

C 9
Pink: joining of substructures 1..4 and 5..8  

Green: addition of paired bases 1,7 

Blue: addition of unpaired base 3 or 7

Scoring system: 
δ(i,j) = 1 for all RNA Watson-Crick base-
pairs including G-U else δ(i,j) = 0. 
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Example and RECAP 



Nussinov algorithm: 
trace-back

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1 2 3 4 5 6 7 8 9

G 1

G 2

C 3

C 4

A 5

G 6

U 7

U 8

C 9

current record stack
               1,9
1,9            1,8
1,8            1,4 5,8
1,4      1,4   2,3 5,8
2,3      2,3   3,2 5,8
3,2            5,8
5,8      5,8   6,7
6,7      6,7   7,6
7,6              
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Final structure

Example and RECAP 



167

Example 
and 

RECAP 



0i)(i, & 01)-i(i, == ggtionInitialisa
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γ

γ

Complexity

Complexity: there are O(n2) 
terms to be computed, each 
requiring calling of O(n) already 
computed terms for the case of 
bifurcation. Thus overall 
complexity is O(n3) in time and 
O(n2) in space.



Open problems

Some noncoding RNAs, called
antisense RNAs, aim at inhibiting
their target RNA function through
base complementary binding; 
several kissing hairpin structures
(left) caused by loop-loop
interaction have been reported.

Add energy

3D structure



Alignment-producing programs assume that
homologous sequences comprise a series of linearly
arranged and more or less conserved sequence
stretches. 
Genetic recombination events, horizontal gene 
transfers, gene duplications, and gene gains/losses
often disrupt the colinearity. 
Alignment-based approaches are generally memory
consuming and time consuming and the 
computation of an accurate multiple-sequence
alignment is an NP-hard problem

170

Zielezinski, A., Vinga, S., Almeida, J. et al. Alignment-free sequence comparison: 
benefits, applications, and tools. Genome Biol 18, 186 (2017). 
https://doi.org/10.1186/s13059-017-1319-7

Alignment-free sequence comparison



Alignment-free approaches to sequence
comparison can be defined as any method of 
quantifying sequence similarity/dissimilarity that
does not use or produce alignment (assignment of 
residue–residue correspondence) at any step of 
algorithm application. They do not rely on 
dynamic programming. 
Alignment-free approaches can be broadly divided
into two groups: methods based on the 
frequencies of subsequences of a defined length
(word-based methods) and methods that evaluate
the informational content between full-length
sequences (information-theory based methods). 
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Alignment-free sequence comparison



Similar sequences share similar words/k-mers (subsequences of length k), and 
mathematical operations with the words’ occurrences give a good relative 
measure of sequence dissimilarity. This process can be broken into three key 
steps.

172

First, the sequences being compared
must be sliced up into collections of 
unique words of a given length. The 
second step is to transform each
sequence into an array of numbers
(vector) (e.g., by counting the 
number of times each particular
word appears within the sequences).
The last step includes quantification
of the dissimilarity between
sequences through the application of 
a distance function to the sequence-
representing vectors. 
This difference is very commonly
computed by the Euclidean distance, 
although any metric can be applied.

Frequency-based methods



Lempel–Ziv complexity is a popular measure that calculates the number
of different subsequences encountered when viewing the sequence
from beginning to end. 
Once the complexities of the sequences are calculated, a measure of 
their differences (e.g., the normalized compression distance) can be 
easily computed.
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Information theory-based methods



Using Shannon entropy measure, Kullback and Leibler
introduced a relative entropy measure (Kullback–Leibler
divergence, KL) that allowed for a comparison of two sequences. 
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Information theory-based methods

The procedure 
involves the 
calculation of the 
frequencies of 
symbols or words 
in a sequence and 
the summation of 
their entropies in 
the compared
sequences.
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Reference for this section

Ø Chapter 5 Vol 1

Zielezinski, A., Vinga, S., Almeida, J. et al. Alignment-free sequence comparison: 
benefits, applications, and tools. Genome Biol 18, 186 (2017). 
https://doi.org/10.1186/s13059-017-1319-7
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Algorithms to build Trees

Section 3

Ø Additive Phylogeny
Ø Using Least-Squares to Construct Distance-Based Phylogenies
Ø Ultrametric Evolutionary Trees
Ø The Neighbor-Joining Algorithm
Ø Character-Based Tree Reconstruction
Ø The Small Parsimony Problem
Ø The Large Parsimony Problem
Ø  Back to the alignment: progressive alignment
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Ancestral Node 
or ROOT of 

the Tree
Internal Nodes

(fossil)

Branches or
  Lineages A

B

C

D

E

((A,(B,C)),(D,E))  = The above phylogeny as nested parentheses

Terminal Nodes
(Living species) 

unrooted

rooted

Time (mutations)

What it is in a tree

species tree by Darwin

Why is important for biologists:Nothing in Biology Makes Sense Except in the 
Light of Evolution (Dobzhansky, 1964)



cnidarians 

flowering!
seed plants 

non-flowering!
seed plants 

sponges 

bacteria 

archaebacteria 

protoctists 

green algae 

ferns 

mosses 

fungi 
ANIMALS 

PLANTS 

EUKARYOTES 

LIFE 

flatworms 

rotifers roundworms lophophorates 

snakes!
& lizards 

crocodiles!
& birds 

ARTHROPODS 

echinoderms 

VERTEBRATES 

mollusks segmented!
worms 

chelicerates 

crustaceans insects 

cartilaginous!
fish 

bony fish 

TETRAPODS 

amphibians 

AMNIOTES 

mammals 

turtles 

Leaves (degree = 1): 
present-day species

Internal nodes 
(degree ≥ 1): 
ancestral species

Tree: Connected 
graph containing 
no cycles.

Trees



Reconstruction of evolutive patterns:
tree of life based on  mitochondrial 
sequences

tracing influenza strain variations
Based on variations in hemagglutinin
sequence

Why biologists need algorithms to build trees



Why biologists need algorithms to build trees

We can reconstruct the 
likely sequence of protein of 
an archosaur based on the 
sequence of the same
protein in existant species.

We look at the changes
between chicken and 
alligator

We can use a tree to guide a multiple 
sequence alignment. The sequence of genes
and proteins are conserved in nature. It
is common to observe strong sequence
similarity between a protein and its counterpart
in another species that diverged hundreds of 
millions of years ago. Accordingly, the best 
method to identify the function of a new gene 
or protein is to find its sequence- related genes
or proteins whose functions are already known.



Did the Florida Dentist infect his patients with HIV?

DENTIST

Patient H

Patient D

Patient F

Patient C
Patient A
Patient G
Patient B
Patient E
Patient A

Local control 2
Local control 3

Local control 9

Local control 35

Local control 3

Yes:
The HIV sequences from
these patients fall within
the clade of HIV sequences 
found in the dentist.

No

No
From Ou et al. (1992) and Page & Holmes (1998)

Phylogenetic  tree
of HIV sequences
from the DENTIST,
his Patients, & Local
HIV-infected People:

Phylogenetic tree 
applications



Lice have few opportunities for gopher-switching, and lice on gopher lineage A 
don't mate with lice living on gopher lineage B.  This "geographic" isolation of 
the louse lineages may cause them to become reproductively isolated as well, 
and hence, separate species.

Why biologists need algorithms to build trees: evolution



Ultrametric tree: distance 
from root to any leaf is the 
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel
Monkey

23
33

10

10

6

1

22
6

edge weights: correspond 
to difference in ages on the 
nodes the edge connects.33

23

13

7

6

2

Rooted binary tree: an 
unrooted binary tree with 
a root (of degree 2) on 
one of its edges.

Ultrametric Trees



Ultrametric tree: distance 
from root to any leaf is the 
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel
Monkey

23
33

10

10

6

1

22
6

33

23

13

7

6

2

Ultrametric Trees



1. Form a cluster for each present-day species, each 
containing a single leaf.

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
i j k l 0000

UPGMA: A Clustering Heuristic



i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

2. Find the two closest clusters C1 and C2 according 
to the average distance
        Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|
where |C| denotes the number of elements in C.

i j k l 0000

UPGMA: A Clustering Heuristic



i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

3. Merge C1 and C2 into a single cluster C.

{ k, l }

UPGMA: A Clustering Heuristic



i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

4. Form a new node for C and connect to C1 and C2 
by an edge. Set age of C as Davg(C1, C2)/2.

{ k, l }
1

11

UPGMA: A Clustering Heuristic



i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ k, l }

5. Update the distance matrix by computing the 
average distance between each pair of clusters.

UPGMA: A Clustering Heuristic



1.5

1.51.5

i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ i, j }

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic



1.5

1.51.5

i j k l 0000

1

11

{ i, j }
{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic



2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic



2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic



UPGMA(D):
1. Form a cluster for each present-day species, each 

containing a single leaf.
2. Find the two closest clusters C1 and C2 according to the 

average distance
        Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|
where |C| denotes the number of elements in C

3. Merge C1 and C2 into a single cluster C.
4. Form a new node for C and connect to C1 and C2 by an 

edge. Set age of C as Davg(C1, C2)/2.
5. Update the distance matrix by computing the average 

distance between each pair of clusters.
6. Iterate steps 2-5 until a single cluster contains all species.

UPGMA: A Clustering Heuristic



i j k l

1

11

1.5

1.51.5

2

1

0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix



i j k l

1

11

1.5

1.51.5

2

1

0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix



SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Di,j = number of differing symbols between i-th and 
j-th rows of a “multiple alignment”.

Constructing a distance matrix



SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Di,j = number of differing symbols between i-th and 
j-th rows of a “multiple alignment”.

Constructing a distance matrix



SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

How else could we form a distance matrix?

Di,j = number of differing symbols between i-th and 
j-th rows of a multiple alignment.

Constructing a distance matrix



Present Day

Most Recent Ancestor

TIME

Tree: Connected graph 
containing no cycles.
Leaves: (degree=1): 
present day species.
Internal nodes (degree 
≥ 1): ancestral species.
One node could be 
designated as root
(most recent common 
ancestor)

Distance-Based Phylogeny Problem: Construct an 
evolutionary tree from a distance matrix.
• Input: A distance matrix.
• Output: The unrooted tree fitting this distance matrix.



Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

Fitting a tree to a matrix



Given an n x n distance matrix D, its neighbor-joining 
matrix is the matrix D* defined as

where TotalDistanceD(i) is the sum of distances from i 
to all other leaves.

D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60 

j -68 0 -60 -60 

k -60 -60 0 -68 

l -60 -60 -68 0

D*

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)

Neighbor-Joining method



D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60 

j -68 0 -60 -60 

k -60 -60 0 -68 

l -60 -60 -68 0
D*

Neighbor-Joining Theorem: If D is additive, then the 
smallest element of D* corresponds to neighboring 
leaves in Tree(D).

Neighbor-Joining method



D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60 

j -68 0 -60 -60 

k -60 -60 0 -68 

l -60 -60 -68 0

1. Construct neighbor-joining matrix D* from D.

Neighbor-Joining method



D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60 

j -68 0 -60 -60 

k -60 -60 0 -68 

l -60 -60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining method



D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60 

j -68 0 -60 -60 

k -60 -60 0 -68 

l -60 -60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining method



D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60 

j -68 0 -60 -60 

k -60 -60 0 -68 

l -60 -60 -68 0

3. Compute Δi,j = (TotalDistanceD(i) –
TotalDistanceD(j)) / (n – 2).

Δi,j = (56 – 38) / (4 – 2)
     = 9

Neighbor-Joining method



TotalDistanceD

56

38

46

48

4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and 
LimbLength(j) equal to ½(Di,j – Δi,j).

Δi,j = (56 – 38) / (4 – 2)
     = 9

D

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2

Neighbor-Joining method



5. Form a matrix D’ by removing i-th and j-th 
row/column from D and adding an m-th row/column 
such that for any k, Dk,m = (Di,k + Dj,k – Di,j) / 2.

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

TotalDistanceD

21

23

24

Neighbor-Joining method



j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Computation of dk,m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2



Neighbor-Joining in Action

6. Apply NeighborJoining to D’ to obtain Tree(D’).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

j

i

m

k

4
6

7
l

Tree(D’)



j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2



j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)



NeighborJoining(D):
1. Construct neighbor-joining matrix D* from D.
2. Find a minimum element D*i,j of D*.
3. Compute Δi,j = (TotalDistanceD(i) – TotalDistanceD(j)) / (n 

– 2).
4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and LimbLength(j) 

equal to ½(Di,j – Δi,j).
5. Form a matrix D’ by removing i-th and j-th row/column 

from D and adding an m-th row/column such that for any 
k, Dk,m = (Dk,i + Dk,j – Di,j) / 2.

6. Apply NeighborJoining to D’ to obtain Tree(D’).
7. Reattach limbs of i and j to obtain Tree(D).

Neighbor-Joining

Reference: Saitou, N.; Nei, M. (1 July 1987). "The neighbor-joining method: a new method for 
reconstructing  phylogenetic trees".  Molecular Biology and Evolution. 4 (4): 406–425. 
doi:10.1093/oxfordjournals.molbev.a040454. PMID 3447015.

https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Foxfordjournals.molbev.a040454
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/3447015


Complexity

Exercise Break, check the following: Neighbor 
joining on a set of r taxa (species, leaves) requires r-
3 iterations.  At each step one has to build and 
search a D* matrix. Initially the D* matrix is size r2, 
then the next step it is (r -1)2, etc. This leads to a 
time complexity of O(r 3).

Code Challenge: Implement NeighborJoining.



Neighbor-Joining

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Find the tree returned by 
NeighborJoining on the following non-additive 
matrix.  How does the result compare with the tree 
produced by UPGMA?

D

2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

UPGMA
tree



We lost information when we converted a multiple 
alignment to a distance matrix...

Weakness of Distance-Based Methods

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Distance-based algorithms for evolutionary tree 
reconstruction say nothing about ancestral states at 
internal nodes.
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Example and RECAP (note different notation)

From 
http://evolution-textbook.org/content/free/tables/Ch_27/T11_EVOW_Ch27.pdf



The additive tree condition meant that for any two leaves, the distance between
them is the sum of edge weights of the path between them. We need a method to
check if a tree is additive or not by inspecting the distance matrix.We can now state
the four-point condition between four taxa.
Definition (four-point condition) Given four taxa i , j , k, and l, the four-point
condition holds if two of the possible sums dil + djk , dik + djl and dij + dkl are
equal and the third one is smaller than this sum.
As can be seen in Fig above, the possible distances between four taxa can be
specified as follows:

Four-point condition between four taxa

where T is the sum of the distances of the leaves to their
ancestors. This would mean that the larger sum should
appear twice in these three sums. A distance matrix D[n, n] 
is additive if and only if the four-point condition holds for all
of its four elements
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https://evolution.gs.washington.edu/phylip/software.html

Implementation



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

?????????? ??????????

??????????

Chimp Human Seal Whale

Chimp ACGTAGGCCT

Human ATGTAAGACT

Seal TCGAGAGCAC

Whale TCGAAAGCAT

n species

m characters

PARSIMONY: An Alignment As a Character Table

Here we do not use a 
distance matrix and we
value each column of 
the alignment; each
column could output a 
tree



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

21

2

02

1

Parsimony score: sum of Hamming distances along 
each edge.



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

21

2

02

1

Parsimony score: sum of Hamming distances along 
each edge.

Parsimony Score: 8



Small Parsimony Problem: Find the most 
parsimonious labeling of the internal nodes of a 
rooted tree.
• Input: A rooted binary tree with each leaf labeled 

by a string of length m.
• Output: A labeling of all other nodes of the tree 

by strings of length m that minimises the tree’s 
parsimony score.

Toward a Computational Problem

Is there any way we can simplify this problem 
statement?



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Small Parsimony Problem: Find the most 
parsimonious labeling of the internal nodes of a 
rooted tree.
• Input: A rooted binary tree with each leaf labeled 

by a single symbol.
• Output: A labeling of all other nodes of the tree 

by single symbols that minimises the tree’s 
parsimony score.



v 

A Dynamic Programming Algorithm

Let Tv denote the subtree of T
whose root is v.

Tv

Define sk(v) as the minimum 
parsimony score of Tv over 
all labelings of Tv, assuming 
that v is labeled by k.

The minimum parsimony score for the tree is equal to 
the minimum value of sk(root) over all symbols k.



Exercise Break: Prove the following recurrence 
relation:

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A Dynamic Programming Algorithm

For symbols i and j, define
• δi,j = 0 if i = j 

• δi,j = 1 otherwise.

v 

Tv
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A C G T

� � � 0 

C C A C G G T C

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}



A C G T

2 0 2 2 

A C G T

1 1 2 2 

A C G T

2 2 0 2 

A C G T

2 1 2 1 
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C C A C G G T C

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}



A C G T

2 1 2 1 

A C G T

2 2 0 2 

A C G T
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A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}
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A C G T

3 2 2 2 

A C G T

5 3 4 4 

A C G T

2 1 2 1 

C

C C A C G G T C

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}
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2 1 2 1 

C

C C A C G G T C

A Dynamic Programming Algorithm

Exercise Break: “Backtrack” to fill in the remaining 
nodes of the tree.



A Dynamic Programming Algorithm
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Complexity: if we want to calculate the overall length 
(cost) of a tree with m species, n characters, and k states, 
the Parsimony algorithm is of complexity O(mnk2).



Small Parsimony in an Unrooted Tree Problem: Find 
the most parsimonious labeling of the internal nodes 
of an unrooted tree.
• Input: An unrooted binary tree with each leaf 

labeled by a string of length m.
• Output: A position of the root and a labeling of 

all other nodes of the tree by strings of length m 
that minimises the tree’s parsimony score.

Code Challenge: Solve this problem.

Small Parsimony for Unrooted Trees

David Sankoff



ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

21

2

02

1

Finding the Most Parsimonious Tree

Parsimony Score: 8



ACGTAGGCCT ATGTAAGACTTCGAGAGCAC TCGAAAGCAT

42

0

23

0

Chimp HumanSeal Whale

ACGTAAGCAT ACGTAAGCAT

ACGTAAGCAT

Parsimony Score: 11

Finding the Most Parsimonious Tree



ACGTAGGCCT ATGTAAGACT TCGAGAGCACTCGAAAGCAT

31

2

52

1

Chimp Human SealWhale

ACGTAAGCCT ACGTAAGCCT

ACGTAAGCCT

Parsimony Score: 14

Finding the Most Parsimonious Tree



Large Parsimony Problem: Given a set of strings, 
find a tree (with leaves labeled by all these strings) 
having minimum parsimony score.
• Input: A collection of strings of equal length.
• Output: A rooted binary tree T that minimises the 

parsimony score among all possible rooted 
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree



Large Parsimony Problem: Given a set of strings, 
find a tree (with leaves labeled by all these strings) 
having minimum parsimony score.
• Input: A collection of strings of equal length.
• Output: A rooted binary tree T that minimises the 

parsimony score among all possible rooted 
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Unfortunately, this problem is NP-Complete...



A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge 
connecting two internal nodes (along with the 
nodes), produces four subtrees (W, X, Y, Z).
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A Greedy Heuristic for Large Parsimony
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Note that removing an internal edge, an edge 
connecting two internal nodes (along with the 
nodes), produces four subtrees (W, X, Y, Z).



A Greedy Heuristic for Large Parsimony
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Note that removing an internal edge, an edge 
connecting two internal nodes (along with the 
nodes), produces four subtrees (W, X, Y, Z).



A Greedy Heuristic for Large Parsimony
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Rearranging these subtrees is called a nearest 
neighbor interchange.



Nearest Neighbors of a Tree Problem: Given an 
edge in a binary tree, generate the two neighbors of 
this tree.
• Input: An internal edge in a binary tree.
• Output: The two nearest neighbors of this tree 

(for the given internal edge).

Code Challenge: Solve this problem.

A Greedy Heuristic for Large Parsimony



Code Challenge: Implement the nearest-neighbor 
interchange heuristic.

A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:
1. Set current tree equal to arbitrary binary rooted 

tree structure.
2. Go through all internal edges and perform all 

possible nearest neighbor interchanges.
3. Solve Small Parsimony Problem on each tree.
4. If any tree has parsimony score improving over 

optimal tree, set it equal to the current tree. 
Otherwise, return current tree.



Tree validation: the bootstrap algorithm

1. From each sequence, n nucleotides are randomly chosen with 
replacements, giving rise to m rows of n columns each. These 
now constitute a new set of sequences. 

2. A tree is then reconstructed with these new sequences using the 
same tree building method as before.

3. the topology of this tree is compared to that of the original tree. 
Each interior branch of the original tree that is different from the 
bootstrap tree is given a score of 0; all other interior branches 
are given the value 1.

4. This procedure of resampling the sites and tree reconstruction is 
repeated several hundred times, and the percentage of times 
each interior branch is given a value of 1 is noted.

5. This is known as the bootstrap value. As a general rule, if the 
bootstrap value for a given interior branch is 95% or higher, 
then the topology at that branch is considered "correct".

Consider m sequences, each with n nucleotides, a phylogenetic tree is
reconstructed using some tree building methods. 
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Tree validation: the bootstrap algorithm



Generalising Pairwise to Multiple Alignment

• Alignment of 2 sequences is a 2-row matrix.
• Alignment of 3 sequences is a 3-row matrix

          A T - G C G -
     A - C G T - A
     A T C A C - A

• Our scoring function should score alignments with 
conserved columns higher.
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A A T -- C

A -- T G C

-- A T G C

Alignments = Paths in 3-D

• Alignment of ATGC, AATC, and ATGC

0 1 1 2 3 4 #symbols up to a given position 

0 1 2 3 3 4
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A A T -- C

A -- T G C

-- A T G C

Alignments = Paths in 3-D

• Alignment of ATGC, AATC, and ATGC

0 1 1 2 3 4

0 1 2 3 3 4

0 0 1 2 3 4

(0,0,0)®(1,1,0)®(1,2,1) ®(2,3,2) ®(3,3,3) ®(4,4,4)
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(i-1,j-1,k-1)

(i,j-1,k-1)

(i,j-1,k)

(i-1,j-1,k) (i-1,j,k)

(i,j,k)

(i-1,j,k-1)

(i,j,k-1)2-D

2-D Alignment Cell versus 3-D Alignment Cell 
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• d(x, y, z) is an entry in the 3-D scoring matrix.

Multiple Alignment: Dynamic Programming
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Multiple Alignment: Running Time

• For 3 sequences of length n, the run time is 
proportional to 7n3

• For a k-way alignment, build a k-dimensional 
Manhattan graph with
– nk nodes
– most nodes have 2k – 1 incoming edges.  
– Runtime: O(2knk)
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Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments:  
       A C - G C G G - C   
       A C - G C - G A G
       G C C G C - G A G

  ACGCGG-C  AC-GCGG-C  AC-GCGAG
  ACGC-GAC  GCCGC-GAG  GCCGCGAG
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Idea: Construct Multiple from Pairwise Alignments

Given a set of arbitrary pairwise alignments, can 
we construct a multiple alignment that induces 
them?

AAAATTTT----     ----AAAATTTT     TTTTGGGG----
----TTTTGGGG     GGGGAAAA----     ----GGGGAAAA
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Progressive alignment
Progressive alignment methods are heuristic in nature. 
They produce multiple alignments from a number of 
pairwise alignments. Perhaps the most widely used 
algorithm of this type is the software CLUSTAL 
(https://www.ebi.ac.uk/Tools/msa/clustalo/)



Progressive Alignment
Clustalw:
1. Given N sequences, align each sequence against each 

other.
2. Use the score of the pairwise alignments to compute a 

distance matrix.
3. Build a guide tree (tree shows the best order of 

progressive alignment).
4. Progressive Alignment guided by the tree.



Progressive Alignment
Not all the pairwise alignments build well into a 
multiple sequence alignment



Progressive Alignment
The progressive alignment (see below) builds a final alignment 
by merging sub-alignments (bottom to top) with a guide tree 

The tree allows the ordering the multi alignment



260Software: muscle, MAFFT

Progressive Alignment
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Signals and entropy measures
Entropy of a multialignment is calculated as 
a column score as the sum of the negative 
logarithm of this probability of each symbol 
(i = {A, C, T, or G}): E=-∑! 𝑝!log 𝑝! 	
This is an entropy measure directly related 
to the equation for Shannon entropy in 
information theory. It is a convenient 
measure of the variability observed in an 
aligned column of residues. The more 
variable the column is, the higher the 
entropy. A completely conserved column 
would score 0. 

The user can impose a penalty value for 
sites that have alignment Gaps (see figure 
below): w*P where w = Value inserted by 
the user as the cost of a gap; Pj = The
number of gaps in the site j divided by the 
number of sequences in the alignment.

This approach could identify regions of 
phylogenetic noise: In some areas there is 
very little information; a condition for the 
alignment is to have enough information.



Sequence alignment (dbg: with debugging symbols, def: default settings, spd: 
optimised for speed). (a) Before alignment. (b) After alignment using an identity 
substitution matrix. (c) After alignment using a substitution matrix 262

EXAMPLE: Phylogenetic-
inspired techniques for reverse 
engineering and detection of 

malware families

What Computer Scientists could learn from Bioinformatics



Distance algorithm in computer science
A) A sequence logo for the FakeAV-DO function “ F1 ”. Positions 
with large characters indicate invariant parts of the function;
positions with small characters vary due to code metamorphism

B) A neighbour joining tree of FakeAV-DO set of procedures F1.

C) Neighbor joining tree of FakeAV-DO set of procedures F2 
from 
the same samples of B.

(W.M. Khoo and P. Lio’  Unity in diversity: Phylogenetic-inspired 
techniques for reverse  engineering and detection of malware 
families)

A
B

C

What Computer Scientists could learn from Bioinformatics
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Reference for this section

Ø Chapter 7 Vol 2

Reference: D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for multiple 
sequence alignments. Methods in Enzymology, 266:383402, 1996.

Chapter 6 and 7
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Clustering biological data

Section 4

Ø The Lloyd algorithm for k-means clustering
Ø From Hard to Soft Clustering
Ø From Coin Flipping to k-means Clustering
Ø Expectation Maximisation
Ø Soft k-means Clustering
Ø Hierarchical Clustering
Ø Markov Clustering Algorithm
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Biologists need algorithms to find similar behaving genes

the heat map shown here 
represents a genome-wide 
expression profile of 24-hour-
rhythmic genes in the mouse 
under chronic short-day (left 
two panels) and long-day 
(right two panels) conditions. 
(From Masumoto KM, Ukai-
Tadenuma M, Kasukawa T, et 
al. Curr. Biol. 20 [2010] 
2199–2206.



C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00
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FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

Time points

gene expression 
vector 
(log[expression])

-4
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0
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3

4

267Time points

Biologists need algorithms to find similarly behaving genes

eij = expression level of 
gene i at checkpoint  j

Genes
(yeast
genome)



n x m                             
gene expression

matrix

n points in                  
m-dimensional 

space 
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The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

(1, 6)

(10, 3)(1, 3)

(5, 6)

(8, 7)

(7, 1)

(3, 4)

(5, 2)
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Genes as Points in Multidimensional Space
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OUTPUT: partition all yeast genes into clusters so that: genes in the same cluster 
have similar behavior;  genes in different clusters have different behavior



Ge
ne

s

Samples/conditionsSamples/conditions
Ge

ne
s Cluster genes with similar

sample expression-profile.

Cluster samples with similar
gene expression-profile. 

Combination model

Ge
ne

s

Samples

Each color corresponds to
some “cause”.

The cause affects  a 
subset of genes in a
subset of the samples. 

e.g. Ihmels et al. Nature genetics 2002

Combinations of samples/genes
(different ways to do the clustering)



After clustering we want to 
understand the biological
meaning behind each group of 
genes (why they show the 
same patterns?)

271

Clustering -> Functional Annotations of Genes

https://david.ncifcrf.gov/content.jsp?file=functio
nal_annotation.html
A Typical Analysis Flow for Gene-enrichment and 
Functional Annotation Analysis
Load Gene List → View Summary Page → Explore
details through Chart Report, Table Report, 
Clustering Report, etc. → Export and Save 
Results. 

https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html
https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html


• distance between elements in the same cluster < ∆
• distance between elements in different clusters > ∆
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Good Clustering Principle: Elements within the 
same cluster are closer to each other than 
elements in different clusters.



Clustering Problem

Clustering Problem: Partition a set of expression 
vectors into clusters. 
• Input: A collection of n vectors and an integer k. 
• Output: Partition of n vectors into k disjoint 

clusters satisfying the Good Clustering Principle.

Any partition into 
two clusters does not 
satisfy the Good 
Clustering Principle! 
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Clustering as Finding Centers

Equivalent goal: find a set of k points Centers that 
will serve as the “centers” of the k clusters in Data. 

Goal: partition a set Data into k clusters.
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Clustering as Finding Centers

Equivalent goal: find a set of k points Centers that 
will serve as the “centers” of the k clusters in Data 
and will minimise some notion of distance from 
Centers to Data . 

Goal: partition a set Data into k clusters.

What is the “distance” from Centers to Data?  
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Distance from a Single DataPoint to Centers

d(DataPoint, Centers) = minall points x from Centers d(DataPoint, x)

The distance from DataPoint in Data to Centers is 
the distance from DataPoint to the closest center:
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Distance from Data to Centers

MaxDistance(Data, Centers) = 
max all points DataPoint from Data  d(DataPoint, Centers)

277



k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points 
Data, find k centers minimising MaxDistance(Data, 
Centers).
• Input: A set of points Data and an integer k.
• Output: A set of k points Centers that minimises 

MaxDistance(DataPoints, Centers) over all 
possible choices of Centers.
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k-Center Clustering Problem. Given a set of points 
Data, find k centers minimising MaxDistance(Data, 
Centers).
• Input: A set of points Data and an integer k.
• Output: A set of k points Centers that minimises 

MaxDistance(DataPoints, Centers) over all 
possible choices of Centers.

k-Center Clustering Problem

An even better 
set of centers! 
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k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
   Centers ← the set consisting of a single DataPoint from Data
   while Centers have fewer than k points
      DataPoint ← a point in Data maximising d(DataPoint, Centers)  

     among all data points
      add DataPoint to Centers
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k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
   Centers ← the set consisting of a single DataPoint from Data
   while Centers have fewer than k points
      DataPoint ← a point in Data maximising d(DataPoint, Centers)  

     among all data points
      add DataPoint to Centers
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What Is Wrong with FarthestFirstTraversal?

FarthestFirstTraversal selects Centers that minimise 
MaxDistance(Data, Centers).

human eye FarthestFirstTraversal

But biologists are interested in typical rather than 
maximum deviations, since maximum deviations may 
represent outliers (experimental errors).
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The maximal distance between Data 
and Centers:  

  MaxDistance(Data, Centers)=  
max DataPoint from Data d(DataPoint, Centers)

The squared error distortion 
between Data and Centers:         

 Distortion(Data, Centers) = 

∑ DataPoint from Data d(DataPoint, Centers)2/n

Modifying the Objective Function

A single data point contributes 
to MaxDistance

All data points contribute to 
Distortion
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NP-Hard for k > 1

k-Means Clustering Problem

k-Center Clustering Problem:
   Input: A set of points Data and an
   integer k.
   Output: A set of k points Centers
   that minimises
MaxDistance(DataPoints,Centers) 

over all choices of Centers.

k-Means Clustering Problem: 
   Input: A set of points Data and an
   integer k. 
   Output: A set of k points Centers
   that minimises 

Distortion(Data,Centers)

over all choices of Centers.
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k-Means Clustering for k = 1

2     4    6

5 
  
3 
   
1

i-th coordinate of the center of 
gravity = the average of the i-th 
coordinates of datapoints:

((2+4+6)/3, (3+1+5)/3 ) = (4, 3)

Center of Gravity Theorem: The center of gravity of 
points Data is the only point solving the 1-Means 
Clustering Problem. 

The center of gravity of points Data is
     ∑all points DataPoint in Data DataPoint / #points in Data
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Select k arbitrary data points as Centers

The Lloyd Algorithm in Action



The Lloyd Algorithm in Action

Clusters

Centers

assign each data point to its nearest center



The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers



The Lloyd Algorithm in Action

assign each data point to its nearest center

Clusters

Centers

again!



The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers

again!



The Lloyd Algorithm in Action

Clusters

Centers

again!

assign each data point to its nearest center



The Lloyd Algorithm

Select k arbitrary data points as Centers and then 
iteratively performs the following two steps:
 
• Centers to Clusters: Assign each data point to the 

cluster corresponding to its nearest center (ties 
are broken arbitrarily).

• Clusters to Centers: After the assignment of data 
points to k clusters, compute new centers as 
clusters’ center of gravity.

The Lloyd algorithm terminates when the centers 
stop moving (convergence).
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Must the Lloyd Algorithm Converge? 

• If a data point is assigned to a new center 
during the Centers to Clusters step:
– the squared error distortion is reduced 

because this center must be closer to 
the point than the previous center was.

• If a center is moved during the Clusters to 
Centers step:
– the squared error distortion is reduced 

since the center of gravity is the only 
point minimising the distortion (the 
Center of Gravity Theorem).  
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RECAP
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Soft vs. Hard Clustering

• The Lloyd algorithm assigns the midpoint either to 
the red or to the blue cluster.
• “hard” assignment of data points to clusters.

• Can we color the midpoint half-red and half-blue? 
• “soft” assignment of data points  to clusters.

 

Midpoint: A point approximately 
halfway between two clusters.
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Soft vs. Hard Clustering

• The Lloyd algorithm assigns the midpoint either to 
the red or to the blue cluster.
• “hard” assignment of data points to clusters.

• Can we color the midpoint half-red and half-blue? 
• “soft” assignment of data points  to clusters.
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Soft vs. Hard Clustering

Soft choices: points are assigned 
“red” and “blue” responsibilities 
rblue and rred (rblue + rred =1) 

(0.98, 0.02)

(0.48, 0.52)

(0.01, 0.99)

Hard choices: points are 
colored red or blue depending 
on their cluster membership. 
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• We flip a loaded coin with an unknown bias θ           
(probability that the coin lands on heads).

• The coin lands on heads i out of n times. 
• For each bias, we can compute the probability of the 

resulting sequence of flips.

Probability of generating the given sequence of flips is
 

Pr(sequence|θ) = θi * (1-θ)n-i 

This expression is maximised at θ= i/n (most likely bias) 

Flipping One Biased Coins 
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                              Data
HTTTHTTHTH  0.4
HHHHTHHHHH  0.9
HTHHHHHTHH  0.8
HTTTTTHHTT  0.3
THHHTHHHTH  0.7

Goal: estimate the probabilities θA and θB

Flipping Two Biased Coins 
A                                                                      B
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If We Knew Which Coin                               
Was Used in Each Sequence… 

                              Data    HiddenVector
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

Goal: estimate Parameters = (θA ,θB)
when HiddenVector is given 
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θB = fraction of heads generated in all flips with coin B =
(9+8+7) / (10+10+10) = (0.9+0.8+0.7) / (1+1+1) = 0.80

                              Data    HiddenVector   
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0         
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

If We Knew Which Coin                               
Was Used in Each Sequence… 

θA = fraction of heads generated in all flips with coin A =
(4+3) / (10+10) = (0.4+0.3) / 2 = 0.35
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1     *    HiddenVector 

                            Data   HiddenVector   Parameters=(θA, θB) 
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0       (0.35, 0.80) 
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

Parameters as a Dot-Product

*
*
*
*
*

(0.4*1+0.9*0+0.8*0+0.3*1+0.7*0)/  (1+0+0+1+0) = 0.35

∑all data points i Datai*HiddenVectori  / ∑all data points iHiddenVectori= 0.35

Data * HiddenVector   / 

1 refers to a vector (1,1, … ,1) consisting of all 1s

(1,1,…, 1)*HiddenVector =0.35

θA = fraction of heads generated in all flips with coin A =
= (4+3) / (10+10) = (0.4+0.3) / 2 = 0.35
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θB = fraction of heads generated in all flips with coin B
= (9+8+7) / (10+10+10) = (0.9+0.8+0.7) /( 1+1+1) = 0.80

                              Data    HiddenVector   Parameters=(θA, θB) 
HTTTHTTHTH  0.4     1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0       (0.35, 0.80) 
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

Parameters as a Dot-Product 

*
*
*
*
*

(0.5*0+0.9*1+0.8*1+0.4*0+0.7*1) / (0+1+1+0+1) = 0.80

∑all points i  Datai * (1- HiddenVectori) / ∑ all points i (1- HiddenVectori)=

Data * (1-HiddenVector) / 1 *  (1 - HiddenVector) 303



θA = fraction of heads generated in all flips with coin A
      = (0.4+0.3)/2=0.35
      = Data * HiddenVector / 1 * HiddenVector

                              Data    HiddenVector   Parameters=(θA, θB) 
HTTTHTTHTH  0.4     1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0       (0.35, 0.80) 
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

Parameters as a Dot-Product

*
*
*
*
*

θB = fraction of heads generated in all flips with coin B
      = (0.9+0.8+0.7)/3=0.80
      = Data * (1-HiddenVector) / 1 * (1 - HiddenVector)
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Data, HiddenVector, Parameters 

ParametersHiddenVector

                                    Data    HiddenVector   Parameters=(θA, θB) 
            0.4      1
            0.9      0
            0.8      0       (0.35, 0.80) 
          0.3      1
          0.7      0 
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Data, HiddenVector, Parameters

                              Data    HiddenVector   Parameters=(θA, θB) 
            0.4      ?
            0.9      ?
            0.8      ?       (0.35, 0.80) 
          0.3      ?
          0.7      ? 

ParametersHiddenVector
?
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                              Data    HiddenVector   Parameters=(θA, θB) 
            0.4      ?
            0.9      ?
            0.8      ?       (0.35, 0.80) 
          0.3      ?
          0.7      ? 

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656  ≈ 0.00113  > 

Pr(1st sequence|θB )= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003 

From Data & Parameters to HiddenVector 

Which coin is more likely to generate the 
1st sequence (with 4 H)?
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                              Data    HiddenVector   Parameters=(θA, θB) 
            0.4       
            0.9      ?
            0.8      ?       (0.35, 0.80) 
          0.3      ?
          0.7      ? 

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656  ≈ 0.00113  > 

Pr(1st sequence|θB )= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003 

From Data & Parameters to HiddenVector 

1

Which coin is more likely to generate the 
1st sequence (with 4 H)?
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                              Data    HiddenVector   Parameters=(θA, θB) 
            0.4       
            0.9      ?
            0.8      ?       (0.35, 0.80) 
          0.3      ?
          0.7      ? 

From Data & Parameters to HiddenVector 

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005  < 

 Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the 
2nd sequence (with 9 H)?

1
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                              Data    HiddenVector   Parameters=(θA, θB) 
            0.4       
            0.9       
            0.8      ?       (0.35, 0.80) 
          0.3      ?
          0.7      ? 

From Data & Parameters to HiddenVector 

0

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈  0.00005  < 

Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the 
2nd sequence (with 9 H)?

1
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HiddenVector Reconstructed!  

                               Data    HiddenVector   Parameters=(θA, θB) 
            0.4      1
            0.9      0
            0.8      0       (0.35, 0.80) 
          0.3      1
          0.7      0 
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Reconstructing HiddenVector and Parameters

Data

ParametersHiddenVector
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Reconstructing HiddenVector and Parameters

Data

Parameters’HiddenVector
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Reconstructing HiddenVector and Parameters

Data

Parameters’HiddenVector
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Reconstructing HiddenVector and Parameters

Data

Parameters’HiddenVector’

Iterate!
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From Coin Flipping to k-means Clustering: 
Where Are Data, HiddenVector, and Parameters?

Data: data points Data = (Data1,…,Datan)

Parameters: Centers = (Center1,…,Centerk)

HiddenVector: assignments of data points to k centers 
(n-dimensional vector with coordinates varying from 1 to k).  

1

2

3

1 2

1

3
3

3

2

1
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Coin Flipping and Soft Clustering

• Coin flipping: how would you select  between coins A and B if 
Pr(sequence|θA) = Pr(sequence|θB)?

• k-means clustering: what cluster would you assign a data point it 
to if it is a midpoint of centers C1 and C2? 

Soft assignments: assigning C1 and C2 “responsibility” ≈0.5 for 
a midpoint.  317



                           Data    HiddenVector     Parameters = (θA,θB) 
            0.4      ?
            0.9      ?
            0.8      ?    (0.60, 0.82) 
          0.3      ?
          0.7      ? 

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 > 

Pr(1st sequence|θB )= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015 

From Data & Parameters to HiddenVector 

Which coin is more likely to have generated the first 
sequence (with 4 H)?
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                           Data    HiddenVector     Parameters = (θA,θB) 
            0.4       
            0.9      ?
            0.8      ?    (0.60, 0.82) 
          0.3      ?
          0.7      ? 

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 > 

Pr(1st sequence|θB )= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015 

Memory Flash:
From Data & Parameters to HiddenVector 

1

Which coin is more likely to have generated the first 
sequence (with 4 H)?
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                           Data    HiddenMatrix     Parameters = (θA,θB) 
            0.4       
            0.9      ?
            0.8      ?        (0.60, 0.82) 
          0.3      ?
          0.7      ? 

Pr(1st sequence|θA)  ≈ 0.000531 > 
                        Pr(1st sequence|θB ) ≈ 0.000015 

From Data & Parameters to HiddenMatrix 

0.000531 / (0.000531 + 0.000015) ≈ 0.97
0.000015 / (0.000531 + 0.000015) ≈ 0.03 

What are the responsibilities of coins for this sequence?

0.97 0.03
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                             Data    HiddenMatrix     Parameters = (θA, θB) 
            0.4       
            0.9 
            0.8      ?        (0.60, 0.82) 
          0.3      ?
          0.7      ? 

From Data & Parameters to HiddenMatrix 

0.0040 / (0.0040 + 0.0302) = 0.12  
0.0342 / (0.0040 + 0.0342) = 0.88 

What are the responsibilities of coins for the 2nd sequence?

Pr(2nd sequence|θA) ≈ 0.0040 < 
                             Pr(2nd sequence|θB ) ≈ 0.0302 

0.97 0.03
0.12 0.88
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                            Data    HiddenMatrix    Parameters = (θA,θB) 
            0.4  
            0.9  
            0.8  0.29 0.71 (0.60, 0.82) 
          0.3  0.99 0.01     
          0.7  0.55 0.45 

HiddenMatrix Reconstructed! 

0.97 0.03
0.12 0.88
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Expectation Maximization Algorithm

Data

ParametersHiddenMatrix
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E-step

Data

ParametersHiddenMatrix
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M-step

Data

Parameters’HiddenVector

???
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                              Data    HiddenVector   Parameters=(θA, θB) 
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9      0
HTHHHHHTHH  0.8      0         ??? 
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

*
*
*
*
*

Memory Flash: Dot Product

θA = Data     * HiddenVector           /  1    *     HiddenVector

    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector)
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HiddenVector =    ( 1     0     0      1     0 )    

                              

θA = Data     *     HiddenVector           /  1    *     HiddenVector

    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector)

                               Data    HiddenVector   Parameters=(θA,θB) 
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9    0
HTHHHHHTHH  0.8      0         
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

From Data & HiddenMatrix to Parameters

What is HiddenMatrix  corresponding  to this HiddenVector?
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HiddenVector =    ( 1     0     0      1     0 )    

Hidden Matrix =                              
                              

1      0     0      1     0
0      1     1      0     1

θA = Data     *     HiddenVector           /  1    *     HiddenVector

    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector)

                               Data    HiddenVector   Parameters=(θA,θB) 
HTTTHTTHTH  0.4      1
HHHHTHHHHH  0.9    0
HTHHHHHTHH  0.8      0         
HTTTTTHHTT  0.3      1
THHHTHHHTH  0.7      0 

From Data & HiddenMatrix to Parameters

θB = Data * 2nd row of HiddenMatrix /  1*2nd row of HiddenMatrix

θA = Data * 1st row of HiddenMatrix /  1*1st row of HiddenMatrix

= HiddenVector    
= 1 - HiddenVector328



HiddenVector =    ( 1     0     0      1     0 )    

Hidden Matrix =                              
                              

.97  .03  .29  .99  .55

.03  .97  .71  .01  .45

θA = Data     *     HiddenVector           /  1    *     HiddenVector

    θB = Data     * (1-HiddenVector)          /  1   *   (1-HiddenVector)

                               Data    HiddenMatrix   Parameters=(θA,θB) 
HTTTHTTHTH  0.4  0.97 0.03
HHHHTHHHHH  0.9  0.12 0.88
HTHHHHHTHH  0.8  0.29 0.71         
HTTTTTHHTT  0.3  0.99 0.01
THHHTHHHTH  0.7  0.55 0.45 

From Data & HiddenMatrix to Parameters

θB = Data * 2nd row of HiddenMatrix /  1*2nd row of HiddenMatrix

θA = Data * 1st row of HiddenMatrix /  1*1st row of HiddenMatrix
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Data: data points Data = {Data1, … ,Datan}  
Parameters: Centers = {Center1, … ,Centerk}
HiddenVector: assignments of data points to centers   

1 2 1 3 2 1 3 3HiddenVector 

1

2

3

1 2

1

3
3

3

2

1

A

A           B             C             D            E             F            G           
H 

C
F

B
E

D
G

H

1 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1

HiddenMatrix
1
2
3

From HiddenVector to HiddenMatrix
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0 1 0 0 1 0 0

1 0 0 1 0 0 0

0 0 1 0 0 1 1

From HiddenVector to HiddenMatrix
Data: data points Data = {Data1, … ,Datan}  
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j 

HiddenMatrix
1
2
3

0.7

0.2

0.1

A           B             C            D             E             F            G           
H 

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H
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0.70 0.15 0.73 0.40 0.15  0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

From HiddenVector to HiddenMatrix
Data: data points Data = {Data1, … ,Datan}  
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j 

A           B             C            D             E             F            G           H 

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H

HiddenMatrix
1
2
3
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Responsibilities and the Law of Gravitation 

HiddenMatrixij: =                                                                   
Forcei,j  / ∑all centers j Forcei,j 

stars

planets

responsibility of star i for a planet j is proportional to the 
pull (Newtonian law of gravitation): 

 
Forcei,j=1/distance(Dataj, Centeri)2 

0.70 0.15 0.73 0.40 0.15  0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75
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Responsibilities and Statistical Mechanics 

centers

data points

responsibility of center i for a data point j is proportional to

Forcei,j = e-β∙distance(Dataj, Centeri) 

where β is a stiffness parameter.

HiddenMatrixij: =                                                                   
Forcei,j  / ∑all centers j Forcei,j 

0.70 0.15 0.73 0.40 0.15  0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75
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How Does Stiffness Affect Clustering? 

Hard k-means
clustering

 

Soft k-means
clustering

(stiffness β=1) 

Soft k-means
clustering

(stiffness β= 0.3) 
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Stratification of Clusters

Clusters often have subclusters, which have 
subsubclusters, and so on.

336

Hierarchical Clustering



Stratification of Clusters

Clusters often have subclusters, which have sub-
subclusters, and so on.
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From Data to a Tree

To capture stratification, the hierarchical clustering 
algorithm organises n data points into a tree.

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 
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g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

From a Tree to a Partition into 4 Clusters

To capture stratification, the hierarchical clustering 
algorithm organises n data points into a tree.

Line
crossing 
the tree 

at 4 points
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g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 

From a Tree to a Partition into 6 Clusters

To capture stratification, the hierarchical clustering 
algorithm first organises n data points into a tree.

Line
crossing 
the tree 

at 6 points

6 Clusters
340



g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0 

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5 

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1 

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6 

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0 

Constructing the Tree

g1 

g6 

g7 

g3 

g5 g8 

g9 g10 

g4 

g2 

Hierarchical clustering starts from a transformation of n m 
expression matrix into n x n similarity matrix or distance matrix.  

Distance Matrix
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0 

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5 

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1 

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6 

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0 

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Identify the two closest clusters and merge them.
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g1 g2 g3, g5  g4 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0 

g3, g5  9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5 

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1 

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0 

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Recompute the distance between two clusters as 
average distance between elements in the cluster.
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g1 g2 g3, g5  g4 g6 g7 g8 g9 g10 

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0 

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0 

g3, g5  9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5 

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1 

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5 

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0 

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Identify the two closest clusters and merge them.
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g1 g2, g4  g3, g5  g6 g7 g8 g9 g10 

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0 

g2, g4  7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0 

g3, g5  9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5 

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5 

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0 

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Recompute the distance between two clusters (as 
average distance between elements in the cluster).
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g1 g2, g4  g3, g5  g6 g7 g8 g9 g10 

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0 

g2, g4  7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0 

g3, g5  9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5 

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5 

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3 

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4 

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1 

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0 

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g2, g4}

{g3, g5, g8}

Identify the two closest clusters and merge them.
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Constructing the Tree

Iterate until all elements form a single cluster (root).

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 347



Examples: Determining the dimensionality of the clustering 

Representation of the mRNA clustering problem consisting of >14,000 mRNAs measured
across 89 cell lines. Data are from Lu et al, MicroRNA expression profiles classify human 
cancers. Nature 435, 834–838 (2005).. When the mRNAs are clustered, the mRNAs are the 
objects and each cell line represents a feature, resulting in an 89-dimensional problem (A). 
When attempting to classify normal and tumor cell lines using gene expression, the cells lines 
are the objects and each mRNA is a feature, resulting in a clustering problem with thousands of 
dimensions (B). (C) Effect of dimensionality on sparsity. (D) Effect of dimensionality on coverage 
of the data based on SD from the mean. The cell line clustering problem is even more 
challenging because the relatively small number of observations (89) compared with the large 
dimensionality (>14,000) could be dominated by noise in the expression data.



Constructing a Tree from a Distance Matrix D  

HierarchicalClustering (D, n)
   Clusters ← n single-element clusters labeled 1 to n 
   T ← a graph with the n isolated nodes labeled 1 to n 
 while there is more than one cluster
      find the two closest clusters Ci and Cj
      merge Ci and Cj into a new cluster Cnew with |Ci| + |Cj| elements
      add a new node labeled by cluster Cnew to T 
      connect node Cnew to Ci and Cj by directed edges 
      remove the rows and columns of D corresponding to Ci and Cj
      remove Ci and Cj from Clusters
      add a row and column to D for the cluster Cnew by computing
         D(Cnew ,C) for each cluster C in Clusters
      add Cnew to Clusters
   assign root in T as a node with no incoming edges
   return T

349



Different Distance Functions Result in Different Trees

Average distance between elements of two clusters: 

Davg(C1, C2) = (∑ all points i and j in clusters C1 and C2, respectively Di,j)/ (|C1|*|C2|)

Minimum distance between elements of two clusters: 

Dmin(C1, C2) = min all points i and j in clusters C1 and C2, respectively Di,j 
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Markov Clustering Algorithm (MCL)
MCL is unsupervised cluster algorithm for graphs derived by 
Stijn van Dongen during his Ph.D. (at the link below there 
is also his thesis). 
Unlike most clustering algorithms, the MCL does not 
require the number of expected clusters to be specified 
beforehand. The basic idea underlying the algorithm is that 
dense clusters correspond to regions with a larger number 
of paths (” A random walk that visits a dense cluster will 
likely not leave the cluster until many of its vertices have 
been visited.”). The algorithm works well with within a 
highly connected graphs. You can find the code for many 
programming languages at micans.org/mcl
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Markov Clustering Algorithm
We take a random walk on the graph described by the 
similarity matrix, but after each step we weaken the links 
between distant nodes and strengthen the links between 
nearby nodes.
A random walk has a higher probability to stay inside the 
cluster than to leave it soon. The crucial point lies in 
boosting this effect by an iterative alternation of expansion 
and inflation steps. An inflation parameter is responsible 
for both strengthening and weakening of current, i.e.
Strengthens strong currents, and weakens already weak 
currents. An expansion parameter, r, controls the extent of 
this strengthening / weakening. In the end, this influences 
the granularity of clusters.
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Matrix representation
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Markov Clustering Algorithm
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Markov Clustering Algorithm: example
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The number of steps to converge is not proven, but 
experimentally shown to be 10 to 100 steps, and 
mostly consist of sparse matrices after the first few 
steps.

The expansion step of MCL has time complexity O(n3). 

The inflation has complexity O(n2). However, the 

matrices are generally very sparse, or at least the vast 

majority of the entries are near zero. Pruning in MCL 

involves setting near-zero matrix entries to zero, and 

can allow sparse matrix operations to improve the speed 

of the algorithm vastly.

Markov Clustering Algorithm
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Markov Clustering Algorithm
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It uses edge betweenness to find and remove central edges 
that connect communities within a larger graph. The formula 
for edge betweenness is 

where σᵤ,ᵥ is the number of shortest paths between two
distinct vertices and σᵤ,ᵥ(e) is the corresponding number of 
shortest paths containing a particular edge.

Girvan-Newman algorithm for community detection predates 
the Lovain algorithm which predates the Leiden algorithm

They are based on modularity
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After removing an edge, the Girvan-Newman algorithm calculates
the modularity (Q) of the graph, which is a value between the 
range [-0.5,1]. A higher value suggests a more significant
community structure. Therefore, we can identify communities by 
maximizing modularity. Given m = number of modules, ls = the 
number of edges inside module s, L = the number of edges in the 
network, dₛ = total degree of the nodes in module s), the formula 
for modularity is

This process of removing an edge and calculating the modularity 
is iteratively repeated. The algorithm will stop when the new 
modularity is no longer greater than the modularity from the 
previous iteration. 

Girvan-Newman algorithm



One caveat to this algorithm is that it is difficult to find smaller
communities. Due to the modularity optimization, the algorithm
fails to detect “modules smaller than a scale which depends on 
the total size of the network and on the degree of 
interconnectedness of the modules. As a result, one should use 
this algorithm for detecting larger community structures and then
examine the detected communities for sub communities.
Time Complexity
Despite Girvan-Newman’s popularity and quality of community 
detection, it has a high time complexity, increasing up to O(m²n) 
on a sparse graph having m edges and n nodes. As a result, 
Girvan-Newman is generally not used on large scale networks. Its
optimal node count is a few thousand nodes or less.
Because of this, there exist greedy algorithms for detecting
communities to reduce the time but at the same time sacrificing
the most accurate results. One such example is the Louvain
algorithm.

Girvan-Newman algorithm



The Louvain algorithm is a fast implementation of community 
detection. It is a hierarchical clustering algorithm that involves 
two phases: modularity optimization and community aggregation.
Modularity Optimization: The first step is to optimize the 
modularity of the entire graph. In this example, it splits the nodes 
into four communities. To find these clusters, each node is 
moved into its neighboring community. If the change in 
modularity (ΔQ) is greater than 0, it is moved into the 
neighboring community, Otherwise, it remains in its current 
community. This process is repeated until ΔQ=0 for all nodes.
Community Aggregation: After modularity optimization, super 
nodes are created to represent each cluster. After the initial 
phase of the algorithm, there will exist many communities. 
However, the two phases repeat, creating larger and larger 
communities. The algorithm stops only when no improvement 
can be made by any of the two operations.

Louvain Algorithm: optimizing modularity
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Community finding algorithm in two phases: Modularity 
Optimization (local moving of nodes) and Community 
Aggregation. 

In the local moving phase, individual nodes are moved to the 
community that yields the largest increase in the quality 
function. In the aggregation phase, an aggregate network is 
created based on the partition obtained in the local moving 
phase. 

Each community in this partition becomes a node in the 
aggregate network.  After the first step is completed, the 
second follows. Both will be executed until there are no 
more changes in the network and maximum modularity is 
achieved. 

Louvain Algorithm: optimizing modularity
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Louvain Algorithm: optimizing modularity.

The modularity of a partition is a scalar value between −1 and 1 
that measures the density of links inside communities as compared
to links between Communities and is an objective function to 
optimise :

𝑄 = "
#$
∑%,' 𝐴%' −

(!("
#$

𝛿 𝑐% , 𝑐' , where Aij represents the weight 
of the edge between i and j, 𝑘% = ∑' 𝐴𝑖𝑗	is the sum of the weights 
of the edges attached to vertex i, ci is the community to which
vertex i is assigned, the δ function δ(u, v) is 1 if u = v and 0 
otherwise and m = "

#
	∑%' 𝐴𝑖𝑗.

Exact modularity optimization is a problem that is computationally
hard and so approximation algorithms are necessary when dealing
with large networks. 

365Vincent D Blondel et al J. Stat. Mech. (2008) P10008 /all authors from Lovain, Belgium
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The Louvain algorithm starts from a singleton
partition in which each node is in its own
community (a). The algorithm moves individual
nodes from one community to another to find a
partition (b). Based on this partition, an aggregate
network is created (c). The algorithm then moves
individual nodes in the aggregate network (d).
These steps are repeated until the quality cannot
be increased further.

Each pass is made of two phases: one where modularity
is optimized by allowing only local changes of 
communities; one where the communities found are 
aggregated in order to build a new network of 
communities. The passes are repeated iteratively until
no increase of modularity is possible
(from https://iopscience.iop.org/article/10.1088/1742-
5468/2008/10/P10008/pdf).

Louvain Algorithm: optimizing modularity.
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The gain in modularity ΔQ obtained by moving an isolated node i into a community 
C can easily be computed by 

Δ𝑄 =
∑!" + 2𝑘!,!"

2𝑚 −
∑$%$ + 𝑘!

2𝑚 −
∑!"
2𝑚 −

∑$%$
2𝑚

&

−
𝑘!
2𝑚

&

Where ∑!" is the sum of the weights of the links inside C, ∑#$# 	is the sum of 
the weights of the links incident to nodes in C, ki is the sum of the weights of the 
links incident to node i, ki,in is the sum of the weights of the links from i to nodes in 
C and m is the sum of the weights of all the links in the network. 

A similar expression is used in order to evaluate the change of modularity when i is
removed from its community. In practice, one therefore evaluates the change of 
modularity by removing i from its community and then by moving it into a 
neighbouring community.

Louvain Algorithm: optimizing modularity.



368

First, its steps are intuitive and easy to implement, and the outcome is unsupervised. The 
algorithm is extremely fast, i.e. computer simulations on large ad hoc modular networks 
suggest that its complexity is linear on typical and sparse data. 

This is due to the fact that the possible gains in modularity are easy to compute with the 
above formula and that the number of communities decreases drastically after just a few
passes so that most of the running time is concentrated on the first iterations. 

By construction, the number of meta-communities decreases at each pass, and as a 
consequence most of the computing time is used in the first pass. The passes are iterated
until there are no more changes and a maximum of modularity is attained. The algorithm
is reminiscent of the self-similar nature of complex networks.

Louvain Algorithm: optimizing modularity.



Louvain community detection in a sequence similarity network. The network is
assembled from the results of an all-versus-all alignment, as previously described. Edges
can be weighted by E-value, percentage of identity, or bitscore.

For the purpose of simplification, we consider strong or weak weights rather than actual
values. (a) A giant connected component at relaxed threshold. (b) Three connected
components at a more stringent threshold. (c) Three communities with Louvain
clustering algorithm, taking into account edge weights.
From Watson et al, The Methodology Behind Network Thinking: Graphs to Analyze
Microbial Complexity and Evolution
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Girwan-Newman vs Louvain Algorithm

https://medium.com/smucs/girvan-
newman-and-louvain-algorithms-
for-community-detection-
f3feb7c31908



Lovain algorithm
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From Louvain to Leiden clustering

Disconnected community. Consider the partition shown in (a). 
When node 0 is moved to a different community, the red 
community becomes internally disconnected, as shown in (b). 
However, nodes 1–6 are still locally optimally assigned, and 
therefore these nodes will stay in the red community.
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An aggregate network (d) is created based on the refined partition, using the non-
refined partition to create an initial partition for the aggregate network. For 
example, the red community in (b) is refined into two subcommunities in (c), which
after aggregation become two separate nodes in (d), both belonging to the same
community. The algorithm then moves individual nodes in the aggregate network 
(e). In this case, refinement does not change the partition (f). These steps are 
repeated until no further improvements can be made. 373

Leiden algorithm
The Leiden algorithm
starts from a 
singleton partition
(a). The algorithm
moves individual
nodes from one 
community to 
another to find a 
partition (b), which is
then refined (c). 

From Louvain to Leiden clustering
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From numerical
experiments, both seem
to run in near-linear time 
in the number of edges. 
However, the constant
factor of the Louvain
algorithm is larger than
the constant factor of the 
Leiden algorithm, i.e. it is
slower overall.
Implementation:
https://github.com/vtraag
/leidenalg

The student could make 
experiments to test the 
complexity

https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg
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Genome Sequencing

Section 5



• 2010: Nicholas Volker became the first human 
being to be saved by genome sequencing.
– Doctors could not diagnose his condition; he went 

through dozens of surgeries. 
– Sequencing revealed a rare mutation in a XIAP gene 

linked to a defect in his immune system.
– This led doctors to use immunotherapy, which saved the 

child.

• Different people have slightly different genomes: 
on average, roughly 1 mutation in 1000 
nucleotides.  
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Biologists need algorithms for personal genome sequencing



• Modern sequencing machines cannot read an 
entire genome one nucleotide at a time from 
beginning to end (like we read a book)

• They can only shred the genome and generate 
short  reads.

• The genome assembly is not the same as a jigsaw 
puzzle: we must use overlapping reads to 
reconstruct the genome, a  giant overlap puzzle!

What Makes Genome Sequencing Difficult? 

Genome Sequencing Problem. Reconstruct a genome from reads.
• Input. A collection of strings Reads. 
• Output. A string Genome reconstructed from Reads. 
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Multiple (unsequenced) genome copies

Reads

Assembled genome
…GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC…

Read generation

Genome assembly

From Experimental to Computational Challenges 

378



• What Is Genome Sequencing:  Exploding Newspapers 
analogy

• The String Reconstruction Problem
• String Reconstruction as a Hamiltonian Path Problem
• String Reconstruction as an Eulerian Path Problem 
• De Bruijn Graphs
• Euler’s Theorem 
• Assembling Read-Pairs
• De Bruijn Graphs Face Harsh Realities of Assembly 
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Computational topics in this lecture



The Newspaper Problem
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The newspaper problem as an overlapping puzzle 
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The Newspaper Problem as an Overlapping Puzzle 
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CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Multiple Copies of a Genome (Millions of them)

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Breaking the Genomes at Random Positions
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CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA  TCGTAGCTACG  ATGCATTAGCAA  GCTATCGGA  TCAGCTACCA  CATCGTAGC

CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC  ACATCGTAGCT  ACGATGCATTA  GCAAGCTATC  GGATCAGCTAC  CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC  ATCGTAGCTACG  ATGCATTAGCA  AGCTATCGG A TCAGCTACCA  CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT  AGCTACGATGCA  TTAGCAAGCT  ATCGGATCA  GCTACCACATC  GTAGC

Generating “Reads”

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA  TCGTAGCTACG  ATGCATTAGCAA  GCTATCGGA  TCAGCTACCA  CATCGTAGC

CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC  ACATCGTAGCT  ACGATGCATTA  GCAAGCTATC  GGATCAGCTAC  CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC  ATCGTAGCTACG  ATGCATTAGCA  AGCTATCGG A TCAGCTACCA  CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT  AGCTACGATGCA  TTAGCAAGCT  ATCGGATCA  GCTACCACATC  GTAGC

“Burning” Some Reads
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CTGATGA 

TGGACTACGCTAC 
TA
CT
GC
TA
G 

CTG
TAT

TAC
G 

AT
CA
GC
TA
CC
AC
A 

TC
GT
AG
CT
AC
G 

ATGCATTAGCAA 
GCTATCGGA 

TC
AG
CT
AC
CA
 

CAT
CGT

AGC

CTGATGATG 

GACTACGCT 

ACTACTGCTA 

GCTGTATTACG 

ATC
AGC

TAC
C 

ACATCGTAGCT 

ACGATGCATTA 

GCA
AGC

TAT
C 

GCA
AGC

TAT
C 

GGATCAGCTAC 

CACATCGTAGC

CTGATGATGG 

CT
GA
TG
AT
GG
 

ACTACGCTAC 

TACTGCTAGCT 

TA
CT
GC
TA
GC
T 

GTATTACGATC 

AGC
TAC

CAC
 

ATCGTAGCTACG 

AT
CG
TA
GC
TA
CG
 

ATGCATTAGCA 

ATGCATTAGCA 

AGCTATCGG 

ATCAGCTACCA 

C
A
T
C
G
T
A
G
C

CTGATGATGGACT 

ACG
CTA

CTA
CT 

GCTAGCTGTAT 

T
A
C
G
A
T
C
A
G
C
 

TACCACATCGT 

AGCTACGATGCA TTAGCAAGCT 

ATC
GGA

TCA
 

GCTACCACATC 

No Idea What Position Every Read Comes From
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Composition3(TAATGCCATGGGATGTT)=

What Is k-mer Composition?

            TAA
             AAT
              ATG
               TGC
                GCC
                 CCA
                  CAT
                   ATG
                    TGG
                     GGG
                      GGA
                       GAT
                        ATG
                         TGT
                          GTT
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Composition3(TAATGCCATGGGATGTT)=
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
                                =
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g., lexicographic order (like in a dictionary)

k-mer Composition
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String Reconstruction Problem. Reconstruct a string from 
its k-mer composition. 

• Input. A collection of k-mers. 

• Output. A Genome such that Compositionk(Genome) is 
equal to the collection of k-mers. 

Reconstructing a String from its Composition
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ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT

TAA 
AAT

ATG

A Naive String Reconstruction Approach

ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG

TAA 
AAT

ATG
TGT

GTT 389



TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Composition3(TAATGCCATGGGATGTT)=
 

Representing a Genome as a Path  

Can we construct this genome path without knowing the genome TAATGCCATGGGATGTT, only 
from its composition? 

Yes. We simply need to connect k-mer1 with k-mer2 if        suffix(k-mer1)=prefix(k-mer2). 
E.g. TAA → AAT
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TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

A Path Turns into a Graph  

Yes. We simply need to connect k-mer1 with k-mer2 if        suffix(k-mer1)=prefix(k-mer2). 
E.g. TAA → AAT
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TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Can we still find the genome path in this graph? 

A Path Turns into a Graph  
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Where Is the Genomic Path?  

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

Nodes are arranged from left to right in lexicographic order.  What are we trying to find in this graph?   

A Hamiltonian path: a path that visits each node in a graph 
exactly once.

TAATGCCATGGGATGTT
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Does This Graph Have a Hamiltonian Path?    

Icosian game (1857)

Hamiltonian Path Problem. Find a Hamiltonian path in a graph. 
Input. A graph.  
Output. A path visiting every node in the graph exactly once. 

William 
Hamilton

Undirected graph

1 2
346

7
8

9

10

11

1213

14

15

1617

18
19

20

5
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TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

TAATGCCATGGGATGTT

TAATG ATGGG ATGTTCC
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TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

A Slightly Different Path   

3-mers as nodes

3-mers as edges

TAA

How do we label the starting and ending nodes of an edge? 

TA AAprefix of TAA suffix of TAA
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TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Labeling Nodes in the New Path  

3-mers as nodes

3-mers as edges and 2-mers as nodes
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TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

Labeling Nodes in the New Path  

3-mers as edges and 2-mers as nodes
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TAA AAT
ATG

TGG GGG GGA GAT ATG TGT GTT
TA AA AT TG GG GG GA AT TG GT TT

TGC

GCCCCA

CAT
CA

TG

GC

CC

ATGAT

Gluing Identically Labeled Nodes   
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT
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TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing Identically Labeled Nodes   
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TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing Identically Labeled Nodes   
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TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing Identically Labeled Nodes   
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TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing Identically Labeled Nodes   
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TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

De Bruijn Graph of TAATGCCATGGGATGTT   

Where is the Genome 
hiding in this graph?
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What are we trying to 
find in this graph?   

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

It Was Always There! 

An Eulerian path in a 
graph is a path that 
visits each edge exactly 
once.

TAATGCCATGGGATGTT
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Eulerian Path Problem    
Eulerian Path Problem. Find an Eulerian path in a graph. 

• Input. A graph.  

• Output. A path visiting every edge in the graph exactly once. 
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Eulerian Versus Hamiltonian Paths    
Eulerian Path Problem. Find an Eulerian path in a graph. 

• Input. A graph.   

• Output. A path visiting every edge in the graph exactly once. 

Hamiltonian Path Problem. Find a Hamiltonian path in a graph. 

• Input. A graph.  

• Output. A path visiting every node in the graph exactly once. 
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What Problem Would You Prefer to Solve? 

Hamiltonian Path Problem Eulerian Path Problem

While Euler solved the Eulerian Path Problem 
(even for a city with a million bridges), nobody 
has developed a fast algorithm for the 
Hamiltonian Path Problem yet.  
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NP-Complete Problems

• The Hamiltonian Path Problem belongs to a 
collection containing thousands of 
computational problems for which no fast 
algorithms are known.

That would be an excellent argument, but the 
question of whether or not NP-Complete 
problems can be solved efficiently is one of 
seven Millennium Problems in mathematics.  

NP-Complete problems are all equivalent: find an 
efficient solution to one, and you have an 
efficient solution to them all. 409



Eulerian Path Problem    
Eulerian Path Problem. Find an Eulerian path in a graph. 

• Input. A graph.  

• Output. A path visiting every edge in the graph exactly once. 

We constructed the de Bruijn 
graph from Genome, but in 
reality, Genome is unknown! 
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What We Have Done: From Genome to de Bruijn Graph    

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT
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What We Want: From Reads (k-mers) to Genome    
TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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What We will Show: From Reads to de Bruijn Graph to Genome    

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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Constructing de Bruijn Graph when Genome Is Known

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAATGCCATGGGATGTT
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TAA

AAT

ATG

TGC

GCC

CCA

CAT

ATG

TGG

GGG

GGA

GAT

ATG

TGT

GTT

Constructing de Bruijn when Genome Is Unknown

Composition3(TAATGCCATGGGATGTT)

415



TAA

AAT

ATG

TGC

GCC

CCA

CAT

ATG

TGG

GGG

GGA

GAT

ATG

TGT

GTT

Representing Composition as a Graph Consisting of Isolated Edges

Composition3(TAATGCCATGGGATGTT)
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TAA
TA AA

AAT
AA AT

ATG
AT TG

TGC
TG GC

GCC
GC CC

CCA
CACC

CAT
CA AT

ATG
AT TG

TGG
TG GG

GGG
GG GG

GGA
GG GA

GAT
GA AT

ATG
AT TG

TGT
TG GT

GTT
GT TT

Constructing de Bruijn Graph from k-mer Composition

Composition3(TAATGCCATGGGATGTT)
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TAA
TA AA

AATAA
AT

ATG
AT TG

TGC
TG GC

GCC
GC CC

CCA
CACC

CAT
CA AT

ATG
AT TG

TGG
TG GG

GGG
GG GG

GGA
GG GA

GAT
GA AT

ATG
AT TG

TGT
TG GT

GTT
GT TT

Gluing Identically Labeled Nodes
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TAA
TA AA

AAT ATG
AT TG

TGC GCC
GC CC

CCA CAT
CA AT

TGG
TG GG

GGG GGA
GG GA

GAT ATG
AT TG

TGT
GT

GTT
GT TT

ATG

419



TAA
TA AA

AAT ATG
AT TG

TGC GCC
GC CC

CCA CAT
CA AT

TGG
TG GG

GGG GGA
GG GA

GAT ATG
AT TG

TGT GTT
GT TT

ATG

We Are Not Done with Gluing Yet
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TAA AAT
ATG

TGG GGG GGA GAT ATG TGT GTT
TA AA AT TG GG GG GA AT TG GT TT

TGC

GCCCCA

CAT
CA

TG

GC

CC

ATGAT

Gluing Identically Labeled Nodes   
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT
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TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing Identically Labeled Nodes   
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TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT
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TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA AT

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing Identically Labeled Nodes   
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TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

The Same de Bruijn Graph:
DeBruin(Genome)=DeBruin(Genome Composition)
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DeBruijn(k-mers)
   form a node for each (k-1)-mer from k-mers
   for each k-mer in k-mers
      connect its prefix node with its suffix node by an edge

Constructing de Bruijn Graph 

De Bruijn graph of a collection of k-mers:
– Represent every k-mer as an edge between its prefix 

and suffix
– Glue ALL nodes with identical labels.
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From Hamilton           to Euler            to de Bruijn            

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly 
once.  

000  001  010  011  100  101  110  111

0 0

0

1

11

0

1
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From Hamilton           to Euler            to de Bruijn            

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly 
once.  

000  001  010  011  100  101  110  111
000

00 00
001

00 01
010

01 10
011

01 11
100

10 00
101

10 01
110

11 10
111

11 11

00 01

10 11
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From Hamilton           to Euler            to de Bruijn            

00 01

10 11

0 0

0

1

11

0

1
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De Bruijn Graph for 4-Universal String

Does it have an Eulerian cycle? If yes, how can we find it?

430



Eulerian CYCLE Problem    
Eulerian CYCLE Problem. Find an Eulerian cycle in a graph. 

• Input. A graph.  

• Output. A cycle visiting every edge in the graph exactly once. 
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A Graph is Eulerian if It Contains an Eulerian 
Cycle.

Is this graph Eulerian?  
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A Graph is Eulerian if It Contains an Eulerian 
Cycle.

Is this graph Eulerian?  
1 in, 2 out

A graph is balanced if indegree = outdegree for each node 

433



• Every Eulerian graph is balanced
• Every balanced* graph is Eulerian

(*) and strongly connected, of course! 434

Euler’s Theorem 



435

The de Bruijn graph for k = 4 
and a 2-character alphabet 
composed of the digits 0 and 
1. 
This graph has an Eulerian 
cycle since each node has 
indegree and outdegree 
equal to 2. 
Following the blue numbered 
edges in order 1, 2, ..., 16 
gives an Eulerian cycle  
0000, 0001, 0011, 0110, 
1100, 1001, 0010, 0101, 
1011, 0111, 1111, 1110, 
1101, 1010, 0100, 1000, 
which spells the cyclic 
superstring 
0000110010111101
.

Euler’s Theorem 
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Eulerian versus Hamiltonian cycles



Recruiting an Ant to Prove Euler’s Theorem 

Let an ant randomly walk through the graph. 
The ant cannot use the same edge twice! 
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If Ant Was a Genius… 

“Yay!  Now 
can I go 
home 
please?”
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A Less Intelligent Ant Would Randomly Choose a 
Node and Start Walking…

Can it get stuck? In what node? 
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The Ant Has Completed a Cycle                BUT has not 
Proven Euler’s theorem yet…

The constructed cycle is not Eulerian. Can we enlarge it? 
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Let’s Start at a Different Node in the Green Cycle

Let’s start at a node with still unexplored edges. 

“Why should I start at a different node? 
Backtracking? I’m not evolved to walk 
backwards! And what difference does it 
make???”
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1

2

3
“Why do I have to walk along the 
same cycle again??? Can I see 
something new?” 

An Ant Traversing Previously Constructed Cycle 
Starting at a node that has an unused edge, traverse the already 
constructed (green cycle) and return back to the starting node.
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13

2

4

I Returned Back BUT… I Can Continue Walking! 

After completing the cycle, start random exploration of still 
untraversed edges in the graph.

Starting at a node that has an unused edge, traverse the already 
constructed (green cycle) and return back to the starting node.
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1

2

3

4

5

6 7

8

Stuck Again!  

No Eulerian cycle yet… can we enlarge the green-blue cycle? 

The ant should walk along the constructed cycle starting at 
yet another node. Which one?  
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1

2

3

4

5

6

7 8

I Returned Back BUT… I Can Continue Walking! 

“Hmm, maybe these 
instructions were not 
that stupid…” 
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I Proved Euler’s Theorem! 

4

5

2

3

7 8

1

6

9

10
11

EulerianCycle(BalancedGraph)
   form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
      while Cycle is not Eulerian     
         select a node newStart  in Cycle with still unexplored outgoing edges   
         form a Cycle’ by traversing Cycle from newStart and randomly walking afterwards  
         Cycle ← Cycle’ 
   return Cycle 

000

001

010

011

100

101

110

1111001

1100

0000 1111

1010

0101

0011

0110

11010100

0010 1011

0111

11101000

0001
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From Reads to de Bruijn Graph to Genome    

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

Multiple Eulerian Paths

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT TAATG ATGGG ATGTTCC
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Breaking Genome into Contigs

TAATGCCATGGGATGTT

TAA AAT
TA AA AT

TGT GTT
TG GT TT

TGC

GCCCCA

CA

AT TG

GC

CC

TGG

GGA

AT

GGGA

TAAT

TGCCAT

GGGAT

TGTT

ATG

AT TG

ATG

ATGAT TG

ATG

AT TG

TGG

GG

TG

GGG
GG

GGG

TGG
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DNA Sequencing with Read-pairs

Randomly cut genomes into large equally 
sized fragments of size InsertLength
 

Multiple  identical copies of genome

Generate read-pairs:  
two reads from the 
ends of each fragment  
(separated by a fixed 
distance)200 bp 200 bp

InsertLength 450



From k-mers to Paired k-mers

Genome

Read 1 Read 2

...A T C A G A T T A C G T T C C G A G …

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.     
E.g.  TCA and TCC are at distance d=11 apart. 

Distance d=11

Disclaimers: 
1. In reality, Read1 and Read2 are typically sampled from different strands:  
                                     (→ ……. ←  rather than  → ……. →)
2. In reality, the distance d between reads is measured with errors. 
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TAA GCC
 AAT CCA
  ATG CAT
   TGC ATG
    GCC TGG
     CCA GGG
      CAT GGA
       ATG GAT
        TGG ATG
         GGG TGT
          GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

What is PairedComposition(TAATGCCATGGGATGTT)?

Representing a paired 3-mer TAA GCC as a 2-line expression: TAA
GCC

Show first line first 
And then show all the lines
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TAA GCC
 AAT CCA
  ATG CAT
   TGC ATG
    GCC TGG
     CCA GGG
      CAT GGA
       ATG GAT
        TGG ATG
         GGG TGT
          GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

PairedComposition(TAATGCCATGGGATGTT)

Representing PairedComposition in lexicographic order  

Show first line first 
And then show all the lines

TAA
GCC

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

AAT
CCA
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String Reconstruction from Read-Pairs Problem

String Reconstruction from Read-Pairs Problem. Reconstruct 
a string from its paired k-mers. 
• Input. A collection of paired k-mers. 
• Output. A string Text such that PairedComposition(Text) is 

equal to the collection of paired k-mers. 

How Would de Bruijn Assemble Paired k-mers? 
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TAA GCC
 AAT CCA
  ATG CAT
   TGC ATG
    GCC TGG
     CCA GGG
      CAT GGA
       ATG GAT
        TGG ATG
         GGG TGT
          GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Representing Genome TAATGCCATGGGATGTT as a Path

paired prefix of          →                       ← paired suffix of    

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG
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TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Labeling Nodes by Paired Prefixes and Suffixes

paired prefix of          →                       ← paired suffix of    

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG
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TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Glue nodes with identical labels

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT
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TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired de Bruijn Graph from the Genome

Glue nodes with identical labels
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Constructing Paired de Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

paired prefix of          →                       ← paired suffix of    

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG
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Constructing Paired de Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

• Paired de Bruijn graph for a collection of paired k-mers:
– Represent every paired k-mer as an edge between its 

paired prefix and paired suffix. 
– Glue ALL nodes with identical labels.
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Constructing Paired de Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

We Are Not Done with Gluing Yet

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT
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Constructing Paired de Bruijn Graph

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired de Bruijn Graph from read-pairs

• Paired de Bruijn graph for a collection of paired k-mers:
– Represent every paired k-mer as an edge between its 

paired prefix and paired suffix. 
– Glue ALL nodes with identical labels.
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TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

Which Graph Represents a Better Assembly? 

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Unique genome reconstruction 

 TAATGCCATGGGATGTT

Multiple genome reconstructions 
 
   TAATGCCATGGGATGTT
       
   TAATGGGATGCCATGTT

GGA

Paired de Bruijn Graph De Bruijn Graph
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Some Ridiculously Unrealistic Assumptions

• Perfect coverage of genome by reads (every k-mer 
from the genome is represented by a read)

• Reads are error-free.

• Multiplicities of k-mers are known

• Distances between reads within read-pairs are exact. 
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Some Ridiculously Unrealistic Assumptions

• Imperfect coverage of genome by reads (every k-
mer from the genome is represented by a read)

• Reads are error-prone.

• Multiplicities of k-mers are unknown.

• Distances between reads within read-pairs are 
inexact. 

• Etc., etc., etc.
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1st Unrealistic Assumption: Perfect Coverage

atgccgtatggacaacgact    
atgccgtatg 
  gccgtatgga 
     gtatggacaa           
          gacaacgact    

250-nucleotide reads generated by Illumina 
technology capture only a small fraction of 250-
mers from the genome, thus violating the key 
assumption of the de Bruijn graphs. 
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Breaking Reads into Shorter k-mers

atgccgtatggacaacgact     atgccgtatggacaacgact
atgccgtatg atgcc
  gccgtatgga tgccg
     gtatggacaa            gccgt
          gacaacgact        ccgta
                             cgtat
                              gtatg 
                               tatgg
                                atgga 
                                 tggac  
                                  ggaca
                                   gacaa
                                    acaac 
                                     caacg
                                      aacga
                                       acgac
                                        cgact
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atgccgtatggacaacgact     atgccgtatggacaacgact
atgccgtatg atgcc
  gccgtatgga tgccg
     gtatggacaa            gccgt
          gacaacgact        ccgta
    cgtaCggaca               cgtat
                              gtatg 
                               tatgg
                                atgga 
                                 tggac  
                                  ggaca
                                   gacaa
                                    acaac 
                                     caacg
                                      aacga
                                       acgac
                                        cgact
                             cgtaC
                              gtaCg
                               taCgg
                                aCgga
                                 Cggac  

2nd  Unrealistic Assumption: Error-free Reads

Erroneous read 
(change of t into C)
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De Bruijn Graph of ATGGCGTGCAATG…  
Constructed from Error-Free Reads

. CGTA GTAT TATG ATGG TGGA GGAC GACATGCC GCCG CCGTATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

Errors in Reads Lead to Bubbles in the 
De Bruijn Graph

CGCA GCAT CATGCCGC

GCCGC

CCGCA CGCAT GCATG

CATGBubble!

CGTA GTAT TATG ATGG TGGA GGAC GACATGCC GCCG CCGTATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA
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Bubble Explosion

470

A single error in a read results in a bubble of length k in a de Bruijn graph constructed from 
k-mers. Multiple errors in various reads may form longer bubbles, but since the error rate in 
reads is rather small (less than 1% per nucleotide in Illumina reads), most bubbles are 
small. 



Red edges represent repeats 471

Example Results:  De Bruin Graph of N. meningitidis 
Genome AFTER Removing Bubbles 
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Example and RECAP
(note we call prefix = left 2-mer and suffix=right-2 mer) 
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Example and RECAP 
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Example and RECAP 



De Bruijn Graph 

475

Example and RECAP 
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Example and RECAP 
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Example and RECAP 
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Example and RECAP 



479

Example and RECAP 
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Example and RECAP 



481

References: https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-
biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf
http://nbviewer.jupyter.org/github/BenLangmead/comp-genomics-
class/blob/master/notebooks/CG_deBruijn.ipynb

Example and RECAP 
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Reference for this section

Ø Chapter 8 Vol 2

Note: an interesting algorithm for community detection, frequently used in Bioinformatics is
the Leiden algorithm which corrects the Louvain algorithm. See V. A. Traag, L. Waltman & N. 
J. van Eck:  From Louvain to Leiden: guaranteeing well-connected communities. Scientific
Reports volume 9, Article number: 5233 (2019)  https://www.nature.com/articles/s41598-019-
41695-z/

Reference for the Markov Clustering algorithm: 
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of 
protein families. Nucleic Acids Res. 2002 30:1575-84.
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Assembling Genomes

Section 6

Ø Suffix tree
Ø Algorithm: Burrow-Wheeler Transform



• Reference genome: database genome used 
for comparison (GRCh38).

• https://www.ncbi.nlm.nih.gov/genome/guide/human/

• Question: How can we assemble individual 
genomes efficiently using the reference 
genome?

CTGATGATGGACTACGCTACTACTGCTAGCTGTAT Individual

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference

484

Biologists need algorithms for genome assemble



Why Not Use Assembly?

Multiple copies of 
a genome

AGAATATCASequence the 
reads

Shatter the 
genome into 
reads

Assemble the 
genome with 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT
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Why Not Use Assembly?

• Constructing a de Bruijn graph
takes a lot of memory.

• Hope: a machine in a clinic
that would collect and
map reads in 10 minutes.

• Idea: use existing structure of reference 
genome to help us sequence a patient’s 
genome.

TAA# AAT#

TGC#

GCC#CCA#

CAT#

ATG#

TGG#

GGG#
GGA#

GAT#

ATG#
TA#

CA#

AA# AT#

GG#GA#

TG#

GC#

CC#

ATG#
TGT# GTT#

GT# TT#
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Read Mapping

• Read mapping: determine where each read 
has high similarity to the reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT
  GAGGA    CCACG       TGA-A

Reference
Reads
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Why Not Use Alignment?

• Fitting alignment: align each read Pattern to 
the best substring of Genome.

• Has runtime O(|Pattern| * |Genome|) for 
each Pattern.

• Has runtime O(|Patterns| * |Genome|) for a 
collection of Patterns.
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Exact Pattern Matching

• Focus on a simple question: where do the 
reads match the reference genome exactly?

• Single Pattern Matching Problem:
– Input: A string Pattern and a string Genome.
– Output: All positions in Genome where Pattern 

appears as a substring.
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Exact Pattern Matching

• Focus on a simple question: where do the 
reads match the reference genome exactly?

• Multiple Pattern Matching Problem:
– Input: A collection of strings Patterns and a string 

Genome.
– Output: All positions in Genome where a string 

from Patterns appears as a substring.
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A Brute Force Approach

• We can simply iterate a brute force approach 
method, sliding each Pattern down Genome.

• Note: we use words instead of DNA strings for 
convenience.

panamabananas
        nana Pattern 

Genome
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Brute Force Is Too Slow

• The runtime of the brute force approach is too 
high!
– Single Pattern:       O(|Genome| * |Pattern|)
– Multiple Patterns: O(|Genome| * |Patterns|)
– |Patterns| = combined length of Patterns
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Processing Patterns into a Trie

• Idea: combine reads into a graph. Each 
substring of the genome can match at most 
one read.  So each read will correspond to a 
unique path through this graph.

• The resulting graph is called a trie.
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a

n

a

Root Patterns

banana
pan
and
nab
antenna
bandana
ananas
nana 
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Using the Trie for Pattern Matching

• TrieMatching: Slide the trie down the 
genome.

• At each position, walk down the trie and see if 
we can reach a leaf by matching symbols.
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p a n a m a b a n a n a s
Root

a

n

d

b

a

n
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n
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n

n

e

t

a

n

a

a

d

pn

a

n

s

a

n

a
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• Runtime of Brute Force:
– Total: O(|Genome|*|Patterns|)

• Runtime of Trie Matching: 
– Trie Construction: O(|Patterns|)
– Pattern Matching: O(|Genome| * |LongestPattern|)
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Memory Analysis of Trie Matching

• Our trie: 30 edges,
|Patterns| = 39

• Worst case: # edges
= O(|Patterns|)

Root

a

n

d

b

a

n
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n

a

n
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b

n

n

e

t
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n
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pn
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n

s

a

n

a
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Preprocessing the Genome

• What if instead we create a data structure 
from the genome itself?

• Split Genome into all its suffixes.  (Show 
matching “banana” by finding the suffix 
“bananas”.)

• How can we combine these suffixes into a 
data structure?

• Let’s use a trie!
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n
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$
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The Suffix Trie and Pattern Matching

• For each Pattern, see if Pattern can be spelled 
out from the root downward in the suffix trie.
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$
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$
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$

s
s

$

b
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1

7

9

6

11

2

8
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0

12

4

p a n a m a b a n a n a s $
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Memory Trouble Once Again

• Worst case: the suffix trie
holds O(|Suffixes|) nodes.

• For a Genome of length n,
|Suffixes| = n(n – 1)/2 = O(n2)

panamabananas$
anamabananas$
namabananas$
amabananas$
mabananas$
abananas$
bananas$
ananas$
nanas$
anas$
nas$
as$
s$
$

Suffixes
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Compressing the Trie

• This doesn’t mean that our idea was bad!

• To reduce memory, we can compress each 
“nonbranching path” of the tree into an edge.
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• This data structure is called a suffix tree.

• For any Genome, # nodes < 2|Genome|.
– # leaves = |Genome|;
– # internal nodes < |Genome| – 1 

Root

panamabananas$

a

mabananas$

na

mabananas$

na
mab

an
an

as
$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12
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Complexity

• Runtime:
– O(|Genome|2) to construct the suffix tree.
– O(|Genome| + |Patterns|) to find pattern matches.

• Memory:
– O(|Genome|2) to construct the suffix tree.
– O(|Genome|) to store the suffix tree.
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Complexity

• Runtime:
– O(|Genome|) to construct the suffix tree directly.
– O(|Genome| + |Patterns|) to find pattern matches.
– Total: O(|Genome| + |Patterns|)

• Memory:
– O(|Genome|) to construct the suffix tree directly.
– O(|Genome|) to store the suffix tree.
– Total: O(|Genome| + |Patterns|)
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We are Not Finished Yet

• I am happy with the suffix tree, but I am not 
completely satisfied.
• Runtime: O(|Genome| + |Patterns|)
• Memory: O(|Genome|)

• However, big-O notation ignores constants!
• The best known suffix tree implementations 

require ~ 20 times the length of |Genome|.
• Can we reduce this constant factor?
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Genome Compression

• Idea: decrease the amount of memory 
required to hold Genome.

• This indicates that we need methods of 
compressing a large genome, which is 
seemingly a separate problem.
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Idea #1: Run-Length Encoding

• Run-length encoding: compresses a run of n 
identical symbols.

• Problem: Genomes don’t have lots of runs…

GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

10G11C7A15T5C1G

Genome

Run-length encoding
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Converting Repeats to Runs

• …but they do have lots of repeats!

Genome

Genome*

CompressedGenome*

Run-length encoding

Convert repeats to runsHow do we do this step?
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The Burrows – Wheeler Transform 

Michael Burrows (left), David Wheeler (right)
both at the Computer Laboratory



The Burrows Wheeler Transform
Three steps: 1) Given a string T in input, we form a N*N matrix by 
cyclically rotating (left) the given text to form the rows of the matrix. 
Here we use ’$’ as a sentinel (lexicographically the greatest character 
in the alphabet and occurs exactly once in the text); 2) We sort the 
matrix according to the alphabetic order. Note that the cycle and the 
sort procedures of the Burrows-Wheeler induce a partial clustering 
of similar characters providing the means for compression; 3) The 
last column of the matrix is BWT(T) (we need also the row number 
where the original string ends up).
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BWT

Property that makes BWT(T) reversible is LF Mapping: 
the i-th occurrence of a character in Last column is 
same text occurrence as the i-th occurrence in the 
First column (i.e. the sorting strategy preserves the 
relative order in both last column and first column).
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BWT
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Burrows-Wheeler Transform (BWT)

acaacg$

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac

gc$aaac

Burrows-Wheeler Matrix (BWM)

BWT



Burrows-Wheeler Matrix

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac



Burrows-Wheeler Matrix

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac

See the suffix array?

3
1
4
2
5
6



Key observation

1$acaacg1
2aacg$ac1
1acaacg$1
3acg$aca2
1caacg$a1
2cg$acaa3
1g$acaac2

a1c1a2a3c2g1$1

“last first (LF) mapping”

The i-th occurrence of character X in the 
last column corresponds to
the same text character as the i-th 
occurrence of X in the first column.



Burrow Wheeler Transform

521



The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$
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The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$
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The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

Sort the strings 
lexicographically
($ comes first)

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a
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The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

Burrows-Wheeler 
Transform:

Last column = 
smnpbnnaaaaa$a

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a
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BWT: Converting Repeats to Runs

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Convert repeats to runsBurrows-Wheeler Transform!
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How Can We Decompress?

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Burrows-Wheeler Transform

EASY

IS IT POSSIBLE?
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Reconstructing  banana

• We now know 2-mer composition of the 
circular string banana$

• Sorting gives us the first 2 columns of the 
matrix.

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$
na
na
ba
$b
an
an

$b
a$
an
an
ba
na
na

Sort2-mers
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Reconstructing  banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know 3-mer composition of the 
circular string banana$

• Sorting gives us the first 3 columns of the 
matrix.

a$b
na$
nan
ban
$ba
ana
ana

3-mers Sort

$ba
a$b
ana
ana
ban
na$
nan
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Reconstructing  banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know 4-mer composition of the 
circular string banana$

• Sorting gives us the first 4 columns of the 
matrix.

a$ba
na$b
nana
bana
$ban
ana$
anan

4-mers Sort

$ban
a$bb
anaa
anaa
bann
na$b
nana
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Reconstructing  banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know 5-mer composition of the 
circular string banana$

• Sorting gives us the first 5 columns of the 
matrix.

a$ban
na$ba
nana$
banan
$bana
ana$b
anana

5-mers Sort

$bana
a$bbn
anaab
anaaa
bannn
na$ba
nana$
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Reconstructing  banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba
anaaa$
bannna
na$ban
nana$b

• We now know 6-mer composition of the 
circular string banana$

• Sorting gives us the first 6 columns of the 
matrix.
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Reconstructing  banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba
anaaa$
bannna
na$ban
nana$b

• We now know 6-mer composition of the 
circular string banana$

• Sorting gives us the first 6 columns of the 
matrix.
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Reconstructing  banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know the entire matrix!

• Taking all elements in the first row (after $) 
produces banana.
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More Memory Issues

• Reconstructing Genome from BWT(Genome) 
required us to store |Genome| copies of 
|Genome|.

• Can we invert BWT with less space?

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba
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A Strange Observation

p a

n

a

m

a

b
a

n

a

n

a

s

$$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

536



A Strange Observation

p a

n

a

m

a

b
a

n

a

n

a

s

$$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n  
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a
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Is It True in General?

$ p a n a m a b a n a n a s
1  a b a n a n a s $ p a n a m
2  a m a b a n a n a s $ p a n
3  a n a m a b a n a n a s $ p
4  a n a n a s $ p a n a m a b
5  a n a s $ p a n a m a b a n
6  a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

These strings are sorted

Chop off a
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Is It True in General?

$ p a n a m a b a n a n a s
1  a b a n a n a s $ p a n a m
2  a m a b a n a n a s $ p a n
3  a n a m a b a n a n a s $ p
4  a n a n a s $ p a n a m a b
5  a n a s $ p a n a m a b a n
6  a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Still
sorted

Chop off a
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Is It True in General?

$ p a n a m a b a n a n a s
1  a b a n a n a s $ p a n a m
2  a m a b a n a n a s $ p a n
3  a n a m a b a n a n a s $ p
4  a n a n a s $ p a n a m a b
5  a n a s $ p a n a m a b a n
6  a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Chop off a

Still
sorted

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
s $ p a n a m a b a n a n a

Add a
to end

Still
sorted

Ordering
doesn’t
change!

1
2
3
4
5

6
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Is It True in General?

• First-Last Property: The k-th
occurrence of symbol in
FirstColumn and the k-th
occurrence of symbol in
LastColumn correspond to
the same position of symbol
in Genome. 

$1panamabananas1
a1bananas$panam1
a2mabananas$pan1
a3namabananas$p1
a4nanas$panamab1
a5nas$panamaban2
a6s$panamabanan3
b1ananas$panama1
m1abananas$pana2
n1amabananas$pa3
n2anas$panamaba4
n3as$panamabana5
p1anamabananas$1
s1$panamabanana6
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More Efficient BWT Decompression

p a

n

a

m

a

b
a

n

a

n

a

s

$$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
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More Efficient BWT Decompression

p a

n

a

m

a

b
a

n

n

a

s

$$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
a
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More Efficient BWT Decompression

p a

n

a

m

a

b
a

n

n

a

s

$$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
a

• Memory: 2|Genome| = O(|Genome|).
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Recalling Our Goal 

• Suffix Tree Pattern Matching:
– Runtime: O(|Genome| + |Patterns|)
– Memory: O(|Genome|)
– Problem: suffix tree takes 20 x |Genome| space

• Can we use BWT(Genome) as our data 
structure instead?
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Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
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Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
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Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
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Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
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Where Are the Matches?

• Multiple Pattern Matching Problem:
– Input: A collection of strings Patterns and a string 

Genome.
– Output: All positions in Genome where one of 

Patterns appears as a substring.

• Where are the positions?  BWT has not 
revealed them.
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Where Are the Matches?

• Example: We know that
ana occurs 3 times, but
where?

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6

panamabananas$

560



Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$
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Using the Suffix Array to Find Matches

• Suffix array: holds 
starting position of 
each suffix beginning
a row.

• Thus, ana occurs at 
positions 1, 7, 9 of 
panamabananas$.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3 
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12
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The Suffix Array: Memory Once Again

• Memory: ~ 4 x |Genome|.

Root

panamabananas$

a

mabananas$

na

mabananas$

na

mab
an

an
as

$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13    5    3    1    7    9    11    6    4    2    8    10    0   12]
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The Suffix Array: Memory Once Again

• Memory: ~ 4 x |Genome|.

Root

panamabananas$

a

mabananas$

na

mabananas$

na

mab
an

an
as

$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13    5    3    1    7    9    11    6    4    2    8    10    0   12]
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The Suffix Array: Memory Once Again

• Memory: ~ 4 x |Genome|.

Root

panamabananas$

a

mabananas$

na

mabananas$

na

mab
an

an
as

$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13    5    3    1    7    9    11    6    4    2    8    10    0   12]
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Returning to Our Original Problem

• We need to look at INEXACT matching in order 
to find variants.

• Approx. Pattern Matching Problem:
– Input: A string Pattern, a string Genome, and an 

integer d.
– Output: All positions in Genome where Pattern 

appears as a substring with at most d mismatches.
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Returning to Our Original Problem

• We need to look at INEXACT matching in order 
to find variants.

• Multiple Approx. Pattern Matching Problem:
– Input: A collection of strings Patterns, a string 

Genome, and an integer d.
– Output: All positions in Genome where a string 

from Patterns appears as a substring with at most 
d mismatches.
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Method 1: Seeding

• Say that Pattern appears in Genome with 1 
mismatch:

…ggcacactaggctcc…

Pattern

Genome

acttggct   
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Method 1: Seeding

• Say that Pattern appears in Genome with 1 
mismatch:

• One of the substrings must match!

…ggcacactaggctcc…

Pattern

Genome

acttggct   
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Method 1: Seeding

• Theorem: If Pattern occurs in Genome with d 
mismatches, then we can divide Pattern into
d + 1 “equal” pieces and find at least one exact 
match.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Method 1: Seeding

• Say we are looking for at most d mismatches.

• Divide each of our strings into d + 1 smaller 
pieces, called seeds.

• Check if each Pattern has a seed that matches 
Genome exactly.

• If so, check the entire Pattern against Genome.574



Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

Now we extend 
all strings with at 
most 1 mismatch.

# Mismatches

1
0
1
1
0
0
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Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

One string 
produces a 
second mismatch 
(the $), so we 
discard it.

# Mismatches

1
1
0
0
0
2
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Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

In the end, we 
have five 3-mers 
with at most 1 
mismatch.

# Mismatches

1
1
0
0
0
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Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

Suffix Array

5
3
1
7
9

In the end, we 
have five 3-mers 
with at most 1 
mismatch.
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Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3 
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

Suffix Array

5
3
1
7
9

In the end, we 
have five 3-mers 
with at most 1 
mismatch.
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Reference for this section

Ø Chapter 9 Vol 2

Computing BWT:
http://www.allisons.org/ll/AlgDS/Strings/BWT/
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Algorithms to find parts

Section 7

Ø Algorithm: Viterbi
Ø Algorithm: Forward
Ø Algorithm: Backward



The gene information starts with the promoter, which 
is followed by a transcribed (i.e. RNA) but non-coding 
(i.e. not translated) region called 5’ untranslated 
region (5’ UTR). The initial exon contains the start 
codon which is usually ATG. There is an alternating 
series of introns and exons, followed by the 
terminating exon, which contains the stop codon. It is 
followed by another non-coding region called the 3’ 
UTR; at the end there is a polyadenylation (polyA) 
signal, i.e. a repetition of the amino acid adenine. The 
intron/exon and exon/intron boundaries are conserved 
short
sequences and called the acceptor and donor sites. 
For all these different parts we need to know their 
probability of occurrence in a large database.

Biologists need algorithms to identify genes and gene parts
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Using alignments



Membrane proteins that are important for cell 
import/export. We would like to predict the 
position in the amino acids with respect to the 
membrane. The prediction of protein topology 
(i.e. which parts are outside, inside and buried in 
the membrane) will require to train the model 
with a dataset of experimentally determined 
genes / transmembrane helices and to validate 
the model with another dataset. The figure on 
right describes a 7 helix membrane protein 
forming a sort of a cylinder (porus) across the cell 
membrane

584

Biologists need algorithms to identify protein parts



FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The dishonest casino model



Definition: A hidden Markov model (HMM)
• Alphabet S = { b1, b2, …, bM }
• Set of states Q = { 1, ..., K }
• Transition probabilities between any two states
  
  aij = transition prob from state i to state j

  ai1 + … + aiK = 1,   for all states i = 1…K

• Start probabilities a0i

  a01 + … + a0K = 1

• Emission probabilities within each state

  ei(b) = P( xi = b | pi = k)

  ei(b1) + … + ei(bM) = 1,   for all states i = 1…K

K

1

…

2

HMM



At each time step t, 
the only thing that affects future states 
is the current state pt

P(pt+1 = k | “whatever happened so far”) =
P(pt+1 = k | p1, p2, …, pt, x1, x2, …, xt) =
P(pt+1 = k | pt)

K

1

…

2

A Hidden Markov Model is memory-less



Given a sequence x = x1……xN,
A parse of x is a sequence of states p = p1, ……, pN

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

A parse of a sequence



Given a sequence x = x1……xN

and a parse p = p1, ……, pN,

To find how likely is the parse:
  (given our HMM)

P(x, p) = P(x1, …, xN, p1, ……, pN) =
           P(xN, pN | pN-1) P(xN-1, pN-1 | pN-2)……P(x2, p2 | p1) 

P(x1, p1) =
    P(xN | pN) P(pN | pN-1) ……P(x2 | p2) P(p2 | p1) P(x1 | 
p1) P(p1) =

     a0p1 ap1p2……apN-1pN ep1(x1)……epN(xN) 
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Likelihood of a parse



Example: the dishonest casino
Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of

p = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs a0Fair = ½, aoLoaded = ½)

½ ´ P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ ´ (1/6)10 ´ (0.95)9 = .00000000521158647211 = 0.5 ´ 10-9



Example: the dishonest casino
So, the likelihood the die is fair in all this run
is just 0.521 ´ 10-9

OK, but what is the likelihood of
= Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, 

Loaded, Loaded, Loaded?
½ ´ P(1 | Loaded) P(Loaded, Loaded) … P(4 | Loaded) =
½ ´ (1/10)8 ´ (1/2)2 (0.95)9 = .00000000078781176215 = 7.9 
´ 10-10

Therefore, it is after all 6.59 times more likely that the die is 
fair all the way, than that it is loaded all the way.



Example: the dishonest casino
Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood p = F, F, …, F?

½ ´ (1/6)10 ´ (0.95)9 = 0.5 ´ 10-9, same as before

What is the likelihood

p = L, L, …, L?

½ ´ (1/10)4 ´ (1/2)6 (0.95)9 = .00000049238235134735 = 0.5 ´ 10-7

So, it is 100 times more likely the die is loaded



The three main questions on HMMs
1. Evaluation

GIVEN a HMM M, and a sequence x,
FIND Prob[ x | M ]

2. Decoding
GIVEN a HMM M, and a sequence x,
FIND the sequence p of states that maximizes P[ x, p | M ]

3. Learning
GIVEN a HMM M, with unspecified transition/emission 

probs., and a sequence x,
FIND parameters q = (ei(.), aij) that maximize P[ x | q ]



Let’s not be confused by notation

P[ x | M ]: The probability that sequence x was generated by 
 the model

   The model is: architecture (#states, etc)
              + parameters q = aij, ei(.)
   
So, P[ x | q ], and P[ x ] are the same, when the architecture, and 

the entire model, respectively, are implied

Similarly, P[ x, p | M ] and P[ x, p ] are the same

In the LEARNING problem we always write P[ x | q ] to emphasize 
that we are seeking the q that maximizes P[ x | q ]



Decoding
GIVEN x = x1x2……xN

We want to find p = p1, ……, pN,
such that P[ x, p ] is maximized

p* = argmaxp P[ x, p ]

We can use dynamic programming!

Let Vk(i) = max{p1,…,i-1} P[x1…xi-1, p1, …, pi-1, xi, pi = k]
   = Probability of most likely sequence of 

states ending at state pi = k
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Decoding – main idea
Given that for all states k,  and for a fixed position i,
  Vk(i) = max{p1,…,i-1} P[x1…xi-1, p1, …, pi-1, xi, pi = k]
What is Vk(i+1)?
From definition, 
Vl(i+1) = max{p1,…,i}P[ x1…xi, p1, …, pi, xi+1, pi+1 = l ]
= max{p1,…,i}P(xi+1, pi+1 = l | x1…xi,p1,…, pi) P[x1…xi, p1,…, pi]  
= max{p1,…,i}P(xi+1, pi+1 = l | pi ) P[x1…xi-1, p1, …, pi-1, xi, pi]
= maxk P(xi+1, pi+1 = l | pi = k) max{p1,…,i-1}P[x1…xi-1,p1,…,pi-1, 

xi,pi=k]  = el(xi+1) maxk akl Vk(i)



The Viterbi Algorithm
Input: x = x1……xN
Initialization:
 V0(0) = 1   (0 is the imaginary first position)
 Vk(0) = 0, for all k > 0

Iteration:
 Vj(i)  = ej(xi) ´ maxk akj Vk(i-1)

 Ptrj(i) = argmaxk akj Vk(i-1)

Termination:
 P(x, p*) = maxk Vk(N)

Traceback:
  pN* = argmaxk Vk(N)
  pi-1*  = Ptrpi (i)

Andrew 
Viterbi



The Viterbi Algorithm: complexity

left: Similar to “aligning” a set of states to a sequence,
Time: O(K2N);  Space: O(KN); bottom right : comparison of 

valid directions in the alignment and decoding problem.



Viterbi Algorithm – a practical detail
Underflows are a significant problem

P[ x1,…., xi, p1, …, pi ] =  a0p1 ap1p2……api ep1(x1)……epi(xi)

These numbers become extremely small – underflow 

Solution: Take the logs of all values

Vl(i) = log ek(xi) + maxk [ Vk(i-1) + log akl ]



Examples
Let x be a sequence with a portion of ~ 1/6 6’s, followed by a 

portion of ~ ½ 6’s…

x = 123456123456…12345 6626364656…1626364656

Then, it is not hard to show that optimal parse is (exercise):

   FFF…………………...F LLL………………………...L

6 nucleotides “123456” parsed as F, contribute .956´(1/6)6              
= 1.6´10-5

 parsed as L, contribute .956´(1/2)1´(1/10)5 = 0.4´10-5

    “162636” parsed as F, contribute .956´(1/6)6              = 1.6´10-5

 parsed as L, contribute .956´(1/2)3´(1/10)3 =  9.0´10-5



Given a HMM, we can generate a sequence of length n 
as follows:

Start at state p1 according to prob a0p1 
1. Emit letter x1 according to prob ep1(x1)
2. Go to state p2 according to prob ap1p2
3. … until emitting xn 

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xn

2

1

K

2
0

e2(x1)

a02

Generating a sequence by the model



Given a sequence x,

• What is the probability that x was generated by the 
model?

• Given a position i, what is the most likely state that 
emitted xi?

Example: the dishonest casino 
 
 Say x = 12341623162616364616234161221341
 
 Most likely path: p = FF……F
 However: marked letters more likely to be L than unmarked 

letters

A couple of questions



We will develop algorithms that allow us to compute:

 P(x)  Probability of x given the model
 
 P(xi…xj) Probability of a substring of x given the model

 P(pI = k | x) Probability that the ith state is k, given x
    
  A more refined measure of which states x may be in

Evaluation



The Forward Algorithm
We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

   P(x) = Sp P(x, p)  = Sp P(x | p) P(p) 

To avoid summing over an exponential number of paths p, 
define 

  fk(i) = P(x1…xi, pi = k) (the forward probability)



Define the forward probability:

fl(i) = P(x1…xi, pi = l) 

   = Sp1…pi-1 P(x1…xi-1, p1,…, pi-1, pi = l) el(xi)

   = Sk Sp1…pi-2 P(x1…xi-1, p1,…, pi-2, pi-1 = k) akl el(xi)

   = el(xi) Sk fk(i-1) akl

The Forward Algorithm – derivation



We can compute fk(i) for all k, i, using dynamic programming!
Initialization: 
 f0(0) = 1
 fk(0) = 0, for all k > 0
Iteration:
 fl(i) = el(xi) Sk fk(i-1) akl
Termination:
 P(x) = Sk fk(N) ak0

 Where, ak0 is the probability that the terminating state is k 
(usually = a0k)

The Forward Algorithm



Relation between Forward and Viterbi

 VITERBI
Initialization:
 V0(0) = 1
 Vk(0) = 0, for all k > 0

Iteration:

 Vj(i) = ej(xi) maxk Vk(i-1) akj 

Termination:

P(x, p*) = maxk Vk(N)

 FORWARD
Initialization: 
 f0(0) = 1
 fk(0) = 0, for all k > 0

Iteration:

 fl(i) = el(xi) Sk fk(i-1) akl

Termination:

 P(x) = Sk fk(N) ak0



We want to compute
 P(pi = k | x),
the probability distribution on the ith position, given x

We start by computing
P(pi = k, x) = P(x1…xi, pi = k, xi+1…xN)
       = P(x1…xi, pi = k) P(xi+1…xN | x1…xi, pi = k) 
       = P(x1…xi, pi = k) P(xi+1…xN | pi = k) 

Forward, fk(i) Backward, bk(i) 

Motivation for the Backward Algorithm



Define the backward probability:

 bk(i) = P(xi+1…xN | pi = k) 

        = Spi+1…pN P(xi+1,xi+2, …, xN, pi+1, …, pN | pi = k)

      = Sl Spi+1…pN P(xi+1,xi+2, …, xN, pi+1 = l, pi+2, …, pN | pi = k)

       = Sl el(xi+1) akl Spi+1…pN P(xi+2, …, xN, pi+2, …, pN | pi+1 = l)

        = Sl el(xi+1) akl bl(i+1)

The Backward Algorithm – derivation



We can compute bk(i) for all k, i, using dynamic 
programming

Initialization: 
 bk(N) = ak0, for all k

Iteration:

 bk(i) = Sl el(xi+1) akl bl(i+1)

Termination:

 P(x) = Sl a0l el(x1) bl(1)

The Backward Algorithm



Computational Complexity

What is the running time, and space required, for 
Forward, and Backward?

    Time:   O(K2N)
    Space: O(KN)
Useful implementation technique to avoid underflows

 Viterbi:          sum of logs
 Forward/Backward: rescaling at each position by 

multiplying by a constant
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GenScan



• N - intergenic region
• P - promoter
• F - 5’ untranslated region
• Esngl – single exon (intronless) (translation 

start -> stop codon)
• Einit – initial exon (translation start -> 

donor splice site)
• Ek – phase k internal exon (acceptor 

splice site -> donor splice site)
• Eterm – terminal exon (acceptor splice site 

-> stop codon)
• Ik – phase k intron: 0 – between codons; 

1 – after the first base of a codon; 2 – 
after the second base of a codon
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GenScan



E0 E1 E2

E

poly-A

3'UTR5'UTR

termEini

Esingle

I0 I 1 I 2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

…

…

ttaaggagcagtgactagcgactagcatcg
atgctacgtacgatgc
………..

acgtactagctagctagcgcatgacgtagc
tagcacgcatcgaga

6201
6261
6321
6381
6441
6501
6561
6621
6681
6741
6801
6861
6921
6981
7041
7101
7601
7661
7721
7781
7841
7901
7961
8021
8081
8141
8201
8261
8321
8381
8441
8901
8961
9021
9081
9141
9201
9261
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GenScan



Genscan model
• Duration of states – length distributions of 

– Exons (coding)
– Introns (non coding)

• Signals at state transitions
– ATG
– Stop Codon TAG/TGA/TAA
– Exon/Intron and Intron/Exon Splice Sites

• Emissions
– Coding potential and frame at exons
– Intron emissions

Performance
> 80% correct exon predictions, and > 90% correct coding/non coding predictions by bp.
BUT -  the ability to predict the whole gene correctly is much lower



Human p53 tumor suppressor gene -chromosome 17

3’ untranslated 
region

Final exon

Initial exon

Introns

Internal exons

Example result: exons, introns prediction



TMHMM: Prediction of transmembrane topology of protein sequence 
Model consists of submodels for:

• helix core and cap regions (cytoplasmic and extracellular)
• cytoplasmic and extracellular loop regions
• globular domain regions

Trained form 160 proteins with experimentally determined transmembrane 
helices.

617

Prediction method: 
Posterior decoding, the 
program computes for each 
residue of the sequence 
the probability of being part 
if a transmembrane helix, 
an intracellular loop or 
globular domain region, or 
an extracellular loop or 
domain region. 



TMHMM: uses cyclic model with 7 states for 
- TM helix core
- TM helix caps on the N- and  C-terminal side
- non-membrane region on the cytoplasmic side
- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops 
to account for different membrane insertion mechanism)
- a globular domain state in the middle of each non-membrane region

618

Model architecture of TMHMM



Example result: TMHMM-Output

619

http://www.cbs.dtu.dk/services/TMHMM-2.0/
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Validation for exons, introns, genes, protein parts etc
Sensitivity (Sn, recall, or TPR) measures the 
proportion of actual positives that are correctly
identified as such, while specificity (Sp or TNR) 
measures the proportion of actual negatives
that are correctly identified as such. Precision 
(PPV) is the proportion of positive results that
are true positive results, while NPV is the 
proportion of negative results that are true
negative results. FDR is the binary (not the 
multiple testing) measure of false positives
divided by all positive predictions. Accuracy or 
ACC (for binary classification) is defined as the 
number of correct predictions made divided by 
the total number of predictions made. ACC is
one of the best ways of assessing binary test or 
predictor accuracy. The F1 score is another
measure of test accuracy and is defined as the 
harmonic average of precision (PPV) and recall
(Sn). MCC is a popular measure of test or 
predictor accuracy. It is essentially a chi-
squared statistic for a standard 2 × 2 
contingency table. In effect, MCC is the 
correlation coefficient between the observed
and predicted binary classifications.
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Reference for this section

Ø Chapter 10 Vol 2

Ø Chapter 3
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Algorithms for DNA computing and storage

Section 8

Ø Algorithm: Adleman DNA Computing
Ø Algorithm: Random access in large-scale DNA data storage



Adleman's DNA computation approach (1994) solved a Hamilton problem of 
seven cities.  He used DNA techniques to assemble itineraries at random; 
Select itineraries from initial city to final city. The correct number of cities 
must be visited. No city can be left out.

Each city is represented by a unique sequence of bases. Connections 
between two cities are created from a combination of the complement of the 
first half of the sequence of one city, and the complement of the second half 
of the sequence of a connected city. In this way DNA representing the trip will 
be created with one strand representing a sequence of cities and the 
complementing strand representing a series of connections. 

The next step is filtering out trips that start and end in the correct cities, then 
filtering trips with the correct number of cities, and finally filtering out trips 
that contain each city only once. 

623

DNA for computing



DNA for computing 
Represent Each City By A DNA Strand of 20 Bases City1   ATGCTCAGCTACTATAGCGA

City2    TGCGATGTACTAGCATATAT

City3    GCATATGGTACACTGTACAA

City4    TTATTAGCGTGCGGCCTATG

City5    CCGCGATAGTCTAGATTTCC

Etc.

City 1->2 TGATATCGCTACGCTACATG

City 2->3 ATCGTATATACGTATACCAT

City 3->4 GTGACATGTTAATAATCGCA

City 4->5 CGCCGGATACGGCGCTATCA

City 5->6 GATCTAAAGGTATGCATACG

Etc.

Represent Each Air Route By Mixed Complementary Strands

L. Adelman, Scientific American, pp. 54-61 (Aug 
1998);



Hamiltonian problem: list of steps

The challenge is finding a route between various cities, 
passing through each only once. 
Adleman first generated all the possible itineraries and then 
selected the correct itinerary. 
Specifically, the method based on Adleman’s experiment 
would be as follows:
• 1 Generate all possible routes.
• 2 Select itineraries that start with the proper city and end 

with the final city.
• 3 Select itineraries with the correct number of cities.
• 4 Select itineraries that contain each city only once.
• All of the above steps can be accomplished with standard 

molecular biology techniques.
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routes

cities

Step 1: Generate all possible routes



Step 1: Technique for Generating Routes Strategy
Encode city names in short DNA sequences. Encode itineraries by connecting the city 
sequences for which routes exist.
Synthesizing short single stranded DNA is now a routine process, so encoding the city 
strings is straightforward. Itineraries can then be produced from the city encodings by 
linking them together in proper order. 
To accomplish this you can take advantage of the fact that DNA hybridizes (=binds)  with its 
complimentary sequence (complementary strands of DNA bind each other). 
For example, you can encode the routes between cities by encoding the complement of the 
second half (last n letters) of the departure city and the first half (first n letters) of the 
arrival city. 
For example the route between Miami (CTACGG) and NY (ATGCCG) can be made by taking 
the second half of the coding for Miami (CGG) and the first half of the coding for NY (ATG). 
This gives CGGATG.
By taking the complement of this you get, GCCTAC, which not only uniquely represents the 
route from Miami to NY, but will connect the DNA representing Miami and NY by 
hybridizing itself to the second half of the code representing Miami (...CGG) and the first 
half of the code representing NY (ATG…). 
Random itineraries can be made by mixing city encodings with the route encodings. Finally, 
the DNA strands can be connected together by an enzyme called ligase (ligases are 
enzymes, i.e. proteins connecting strings). What we are left with are strands of DNA 
representing itineraries with a random number of cities and random set of routes. 
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Step 2,3: Sort the DNA by length and select the DNA 
whose length corresponds to 7 cities

A test tube is now filled with DNA encoded itineraries 
that start with LA and end with NY, where the number of 
cities in between LA and NY varies. 
We now want to select those itineraries that are seven 
cities long. To accomplish this we can use a technique 
called Gel Electrophoresis, which is a common procedure 
used to resolve the size of DNA. 628

selection for length and initial/end points 



629

DNA is a negatively charged molecule, so if placed in an 
electric field it will be attracted to the positive potential. 
The basic principle behind Gel Electrophoresis is to force 
DNA through a gel matrix by using an electric field.

The gel is made up of a polymer that forms a meshwork of 
linked strands. The DNA now is forced to thread its way 
through the tiny spaces, which slows down the DNA at 
different rates depending on its length.

What we typically end up with after running a gel is a series 
of DNA bands, with each band corresponding to a certain 
length.

We can then simply cut out the band of interest to isolate 
DNA of a specific length. We know that each city is encoded 
with a certain number of base pairs of DNA, knowing the 
length of the itinerary gives us the number of cities.

UV shows DNA position

Step 2,3: Sort the DNA by length and select the DNA 
whose length corresponds to 7 cities (tech details)



Strategy: Selectively copy and amplify only the section of the DNA that starts with LA and ends 
with NY by using the Polymerase Chain Reaction (PCR). See next slide.

After generating the routes, we now have a test tube full of various lengths of DNA that encode 
possible routes between cities. 
What we want are routes that start with LA and end with NY.  To accomplish this we can use a 
technique called Polymerase Chain Reaction (PCR), which allows you to produce many copies of 
a specific sequence of DNA. 
After many iterations of PCR, the DNA you're working on is amplified exponentially. 

So to selectively amplify the itineraries that start and stop with our cities of interest, we use 
primers that are complimentary to LA and NY. 

What we end up with after PCR is a test tube full of double stranded DNA of various lengths, 
encoding itineraries that start with LA and end with NY.
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Step 4: itineraries Selection: 
Start and End with Correct Cities (using PCR)
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Figure from wikipedia

PCR is an iterative process that cycle through a series of copying events using an enzyme 
called polymerase. Polymerase will copy a section of single stranded DNA starting at the 
position of a primer, a short piece of DNA complimentary to one end of a section of the DNA 
that you're interested in. 
By selecting primers that flank the section of DNA you want to amplify, the polymerase 
preferentially amplifies the DNA between these primers, doubling the amount of DNA 
containing this sequence. 



DNA containing a specific sequence can be purified from a sample of mixed DNA by a technique called 
affinity purification, as shown below. This is accomplished by attaching the compliment of the sequence 
in question to a substrate like a magnetic bead. The beads are then mixed with the DNA. DNA, which 
contains the sequence you're after then hybridizes with the complement sequence on the beads. These 
beads can then be retrieved and the DNA isolated.

632

Step 5: Itineraries Selection: have a Complete Set of 
Cities

Select itineraries that have a complete set of cities. Sequentially affinity-purify n times, using a 
different  city complement for each run.  We are left with itineraries that start in LA, visit each 
city once, and end in NY.



Adleman’s approach pros & cons
1 gram of DNA can hold about 1x1014 MB of data. A test tube 
of DNA can contain trillions of strands. 5 grams of DNA contain 
10 21 bases (Zetta Bytes) Each operation on a test tube of DNA 
is carried out on all strands in the tube in parallel (Speed: 500-
5000 base pairs a second); Adleman estimated 2 x 1019 
operations per joule. 
Adleman's experiment solved a seven city problem, but there 
are two major shortcomings preventing a large scaling up of 
his computation. 
The complexity of the Hamiltonian problem simply doesn’t 
disappear when applying a different method of solution - it 
still increases exponentially. Adleman’s process to solve the 
Hamiltonian problem for 200 cities would require an amount 
of DNA that weighed more than the Earth.
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The data longevity  and information density of current DNA data storage systems already surpass those of 
traditional storage systems, but the cost and the read and write speeds do not. 

Storing one megabyte  of data in DNA with existing technology costs hundreds of dollars, compared with less  
than $0.0001 per year using tape, the standard for  archival  data  storage.  
The  price  of  DNA storage  will  undoubtedly  drop  substantially as  the  costs  of  DNA  synthesis  and  
sequencing  fall.  

The  more  pressing  challenge  is  that DNA  synthesis  and  sequencing  are  inherently slow. 

DNA synthesis and sequencing DNA can be extensively parallelized, their slow speeds limit the amount of data 
that can be  written  and  read  in  a  given  time  interval. The  bottleneck  for  both  cost  and  speed  is 
synthesis.

A fully  automated DNA drive would include synthesis and sequencing technology, components to  store and 
handle the DNA, as well as a supply of chemicals. 
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Random access in large-scale DNA data storage

DNA is not only BIG data:
It is also a way to store information 
and computing. More at the end!
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Random access in large-scale DNA data storage
DNA strands that store 96 bits are synthesized, with each of the bases (TGAC) representing a 
binary value (T and G = 1, A and C = 0).
To read the data stored in DNA, you simply sequence it — just as if you were sequencing the 
human genome — and convert each of the TGAC bases back into binary. To aid with 
sequencing, each strand of DNA has a 19-bit address block at the start (the red bits in the 
image below) — so a whole vat of DNA can be sequenced out of order, and then sorted into
usable data using the addresses.
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Random access in large-scale DNA data storage

Synthetic DNA is durable and can encode digital data with high density, 
making it an attractive medium for data storage. 

However, recovering stored data on a large-scale currently requires all the 
DNA in a pool to be sequenced, even if only a subset of the information needs
to be extracted.

Here, they encode and store 35 distinct files (over 200 MB of data), in more 
than 13 million DNA oligonucleotides, and show that they can recover each
file individually and with no errors, using a random access approach. 

Organik et al design and validate a large library of primers that enable
individual recovery of all files stored within the DNA. These advances
demonstrate a viable, large-scale system for DNA data storage and retrieval. 



Organick et al.  stored and retrieved more than 200 megabytes of 
data.
Specifically,  they  attach  distinct  primers  to  each set of DNA 
molecules carrying information about a file. This allows them to 
retrieve a given file by selectively amplifying and sequencing only 
the molecules with the primer marking  the desired file. 
To test their scheme, they designed  a primer library that allowed 
them to uniquely  tag data stored in DNA. They encoded  35 digital 
files into 13,448,372 DNA sequences, each 150-nucleotides long. 
Redundant information using error detection codes is also included 
to  increase  robustness  to  missing  sequences  and errors. 

To  improve  recovery  of  the  information, Organick et  al.  develop  
a  clustering  and consensus  algorithm  that  aligns  and  filters 
reads before error correction. 

This  algorithm  also  takes into account reads that differ from the 
correct  length.  638

Random access in large-scale DNA data storage
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The principle of DNA information storage in Organick  et al.  (a) Two files are stored by 
encoding each file in a set of different DNA sequences.  Redundant information is added to 
enable error recovery at retrieval, and a distinct primer is appended to each set of sequences 
corresponding to a file.  The resulting strings are synthesized and stored as a pool of different 
DNA molecules.  (b) A specific  file is retrieved by amplifying the molecules corresponding to the 
file by ePCR, sequencing the PCR  products, and algorithmically reconstructing the data from 
the reads.

1

Random access in large-scale DNA data storage



This work describes large-scale random access, low redundancy, and robust 
encoding and decoding of information stored in DNA, as well as a notable increase 
in the volume of data stored (200 MB, the largest synthetic DNA pool available to 
date).Overview of the DNA data storage workflow and stored data. 
(a) The encoding process maps digital files into a large set of 150-nucleotide DNA 

sequences, including Reed–Solomon code redundancy to overcome errors in 
synthesis and sequencing. The resulting collection of sequences is 
synthesized. The random access process starts with amplifying a subset of the 
sequences corresponding to one of the files using PCR. The amplified pools 
are sequenced. Finally, sequencing reads are decoded using clustering, 
consensus and error correction algorithms. 640

Random access in large-scale DNA data storage



Design of random access primers and coding algorithm. 
(i) They designed a primer library. The primer sequence set is then filtered that has 
low similarity between the sequences. (a, ii) The resulting set of candidate primers is 
then validated experimentally by synthesizing a pool of about 100,000 strands 
containing sets of size 1 to 200 DNA sequences each, surrounded by one of the 
candidate primer pairs, and then randomly selecting 48 of those pairs for 
amplification. The product is sequenced, and sequences with each of the 48 primer 
pairs appear among sequencing reads, albeit at different relative proportions when 
normalized to the number of sequences in each set. 641

Random access in large-scale DNA data storage



The encoding process starts by randomizing data to reduce chances of secondary 
structures, primer–payload non-specific binding, and improved properties during 
decoding. It then breaks the data into fixed-size payloads, adds addressing information 
(Addr), and applies outer coding, which adds redundant sequences using a Reed–
Solomon code to increase robustness to missing sequences and errors. The level of 
redundancy is determined by expected errors in sequencing and synthesis, as well as DNA 
degradation. Next, it applies inner coding, which ultimately converts the bits to DNA 
sequences. The resulting set of sequences is surrounded by a primer pair chosen from the 
library based on (low) level of overlap with payloads.

642

Random access in large-scale DNA data storage
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The decoding process starts by clustering reads based on similarity, and 
finding a consensus between the sequences in each cluster to reconstruct 
the original sequences, which are then decoded back to digital data.

Random access in large-scale DNA data storage
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Reference for this section

Reference: Adleman, L. M. (1994). “Molecular computation of solutions to combinatorial 
problems”. Science 266 (5187): 1021-1024. doi:10.1126/science.7973651. PMID 7973651

M. Amos chapter

https://www.nature.com/articles/nbt.4079
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Simulation of biological reactions (also epidemics, social 
dynamics etc)

Section 9

Ø Algorithm: Doob-Gillespie



Simulation of DNA and protein reactions
Problem statement: if we start with N types of molecules that can interact
through one of M reactions at a given time, what will be the population levels of 
species after a given period of time?

One approach is to use ODE (obtaining a deterministic solution); another is to use 
an exact Stochastic Simulation that allows to: avoid averaging assumptions; it has a 
probabilistic formulation of the type:
– When does next reaction occur?
– Which reaction occurs next?

Advantages: continuous time, discrete population changes;
captures effects of noise; simple implementation; small memory requirements.
Disadvantages: CPU intensive;  typically must simulate many runs; must use good
random number generator
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Doob-Gillespie algorithm to simulate reactions
• In a common chemical reaction system, two particles collide to form one

or more products (see figure at the bottom).
• Biochemical reaction systems with a low to moderate number of 

molecules are often simulated (in well-stirred conditions) with methods
that produce statistically exact sample paths such as the Doob-Gillespie
algorithm

• The Doob-Gillespie algorithm uses two random numbers per step. The 
first is used to find when the next reaction occurs and the second is used
to determine which reaction occurs at that time.

• It was developed by Joseph L. Doob and others (about 1945), used for 
chemical reactions by Dan Gillespie in 1976. The figures below show the 
set of reactions that involve 3 species; the system is updated after the 
interval t. 
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1. The idea of the Doob-Gillespie algorithm is that one first determines
when something happens next.

2. Suppose the current time is t. Within a time t + t a reaction could
happen; we draw an exponentially distributed random number scaled
by the sum of all process rates.

3. Then, the Doob-Gillespie algorithm determines what happens next.  
This is done by drawing a process randomly from all possible 
processes according to their respective probabilities (propensity 
functions).  

4. When we have determined which process happens, we can update 
the variables (the so-called state of the system). Then we iterate this
process as long as we want.

5. In practice the propensity function can be thought as a stochastic 
reaction rate; more formally in chemistry it describes the probability 
while reaction rate describes the changing rate.  Propensity functions 
are defined based on population of species while the reaction rates 
are defined based on the concentration of species. 

How to simulate reactions
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A propensity function ai is associated to each reaction step. These 
probabilites are related to the kinetics constants.

Initial number of molecules of each species are specified.

The time interval is computed stochastically according the reaction 
rates.

Generate r1 and r2 and calculate the reaction that occurs as well as the 
time till this reaction occurs.

At each time interval, the reaction that occurs is chosen randomly 
according to the probabilities ai and both the number of molecules and 
the reaction rates are updated.
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How to simulate molecules 
such as DNA and proteins



Dobb-Gillespie Algorithm

t

t

Details on step 6
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Examples
In a given reaction system with v reactions, we know that the hazard for a type i reaction is
hi(x, ci), so the hazard for a reaction of some type occurring is

It is clear that the time to the next reaction is Exp(h0(x, c)), and also that this reaction will be a 
random type, picked with probabilities proportional to the hi(x, ci), independent of the time to the
next event. That is, the reaction type will be i with probability hi(x, ci)/h0(x, c). Using the time to the 
next event and the event type, the state of the system can be updated, and simulation can 
continue.



Complexity

• Memory (N + 2M + 1)
• N species populations
• (Compute ai values for each of M reactions, 

compute a0; compute random numbers)
• Total time scales with number of reactions

that occur
• Operation per reaction: generate two random 

numbers, µ, t, calculate a0 and ai values.
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Genetic network simulation: Example of Doob-
Gillespie application and output
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Differences between a population of 
isolated cells and a tissue of cells. a) 
A population of isolated cells: each
cell contains an identical genetic
network (three species, two inhibiting
and one activating functions). 

b) A tissue of cells: each cell contains
an identical genetic network and 
some molecules can be transported
between neighbouring cells (dotted
lines).
c) Typical single-cell protein
trajectories of system (1) in isolated
cells.
d) Typical single-cell protein
trajectories of system (1) in a tissue
of connected cells: noise is clearly
reduced compared to c.



• The original Gillespie algorithm is physically accurate only
for systems that are both dilute and well-mixed in the 
reactant (solute) molecules. 

• An extension of the SSA for systems that are not well-mixed 
is the reaction–diffusion SSA (RD-SSA). It divides the system 
volume into subvolumes or “voxels” , which are small 
enough that each can be considered to be well-mixed. 

• Chemical reactions are then considered to occur inside 
individual voxels and are modeled using the SSA, while
diffusion is modeled via jumps from a subvolume to one of 
its neighbors. 

• In this way, the Gillespie algorithm has been extended to 
the challenging field of spatial stochastic modeling.
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Beyond Dobb-Gillespie Algorithm
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Reference for this section

Gillespie D.T., (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of 
Coupled Chemical Reactions. J. Comp. Phys., 22: 403-434. 
.

Library in python

Examples
– A. Arkin, J. Ross, H. McAdams. Stochastic Kinetic Analysis of Developmental Pathway
Bifurcation in λ Phage-Infected Escherichia coliCells.  1998.  Genetics 149:1633-1648
– J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn.  Dynamical resonance can account for 
seasonality of  influenza epidemics. 2004 PNAS.
– S. Hooshangi, S. Thiberge, R. Weiss. Ultrasensitivity and noise propagation in a synthetic
transcriptional cascade. 2005. PNAS 102:3581-3586
- Stephen Smith& Ramon Grima 2018 Single-cell variability in multicellular organisms. Nature 
Communications
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Exam questions



• Algorithm (method, problem) 
– Name 
– Type of algorithm 
– Brief description (what it does?), input, output
– Motivation (the problem it is trying to solve and why is it important?)
– Assumptions 
– Main steps
– Time and space complexity
– Speed-up solutions, if applicable
– When comparing: caveats and advantages (and when it is appropriate to use)

• Tip: make sure you know how to demonstrate with a small example
• Software, technique 

– Name
– Brief description (what it does?)
– Motivation (the problem it is trying to solve and why is it important?)
– Assumptions 
– Input 
– Main steps
– Output
– When comparing: caveats and advantages (and when it is appropriate to use)

• Examples
– Simple as possible

• Terms
– Give a concise and complete definition

Guidelines



Exam questions
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Exam questions



1. Give the alignment matrix of the sequences `AATCGCGCGGT' and 
`ATGCGCCGT' assuming the following costs: Cost(a,a)=0; Cost(a,b)=3 
when a ¹ b, Cost(a,-)=Cost(-,a)=2. 

2. How would you set the function Cost in order to compute the longest 
subsequence common to x and y? 

3. Describe the differences between the algorithms for global and local 
alignments 

4.  Which of the following reasons would lead you to use the Smith-Waterman
local alignment algorithm instead of the Needleman-Wunsch global 
alignment algorithm?

Select all appropriate answers.
(a) Computer memory is too limited to compute the optimal global alignment.
(b) One wants to identify common protein domains in the two sequences.
(c) The sequences have very different lengths.
(d) Smith-Waterman is faster than Needleman-Wunsch on long sequences.
5. Describe the notion of a parsimonious phylogeny for a finite set of 

sequences and the hypothesis assumed on them

Exam questions








