
Ph.D. Engineering,
Ph.D. Theor Genetics

• 1 Molecular/cellular network Biology (1)
• 2 DNA/Amino acid Sequence Alignment (2)
• 3 Phylogenetic Tree building methods (2)
• 4 Clustering biological data (2)
• 5 Genome sequencing (1)
• 6 Assembling genomes (1)
• 7 Finding genome parts/Hidden Markov models (1)
• 8 Computing/storing information using DNA (1)
• 9 Simulation of biological reactions (1)

2

Bioinformatics (algorithms): sections and topics (12 lectures)

Some notes on deep learning in bioinformatics will be given at the end of the course but
they are not part of the assessment/examination.

3

Bioinformatics and computational biology: Applied Algorithms and
Interesting biological problems computer scientists should look at

Key
concepts
Biology 1 Alignme

nt

2

Building
trees 3

Clusterin
g 4

Genome
sequenci

ng 4Genome
Assembl

y 5

Parts
identifica

-tion 7

DNA
computin

g
Storage 8

Example
questions

Bioinformatics offers an opportunity
to help understand biology and
medicine more accurately.
Bioinformatics is an effective way to
blend biological and medical
concepts and programming tools to
help understand biology and
medicine better. A researcher must
identify the widest variety of data
that makes an organism. Second,
she must know the context in which
the disruption of information causes
a disease.

Bioinformatics is nowadays about
algorithms and/or machine learning
methods. In the course we focus on
algorithms. The course has 9 sections
(figure right).

Biological
Reactions 9

4

General references for the course

largely based on P. Compeau and P. Pevzner:
Bioinformatics algorithms; note that there are few
blogs about these widely used text books.

also R. Durbin, at et al.: Biological Sequence
Analysis: Probabilistic Models of Proteins and
Nucleic Acids.

Some of the slides are produced on the
basis of chapters from the books below
(with agreement with the authors)

5

Biological background

Section 1

Ø Structures and Models of DNA and proteins

Ø Multiple layers of information

6

Central Dogma and Genetic Code

In transcription, the information in the DNA of
every cell is converted into small, portable RNA
messages.

During translation, these messages travel from
where the DNA is in the cell nucleus to the
ribosomes where they are ‘read’ to make specific
proteins using a genetic code (right).

Gene expression is a tightly regulated process
that increases or decreases the amount of
proteins made.

The central dogma of molecular biology
explains the flow of genetic information,
from DNA to RNA, to make a functional
product, a protein.

The central dogma suggests that DNA
contains the information needed to make
all of our proteins, and that RNA is a
messenger that carries this information to
the ribosome

7

The figure in the left shows the DNA compaction; the figure in the right the overall functional
impact of DNA
DNA -> RNA -> Proteins
DNA encodes genes, most of which encode for proteins (via the genetic code)
Proteins perform much of the work of the cell.
RNA acts as an intermediate step
(it also has other functions as well)
Huge amount of data now available, need algorithms to make sense of it.

Central dogma of biology

8

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), DNA

ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

A gene cab be seen as a string of DNA producing a “meaningful signal”
for the cell/individual; most genes act as instructions to make proteins
(others do not code for proteins); below the DNA sequence in Fasta
format of the beta globin gene. It codes for a subunit (sequence below) of
the hemoglobin protein.

Healthy Individual

Databases: www.ebi.ac.uk, http://www.ncbi.nlm.nih.gov/ and others in China, Japan etc

http://www.ebi.ac.uk/

9

>gi|28302128|ref|NM_000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GGTGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>gi|4504349|ref|NP_000509.1| beta globin [Homo sapiens]

MVHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

Individual with Sickle Cell Anemia

10

General structure of the gene

There is a pairing rule:
A-T; C-G; the two
strands of DNA are
oriented differently

Examples of
sequence containing
an exon-intron
boundary

11

Clustering amino
acids accordingly to
physical and
chemical properties:
this provides
evidences for effects
of changes in
proteins

Proteins: sequences of amino acids

Right:
Cartoon of
the different
propensity of
amino
acids(amino
acids as
animals) for
the cell
external,
membrane
and cell
internal
environments

PAM: point
accepted
mutations
matrices
represent
statistics of
amino acid
replacemen
t rates
(logs) in
evolution

12

Proteins : from sequence to 3d structure (different representation)

Left: a) amino acid sequence; b) secondary
structure; c) 3d structure; 4) quaternary structure
(complex of proteins)

Below: various representations of
3d structure (a good free software is pymol)

Below: various representations of
secondary structures

13

Structures and Models of DNA and proteins (historical and current)

sources: Photograph 51’, March 1953, by Rosalind Franklin; pencil sketch of the DNA
double helix by Francis Crick; replica of Crick and Watson’s 1953 DNA Double Helix Model,
source https://blog.sciencemuseum.org.uk/why-the-double-helix-is-still-relevant/

5-CCTGAGCCAACTATTGATGAA-3
3-GGACTCGGTTGATAACTACTT-5

USEFUL ABSTRACTIONS:
DNA AS A STRING,
A PROTEIN AS A LABELLED GRAPH
DNA AND PROTEINS AS NETWORKS

Experimental data

Unsurprisingly, Graph Neural Networks have achieved remarkable
results in biological modelling

Drug molecules Protein structure Protein-protein
interaction networks

Gene regulatory
networks

Slide credit: Chaitanya Joshi

Graphs are everywhere in biology

1979 today

High-performance computing Genome sequencing

2006 today
Who has a computer?

1960s: Major research institutes

1970s: University departments

1980s: Companies and schools

2019: Almost everybody & always

Whose genome has been sequenced?

1996: First bacterium (E. coli)

2001: Human reference genome

2007: First personal genomes

2020: Millions personal genomes

Parallel Technological evolution

Your genome in your mobile for few hundred pounds:

https://www.genome.gov/sequencingcosts

16

Determining the sequence of DNA is cheap and quick

Oxford
nanopore

The algorithms we study have impact
on precision and personalised
medicine:

Cancer: Disease stratification based
on driver mutations

Rare diseases: Most patients now
receive a genetic diagnosis

Drugs: Patient-specific prediction of
efficacy and side effects

Garage genomics

17

Data Repository: http://www.ebi.ac.uk; http://www.ncbi.nlm.nih.gov/ ;
http://genome.ucsc.edu/ www.ensembl.org

DNA is big data

http://www.ebi.ac.uk
http://www.ensembl.org

18

Each DNA base encodes 2 bits information (because you have to
choose between purines and pyrimidines and then within
each class).

You have 46 chromosomes in each (autosomal) cell.
If you tease out those 46 (double) strands and place them end to end
they'd be about 2 meters long - but that's just one cell. Every time a cell
replicates it has to copy 2 meters of DNA reliably. 3 billion base pairs, 2
meters long, 2nm thick, folded into a 6μm ball/cell.

As there are about 3.7×1013 cells in the human body (and hence 1.7×1015
chromosomes or strands), your entire DNA would stretch about 7.4×1010
km or fifty thousand million miles (133 Astronomical Units long) and the
DNA in the current human population would be 20 million light years long
(the Andromeda Galaxy is 2.5 Million light years).

Big numbers also as information content: lower bound on the total
information content in the biosphere: 5.3 × 1031 (±3.6 × 1031) megabases
(Mb) of DNA. Taking the rate of DNA transcription as an analogy for
processing speed, further estimated Earth's computational power: 1015
yottaNOPS (1024 Nucleotide Operations Per Seconds).

Then you can take into account all the other flow of information processing
such as proteomics, metabolomics etc

Dense information
Purines
(1 bit)

Pyrimidines
(1 bit)

Left: A gene regulatory network with three genes A, B, C; three mRNAs 1, 2, 3; and
three proteins X, Y, and Z. Gene A regulates gene B by protein X at transcription, gene
B regulates gene C at translation by protein Y, and gene C regulates gene A at post
translation by protein Z to modify protein X; right: effect of mutations.

19

Gene and protein interactions as graphs

Mutations can disrupt the graph

20

Gene and protein interactions build devices

This complex protein arrangement allows
bacteria to swim in different directions. Similar
assemblies are found in sperm cells, in the
fallopian tubes (where eggs need to be moved
from the ovary to the uterus), and in the
respiratory tract (where cilia clear the airways of
mucus and debris).

The transcriptional regulatory network (1,378 nodes)
follows a conventional hierarchical picture, with a few
top regulators and many workhorse proteins. The
Linux call graph (12,391 nodes), on the other hand,
possesses many regulators; the number of workhorse
routines is much lower in proportion. The regulatory
network has a broad out-degree distribution but a
narrow in-degree distribution. The situation is reversed
in the call graph, where we can find in-degree hubs,
but the out-degree distribution is rather narrow. Yan et
al. PNAS 2010, 107, 20.

Cells versus Computers

22

Central dogma revisited and Regulation Feedback

The original Central Dogma compared with
modern understanding. In the original concept of
the Central Dogma, transcription, translation,
and enzymatic catalysis were proposed to form a
linear chain of processes, although nobody
doubted the role of regulation. We know now that
a complex feedback structure at every level is
crucial for appropriate cell functioning.

Linear pathway with feedback. (A) Reaction
scheme with feedback inhibition of the initial
step by the end product. (B) Comparison of
responses to a sudden and persistent
demand of metabolite D, starting at time t =
8. With feedback (D+), the concentration of
D oscillates and converges to a level of
about two-thirds of the initial value. Without
feedback (D−), the concentration of D sinks
to less than one-quarter.

23

ABOVE: Idealized promoter for a gene involved
in making hair. Proteins that bind to specific
DNA sequences in the promoter region together
turn a gene on or off. These proteins are
themselves regulated by their own promoters
leading to a gene regulatory network with many
of the same properties as a neural network. We
use chips (right) to measure the
activity of all the genes (rows) in
different conditions (gene
Expression, columns).

The Cell is a Computer in
Soup

Toggle switch (cro and cl are genes;
Pr and Prm are binding sites for the
proteins of genes cro and cl)

protein binding
regulatory elements

Logic gates: The Cell as an an information processing device

Recurring motifs in signal transduction
systems. (a) A signaling cascade. (b) A
negative feedback loop. (c) A positive
feedback loop. (d) An incoherent feedforward
circuit. (e) A coherent feedforward circuit. (f)
A composite system with interlinked positive
and negative feedback loops.

25

Network Motifs

Different ways of representing a metabolic network using a
directed graph illustrated for a simple network of two reactions.
Metabolite graph, Reaction graph and (c) Bipartite graph

The detailed inventory of genes, proteins, and
metabolites is not sufficient to understand the cell’s
complexity

Information storage, information processing, and the
execution of various cellular programs reside in
distinct levels of organization: the cell’s genome,
transcriptome, proteome and metabolome.

For example, the proteome organizes itself into a
protein interaction network and metabolites are
interconverted through an intricate metabolic web.

The elementary building blocks organize themselves
into small recurrent patterns, called pathways in
metabolism and motifs in genetic-regulatory
networks. In turn, motifs and pathways are
seamlessly integrated to form functional modules.

These modules are nested, generating a scale-free
hierarchical architecture . Although the individual
components are unique to a given organism,the
topologic properties of cellular networks share
surprising similarities with those of natural and social
networks.

Complexity of living systems: the cell, the fundamental unit in biology,
as a network of genes and proteins

From Oltvai and Barabási

27

Bacterium

1 micron

l = 0.25 micron
in Pentium II

Human
chromo
some.

1 micron

Scales of electronic and bio devices

proteins inside
a bacterium

28

CS –Bio parallelism

Cells: see
https://www.humancellatlas.org/

Pathways: see
https://www.genome.jp/kegg/pathway.html

https://www.rhea-db.org/

https://www.ncbi.nlm.nih.gov/

29

Cells versus Computers

Challenges: quantify information in a cell; building
computers inspired by cells information flow

• DNA, RNA and proteins can:
• Organise themselves to self assemble different types of devices

(mechanisms such rotors, motors) or structures with different
shapes across time and space scales.

• Organise other types of molecules such as lipids, sugars and
artificial ones.

• Organise large set of reactions (such as metabolic networks) and
Execute different kinetics

• Self-Assemble control devices

Nature is programmed for self-assemble;
Bioinformatics is needed to identify the key elements

31

Size: 24 to 200 nanometers
they’re 10 to 100 times smaller
than the average bacterium,
much too small to see with an
ordinary light microscope.

We absorb about 30 billion
phages into our bodies every
day. They form an integral part
of our microbial ecosystem.

Nature is programmed for self
assembly

32

The genome contains both the instructions for assembly and for the parts and it is shipped
with the virus

Classical models in medicine are organ centered;
Multi organs: a process oriented model would be more
effective; Processes are mechanistically related

Deep Learning could integrate with Bioinformatics as Data-driven approaches could
integrate different subtle signals and generate body scale knowledge

34

https://www.humancellatlas.org

https://tabula-sapiens-portal.ds.czbiohub.org/

https://www.genome.gov/Funded-Programs-
Projects/Genotype-Tissue-Expression-Project

The figure shows
the differences
between single cell
and classic
microarray analysis

Single cell/ single tissue repositories

• import sys
import argparse
import scanpy

from matplotlib import pyplot as plt

args_parser = argparse.ArgumentParser(description='Get expression matrix for a given h5ad file
from Tabula Sapiens')
args_parser.add_argument('--path', type=str, help='Path of the h5ad file')
args_parser.add_argument('--list_of_genes', nargs="+", help='List of genes expected for the
expression matrix. (default: ALL, warning this may take a lot of time) ')
args_parser.add_argument('--output', type=str, help='Path of the output png.')

if len(sys.argv)==1:
 args_parser.print_help(sys.stderr)
 sys.exit(1)

args = args_parser.parse_args()

df = scanpy.read_h5ad(args.path)

fig = scanpy.pl.matrixplot(df, args.list_of_genes, groupby='donor', return_fig=True)

fig.savefig(args.output)

35

Extracting Single cell data from h5ad file

36

Ethical aspects of Bioinformatics

37

The use of Bioinformatics reduces Animal Experimentation

Decades ago, legislation on the use of animals was enacted
in many countries involving three R’s: Reduction, refinement,
and replacement of animal models.
Ever since this was enacted, there was a sudden buzz about
laboratory animals and their use to be reduced, refined, and
replaced wherever possible, for ethical and scientific reasons.
The three R’s concept was put forward by W.M.S. Russell and
R.L. Burch in 1959 in The Principles of Humane Experimental
Technique.
With bioinformatics, the generation of high-throughput data in
the form of genomics, transcriptomics, and metabolomics,
biology has essentially transformed into a computational
problem.
Due to this reason, we believe that the role of computation in
biology leading to reducing, refining, and replacing animal
experiments needs to be increased.

The Genetic Information Nondiscrimination
Act (abbreviated GINA) is federal legislation in
the United States that protects individuals
against discrimination based on their personal
genetic information, as it applies to health
insurance and employment. These protections
are intended to encourage Americans to take
advantage of genetic testing as part of their
medical care. GINA was signed into law on
May 22, 2008.

Bioinformaticians have the responsibility of a
correct use of the technology for reading (and
writing) DNA information.

Bioinformatics could disclose sensitive information on your genome (even
through the genome of your relatives)

39

Practice and glossary
(not examinable)

40

to code :

BioJava – www.biojava.org
BioPerl – www.bioperl.org
BioPython – www.biopython.org
BioCorba – www.biocorba.org
BioRuby – www.bioruby.org
BioHaskell – www.biohaskell.org
C++ www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/
 http://www.bioinformatics.org/biococoa/wiki/pmwiki.php

https://biopython.org/

http://www.biojava.org/
http://www.bioperl.org/
http://www.biopython.org/
http://www.biocorba.org/
http://www.bioruby.org
http://www.bioruby.org
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/

41

Where to find Data :

• Bioinformatics: Developing algorithms and methods for analyzing DNA, RNA
and protein sequence, structure and function. This includes tasks like sequence
alignment, database searching, phylogenetic tree construction, structure
prediction, and genomic annotation.

• Computational Biology: involves the development and application of
mathematical modeling, computational simulation techniques, and data
analytics to address biological questions. It allows researchers to integrate
diverse datasets, test hypotheses, predict behaviors of biological systems.

• Systems Biology: Using computational models to study interactions within
biological systems and predict systemic behaviors. This provides insights into
properties that emerge at the systems-level.

• Synthetic Biology: Redesigning and engineering novel biological systems, such
as genetic circuits or metabolic pathways. Computational tools aid in designing
circuits.

• Biomedical engineering: Creating computational models and analytic tools to
aid innovations in biomaterials, medical devices, tissue engineering, imaging
and diagnostics.

42

Glossary

• Sequence analysis: Algorithms for searching databases, performing
multiple sequence alignments and identifying homologous rela-
tionships. Provides evolutionary and functional insights.

• Structure prediction: Methods for predicting 3D protein structure
from sequence using comparative/homology modeling or ab initio
simulation.

• Function prediction: Using sequence motifs, structural comparison,
machine learning etc. to annotate protein function. Improves
characterization of unstudied proteins.

• Evolutionary analysis: Phylogenetic approaches for studying protein
family evolution. Reveals evolutionary relationships and divergence.

• Mutation analysis: Evaluating effect of mutations on protein
structure and function using energy-based or machine learning
models. Interprets genetic variations.

43

Glossary

44

What is in a name/Different layers of information

45

Check the chapters
corresponding to the
slides

Reference for this section and for the course

A nice free book : cell biology by the numbers
http://book.bionumbers.org/
Others:
https://www.cs.helsinki.fi/group/genetics/Genetics_for_CS_March_04.pdf
http://tandy.cs.illinois.edu/Hunter_MolecularBiology.pdf
Biology and Computers: A lesson in what is possible
https://ethw.org/; https://www.wehi.edu.au/wehi-tv/; good resources at
https://www.ncbi.nlm.nih.gov/home/tutorials/ and ebi.ac.uk

http://book.bionumbers.org/
https://www.cs.helsinki.fi/group/genetics/Genetics_for_CS_March_04.pdf
https://ethw.org/
https://www.wehi.edu.au/wehi-tv/
https://www.ncbi.nlm.nih.gov/home/tutorials/

46

Recent books (not necessary for the course)

47

Measuring sequence similarity through the use of
alignment algorithms

Section 2

Ø Algorithm: Longest Common Subsequence
Ø Algorithm: Needleman Wunch
Ø Algorithm: Smith-Waterman

Ø Overlap detection
Ø Affine Gaps

Ø Banded alignment
Ø Algorithm: Hirshberg –linear memory alignment
Ø Algorithm: Four Russians
Ø Algorithm: Nussinov

• 1 Molecular/cellular network Biology
• 2 DNA/Amino acid Sequence Alignment

• 3 Phylogenetic Tree building methods
• 4 Clustering biological data
• 5 Genome sequencing
• 6 Assembling genomes
• 7 Finding genome parts/Hidden Markov models
• 8 Computing/storing information using DNA
• 9 Simulation of biological reactions

48

Ø Dotplot
Ø Longest Common Subsequence
Ø Global and Local alignment
Ø Needleman Wunch
Ø Smith-Waterman
Ø Affine Gaps
Ø Banded Alignment
Ø Hirshberg –linear memory
Ø Four Russians: faster time
Ø RNA alignment – Nussinov
Ø Alignment free

49

What is sequence alignment

A T - G T T A T A
 A T C G T - C - C
 +1+1 +1+1 =4

Alignment of two sequences is a two-row matrix:

1st row: symbols of the 1st sequence (in order) interspersed by “-”
2nd row: symbols of the 2nd sequence (in order) interspersed by “-”

matches insertions deletions mismatches

50

What Is the Sequence Alignment?

Left: Dot plot for comparing ATATTACTAT to itself; Each matrix entry is either
blank for mismatch, or a dot for match. Notice first of all the stretch of dots
along themain diagonal. Match plot: it would be helpful if we could just plot
these longer matches rather than all the dots they consist of. Right: Match plot
of -globin mRNA from chimp and human with minimal match length 5 51

Easiest way to compare sequences: a Dotplot

Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008).
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

Why biologists need algorithms to do the alignment
The sequence and structures of genes and proteins are conserved in nature. It is common to
observe strong sequence similarity between a protein and its counterpart in another species
that diverged hundreds of millions of years ago. Accordingly, the best method to identify the
function of a new gene or protein is to find its sequence- related genes or proteins whose
functions are already known.

sequence changes in
the bacteria causing
plague. Different
regions of the genome
of the bacterium could
be represented with
different colours. This
makes easier to show
changes (you can
retrieve sequences at
www.ebi.ac.uk).

https://commons.wikimedia.org/w/index.php?curid=30550950

53

All genomes are littered with repeated sequences of different length
(they form families) so alignment of large sequences is difficult

Left: mapping human
chromosomes
onto mouse chromosome
reveal many similar regions
(low resolution).
Right: a higher resolution,
each region reveals many
local rearrangements

A T - G T T A T A
 A T C G T - C - C

Matches in alignment of two sequences (ATGT) form their
Common Subsequence

Longest Common Subsequence Problem: Find a longest
common subsequence of two strings.

• Input: Two strings.
• Output: A longest common subsequence of these

strings.
54

Longest Common Subsequence

A subsequence is a sequence that appears in the same relative order, but not necessarily
contiguous.

Alignment : 2 * k matrix (k > m, n)

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w

T

T

A T G T T A T
A T C G T A

v :
w :

m = 7
n = 7

4 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:

55

C

Alignment: 2 row representation

Longest Common Subsequence (LCS) – the simplest form of
sequence alignment – allows only insertions and deletions (no
mismatches). In the LCS Problem, we score 1 for matches and 0 for
indels; in real analysis we consider penalising indels and
mismatches with negative scores.

• Given two sequences v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in

 v: 1 < i1 < i2 < … < it < m

and a sequence of positions in

 w: 1 < j1 < j2 < … < jt < n

such that it -th letter of v equals to jt-th letter of w and t is
maximal.

56

Longest Common Subsequence

CA T -- C T G A T

-- T G C T -- A -- C

elements of v

elements of w

--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in red
positions in v:
positions in w:

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

0

0

(0,0)à (1,0)à (2,1)à (2,2)à (3,3)à (3,4)à (4,5)à (5,5)à (6,6)à (7,6)à (8,7)

57

Longest Common Subsequence

The Edit distance between two strings is the minimum number of operations
(insertions, deletions, and substitutions) to transform one string into the other

V = ATATATAT
W = TATATATA

Hamming distance: Edit distance:
 d(v, w)=8 d(v, w)=2

Computing Hamming distance Computing edit distance

 is a trivial task is a non-trivial task

W = TATATATA-
Just one shift

Make it all line up

V = -ATATATAT

Hamming distance
always compares
 i-th letter of v with
 i-th letter of w

Edit distance
may compare
 i-th letter of v with
 j-th letter of w

58

Edit distance

TGCATAT à ATCCGAT in 4 steps

TGCATAT à (insert A at front)
ATGCATAT à (delete 6th T)
ATGCATA à (substitute G for 5th A)
ATGCGTA à (substitute C for 3rd G)
ATCCGAT (Done)

59

Edit Distance: Example

Old Alignment
 0122345677
v= AT_GTTAT_
w= ATCGT_A_C
 0123455667

New Alignment
 0122345677
v= AT_GTTAT_
w= ATCG_TA_C
 0123445667

60
Two similar alignments; the score is 5 for both the alignment paths.

Alignment as a Path in the Edit Graph

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j

Every path is a
common
subsequence.

Every diagonal
edge adds an extra
element to
common
subsequence

LCS Problem: Find
a path with
maximum number
of diagonal edges

61

LCS Problem as - Edit Graph

Let vi = prefix of v of length i: v1 … vi

and wj = prefix of w of length j: w1 … wj

The length of LCS(vi,wj) is computed by:

si,j = MAX
si-1,j + 0
si,j -1 + 0
si-1,j -1 + 1, if vi = wj

i,j

i-1,j

i,j -1

i-1,j -1

1 0

0

62

0 1 2 3 4

0

1

2

3

4

W A T C G

A

T

G

T

V

 0 1 2 2 3 4

V = A T - G T

 | | |

W= A T C G –

 0 1 2 3 4 4

Every Path in the Grid Corresponds
to an Alignment

Computing LCS

63

The above recursive program prints out the longest common subsequence using the
information stored in b. The initial invocation that prints the solution to the problem is
PRINTLCS(b, v, n,m).

LCS pseudocode

A speedup is the Method of Four Russians, to partition the matrix into small square blocks of
size t × t for some parameter t, and to use a lookup table to perform the algorithm quickly within
each block. The algorithm may be performed by operating on only (n/t)2 blocks instead of on n2

matrix cells, where n is the side length of the matrix. In order to keep the size of the lookup tables
(and the time needed to initialize them) sufficiently small, t is typically chosen to be O(log n).

 si-1, j - σ
 si, j-1 - σ
 si-1, j-1 + 1, if vi=wj

 si-1, j-1 - μ, if vi≠wj

Dynamic Programming Recurrence for the

si, j= max

64

General Alignment Graph

65

Notice three possible cases:

1. xi aligns to yj
 x1……xi-1 xi

 y1……yj-1 yj

2. xi aligns to a gap
 x1……xi-1 xi

 y1……yj -

3. yj aligns to a gap
 x1……xi -
 y1……yj-1 yj

 m, if xi = yj
F(i,j) = F(i-1, j-1) +
 -s, if not

F(i,j) = F(i-1, j) - d

F(i,j) = F(i, j-1) - d

F[i-1,j-1] F[i,j-1]
F[i-1,j] F[i,j]

Towards an algorithm to align biological sequences

Dynamic Programming: A method for reducing a complex problem to a set of identical sub-
problems .The best solution to one sub-problem is independent from the best solution to the other
sub-problem.It is a way of solving problems (involving recurrence relations) by storing partial
results.

66

• How do we know which case is correct?

Inductive assumption:
 F(i, j-1), F(i-1, j), F(i-1, j-1) are optimal

Then,
 F(i-1, j-1) + s(xi, yj)
 F(i, j) = max F(i-1, j) – d
 F(i, j-1) – d

Where F(xi, yj) = m, if xi = yj; -s, if not

F[i-1,j-1] F[i,j-1]

F[i-1,j] F[i,j]

Alignment

• Global Alignment: tries to find the longest path between vertices
(0,0) and (n,m) in the edit graph.

• Local Alignment—better alignment to find highly conserved
segments; The Local Alignment Problem tries to find the longest path
among paths between arbitrary vertices (i,j) and (i’, j’) in the edit
graph

| || | || | | | ||| || | | | | |||| |
--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac
||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc
67

Global
alignment

Local
alignment

Alignment

Global Alignment Problem: Find the highest-scoring
alignment between two strings by using a scoring matrix.

• Input: Strings v and w as well as a matrix score.

• Output: An alignment of v and w whose alignment
score (as defined by the scoring matrix score) is
maximal among all possible alignments of v and w.

68

Global Alignment

The Needleman-Wunsch Algorithm (Global alignment)

Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

d is a penalty

F[i-1,j-1] F[i,j-1]
F[i-1,j] F[i,j]

70

Changes:

1. Initialization
For all i, j,
 F(i, 0) = 0
 F(0, j) = 0

2. Termination
 maxi F(i, N)
FOPT = max maxj F(M, j)

x1 ……………………………… xM

y n
 …

…
…

…
…

…
…

…
…

…
…

…
 y
1

Maybe it is OK to have an unlimited # of gaps in the beginning and end:

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

The Overlap Detection variant

71

Local Alignment= Global Alignment in a subrectangle

Local Alignment Problem: Find the highest-scoring local
alignment between two strings.

• Input: Strings v and w as well as a matrix score.

• Output: Substrings of v and w whose global alignment

(as defined by the matrix score), is maximal among all
global alignments of all substrings of v and w.

72

Local Alignment Problem

73

Idea: Ignore badly aligning regions: Modifications to
Needleman-Wunsch

e.g. x = aaaacccccgggg
 y = cccgggaaccaacc
Initialization: F(0,0)=F(0, j) = F(i, 0) = 0

 0
Iteration: F(i, j) = max F(i – 1, j) – d
 F(i, j – 1) – d
 F(i – 1, j – 1) + s(xi, yj)
Termination:
1. If we want the best local alignment…

 FOPT = maxi,j F(i, j)
2. If we want all local alignments scoring > t

 For all i, j find F(i, j) > t, and trace back

The local alignment: Smith-Waterman algorithm
T.F. Smith, M.S.Waterman, Identification of common molecular subsequences, J Mol Biol vol 147,195-197, 1981.

David Waterman

• Alignment 1: score = 22 (matches) - 20 (indels)=2.

• Alignment 2: score = 17 (matches) - 30 (indels)=-13.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T-----
 local alignment

74

Which Alignment is Better?

Biologists are interested in the local alignment to detect a region
common to two genes which could suggest the same regulatory control:
Perhaps the two similar regions are bound to the same proteins

• We previously assigned a fixed penalty σ to
each indel.

• However, this fixed penalty may be too severe
for a series of 100 consecutive indels.

• A series of k indels often represents a single
evolutionary event (gap) rather than k events:

GATCCAG GATCCAG
GA-C-AG GA--CAG

a single gap
(higher score)

two gaps
(lower score)

75

Scoring Gaps

#matches − μ · #mismatches − σ · #indels
A T - G T T A T A
 A T C G T - C – C
+1+1-2+1+1-2-3-2-3=-7

A C G T −
A +1 −µ −µ −µ -σ
C −µ +1 −µ −µ -σ
G −µ −µ +1 −µ -σ
T −µ −µ –µ +1 -σ
− -σ -σ -σ -σ

Scoring matrix

A C G T −
A +1 −3 −5 −1 -3
C −4 +1 −3 −2 -3
G −9 −7 +1 −1 -3
T −3 −5 –8 +1 -4
− -4 -2 -2 -1

Even more general scoring matrix76

Mismatches and Indel Penalties

7-5

example: Y (Tyr) often mutates into F (score +7) but rarely mutates into P (score -5) 77

Margaret Dayhoff

Scoring matrices to compare amino acid sequences: PAM250 is a log odds matrix

Y

Positive exchange values
denote mutations that are
more likely than randomly
expected, while negative
numbers correspond to
avoided mutations compared
to the randomly expected
situation

78

A scoring matrix contains values proportional to the probability that amino acid i mutates into
amino acid j for all pairs of amino acids.

Scoring matrices are constructed by assembling a large and diverse sample of verified pairwise
alignments (or multiple sequence alignments) of amino acids. Scoring matrices should reflect
the true probabilities of mutations occurring through a period of evolution.

PAM (point accepted mutations) matrices are based on global alignments of closely related
proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than
1% divergence. At an evolutionary interval of PAM1, one change has occurred over a length of
100 amino acids.

Other PAM matrices are extrapolated from PAM1. For PAM250, 250 changes have occurred for
two proteins over a length of 100 amino acids. All the PAM data come from closely related
proteins (>85% amino acid identity).

A log odds matrix is the logarithmic form of the relatedness odds matrix.
Sij is the score for aligning any two residues in a pairwise alignment.
Mij is of the observed frequency of substitutions for each pair of amino acids.
fi is the probability of amino acid residue i occurring in the second sequence by chance.

Sij=10 log (Mij/fj).

Scoring matrices

Glossary

• Gaps: Regions identified by “-” that represent indels.
• Indels: Insertions and deletions of character.
• Matches: Corresponding regions between two different sequences.
• Mismatches: Regions with non-identical characters in different

sequences.
• Gap penalty (GP): Parameter needed to assign a score to a gap.
• Identity: Percentage of similar characters between two sequences.
• Similarity: Degree of resemblance between sequences based on

identity.
• Homology: Evolutionary hypothesis between two sequences that

can be derived from a common ancestor

79

σ

ε

σ

ε

0

0

loweri-1,j - ε
middlei-1,j - σ loweri,j = max {

upperi,j-1 - ε
middlei,j-1 - σ upperi,j = max {

loweri,j
middlei-1,j-1 + score(vi,wj)
upperi,j

middlei,j = max {

How can we emulate this
path in the 3-level?

80
bottom level
(insertions)

middle level
(matches/mismatches)

upper level
(deletions)

σ - the gap opening penalty
ε - the gap extension penalty

σ > ε, start a gap is penalized more than extending it.

81

Initialization: same
Iteration:
 F(i-1, j-1) + s(xi, yj)
 F(i, j) = max maxk=0…i-1F(k,j) – g(i-k)
 maxk=0…j-1F(i,k) – g(j-k)

Termination: same

Running Time: O(N2M) (assume N>M)
Space: O(NM)

g(n)

Current model: a gap of length n incurs penalty n´d
Gaps usually occur in bunches so we use a convex gap
penalty function:
g(n): for all n, g(n + 1) - g(n) £ g(n) - g(n – 1)

g(n)

Models of gaps; Alignment with gaps

A compromise: affine gaps

82

 g(n) = d + (n – 1) ´ e
 | |
 gap gap
 open extend
To compute optimal alignment, at position i,j, need to “remember” best
score if gap is open and best score if gap is not open

F(i, j):score of alignment x1…xi to y1…yj if xi aligns to yj
G(i, j):score if xi, or yj, aligns to a gap

d
e

g(n)

Initialization: F(i, 0) = d + (i – 1)´e; F(0, j) = d + (j – 1)´e

Iteration:
 F(i – 1, j – 1) + s(xi, yj)
 F(i, j) = max
 G(i – 1, j – 1) + s(xi, yj)

 F(i – 1, j) – d
 F(i, j – 1) – d

 G(i, j) = max
 G(i, j – 1) – e
 G(i – 1, j) – e
Termination: same

83

Assume we know that x and y are very similar; If the optimal alignment of x
and y has few gaps, then the path of the alignment will be close to the
diagonal

Assumption: # gaps(x, y) < k(N) (say N>M)

 xi
 | implies | i – j | < k(N)
 yj

Time, Space: O(N ´ k(N)) << O(N2)

F[i+1, i+k/2 +1]F[i+1, i+k/2]
Out of rangeF[i,i+k/2]

Note that for diagonals, i-j = constant.

Banded Dynamic Programming: a special case

84

Initialization:
 F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1…M
 For j = max(1, i – k)…min(N, i+k)

 F(i – 1, j – 1)+ s(xi, yj)
 F(i, j) = max F(i, j – 1) – d, if j > i – k(N)
 F(i – 1, j) – d, if j < i + k(N)

Termination: same

Easy to extend to the affine gap case

x1 ………………………… xM

y N
 …

…
…

…
…

…
…

…
…

…
 y
1

k(N)

Banded Dynamic Programming

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1

A 2

T 3

G 4

T 5

A
-

match=2
mismatch=-1
gap=-1

Example global alignment

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1

A 2

T 3

G 4

T 5

ACGCTG

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

CATGT

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

A
C

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

AC
-C

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0

A 2 -2

T 3 -3

G 4 -4

T 5 -5

ACG
-C-

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1

A 2 -2

T 3 -3

G 4 -4

T 5 -5

ACGC
-C--

ACGC
---C

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1 -2 -3

A 2 -2 1 0 0

T 3 -3

G 4 -4

T 5 -5

ACG
-CA

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1 -2 -3

A 2 -2 1 0 0 -1 -2 -3

T 3 -3 0 0 -1 -1 1 0

G 4 -4 -1 -1 2 1 0 3

T 5 -5 -2 -2 1 1 3 2

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1 -2 -3 -4 -5 -6

C 1 -1 -1 1 0 -1 -2 -3

A 2 -2 1 0 0 -1 -2 -3

T 3 -3 0 0 -1 -1 1 0

G 4 -4 -1 -1 2 1 0 3

T 5 -5 -2 -2 1 1 3 2

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

ACGCTG-
-C-ATGT

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

ACGCTG-
-CA-TGT

match=2
mismatch=-1
gap=-1

0
A
1

C
2

G
3

C
4

T
5

G
6

0 0 -1

C 1 -1 1 0

A 2 1 0 -1

T 3 0 1

G 4 2 1 3

T 5 3 2

-ACGCTG
CATG-T-

match=2
mismatch=-1
gap=-1

0

A
1

T
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0

A 2 0

A 3 0

T 4 0

A 5 0

y = TAATA
x = TACTAA

y
x

match=1
mismatch=-1
gap=-1

Local Sequence Alignment: example

0

T
1

A
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0

T 4 0

A 5 0

y = TAATA
x = TACTAA

y
x

Local Sequence Alignment: example

0
T
1

A
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0 0 1 1 0 1 3

T 4 0 0 0 0 2 0 1

A 5 0 0 1 0 0 3 1

y = TAATA-
x = TACTAA

y
x

Local Sequence Alignment: example

0
T
1

A
2

C
3

T
4

A
5

A
6

 0 0 0 0 0 0 0 0

T 1 0 1 0 0 1 0 0

A 2 0 0 2 0 0 2 1

A 3 0 0 1 1 0 1 3

T 4 0 0 0 0 2 0 1

A 5 0 0 1 0 0 3 1

y = ---TAATA
x = TACTAA--

y
x

Local Sequence Alignment: example

103

Comparison of global and local alignments

104

Comparison of local and global alignments

105

106

Computing Suffix(i)
• suffix(i) is the length of the longest path from (i,m/2) to (n,m)
• suffix(i) is the length of the longest path from (n,m) to (i,m/2)

with all edges reversed
• Compute suffix(i) by dynamic programming in the right half

of the “reversed” matrix

store suffix(i) column

0 m/2 m

Length(i) = Prefix(i) + Suffix(i)
• Add prefix(i) and suffix(i) to compute length(i):

• length(i)=prefix(i) + suffix(i)
• You now have a middle vertex of the maximum

path (i,m/2) as maximum of length(i)

middle point found

0 m/2 m

0

i

Computing Length(i)

109

110

111

A

T

T

C

A

A

A C G G A A

middle column
(middle=#columns/2)

112

Middle Column of the Alignment

A

T

T

C

A

A

A C G G A A

middle node
(a node where an optimal alignment path crosses the middle column)

113

Middle Node of the Alignment

AlignmentPath(source, sink)
 find MiddleNode

A

T

T

C

A

A

A C G G A A

114

Divide and Conquer Approach to Sequence Alignment

AlignmentPath(source, sink)
 find MiddleNode
 AlignmentPath(source, MiddleNode)

A

T

T

C

A

A

A C G G A A

115

Divide and Conquer Approach to Sequence Alignment

The only problem left is how to find this middle node in linear space!

AlignmentPath(source, sink)
 find MiddleNode
 AlignmentPath(source, MiddleNode)
 AlignmentPath(MiddleNode, sink)

A

T

T

C

A

A

A C G G A A

116

Divide and Conquer Approach to Sequence Alignment

Finding the longest path in the alignment graph
requires storing all backtracking pointers – O(nm)
memory.

Finding the length of the longest path in the
alignment graph does not require storing any
backtracking pointers – O(n) memory.

117

Divide and Conquer Approach to Sequence Alignment

A C G G A A

00 00 0 0

0 1 1 1 1 1

10 11 1 1

0 1 1 1 1 1

20 21 2 2

0 1 2 2 2 3

0

1

1

1

2

3

0 1 2 2 2 3 4

A

T

T

C

A

A

118

Recycling the Columns in the Alignment Graph

A

T

T

C

A

A

A C G G A A

i-path – a longest path among paths that visit the i-th node in the middle column

4-path that visits the node
(4,middle)

In the middle column

119

Can We Find the Middle Node without Constructing the Longest
Path?

2

4

A

T

T

C

A

A

A C G G A A

length(i):
length of an i-path:

length(0)=2
length(4)=4

120

Can We Find The Lengths of All i-paths?

2

3

3

3

4

3

1

A

T

T

C

A

A

A C G G A A

121

Can We Find The Lengths of All i-paths?

2

3

3

3

4

3

1

A

T

T

C

A

A

length(i)=fromSource(i)+toSink(i)

length(i):
length of an i-path

A C G G A A

122

Can We Find The Lengths of i-paths?

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A

T

T

C

A

A

A C G G A A
2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A

T

T

C

A

A

A C G G A A

0

fromSource(i) toSink(i)
123

Computing FromSource and toSink

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A

T

T

C

A

A

2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A

T

T

C

A

A
0

area/2 area/2area/2+area/2=area

A C G G A A A C G G A A

fromSource(i) toSink(i)
124

How Much Time Did It Take to Find the Middle Node ?

A

C

T

T

A

A

T

T

G A G C A A T T

How much time would it take to conquer 2 subproblems?

Each subproblem
can be conquered

in time
proportional to

its area:

area/4+area/4=
area/2

125

Laughable Progress: O(nm) Time to Find ONE Node!

A

C

T

T

A

A

T

T

G A G C A A T T

How much time would it take to conquer 4 subproblems?

Each subproblem
can be conquered

in time
proportional to

its area:

area/8+area/8+
area/8+area/8=

area/4

126

Laughable Progress: O(nm+nm/2) Time to Find THREE Nodes!

A

C

T

T

A

A

T

T

G A G C A A T T

How much time would it take to conquer ALL subproblems?

area+
area/2

+area/4
+area/8

+area/16
+….+

<
2·area

127

• O(nm+nm/2+nm/4) Time to Find NEARLY ALL Nodes!

A

C

T

T

A

A

T

T

G A G C A A T
T

Middle Edge:
an edge in an

optimal
alignment path
starting at the
middle node

128

The Middle Edge

Middle Edge in Linear Space Problem. Find a middle edge
in the alignment graph in linear space.

• Input: Two strings and matrix score.

• Output: A middle edge in the alignment graph of

these strings (as defined by the matrix score).

129

The Middle Edge Problem

A

C

T

T

A

A

T

T

G A G C A A T
T

130

A

C

T

T

A

A

T

T

G A G C A A T
T

131

LinearSpaceAlignment(top,bottom,left,right)
 if left = right
 return alignment formed by bottom-top edges “↓”
 middle ← ⌊(left+right)/2⌋
 midNode ← MiddleNode(top,bottom,left,right)
 midEdge ← MiddleEdge(top,bottom,left,right)
 LinearSpaceAlignment(top,midNode,left,middle)
 output midEdge
 if midEdge = “→“ or midEdge = “↘”
 middle ← middle+1
 if midEdge = “↓“ or midEdge = “↘”
 midNode ← midNode+1
 LinearSpaceAlignment(midNode,bottom,middle,right)

Recursive LinearSpaceAlignment

132

Total Time: area+area/2+area/4+area/8+area/16+…

134

Measuring sequence similarity through the use of
alignment algorithms

RECAP

• Alignment 1: score = 22 (matches) - 20 (indels)=2.

• Alignment 2: score = 17 (matches) - 30 (indels)=-13.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T-----
 local alignment

135

Which Alignment is Better?

Biologists are interested in the local alignment to detect a region
common to two genes which could suggest the same regulatory control:
Perhaps the two similar regions are bound to the same proteins

Old Alignment
 0122345677
v= AT_GTTAT_
w= ATCGT_A_C
 0123455667

New Alignment
 0122345677
v= AT_GTTAT_
w= ATCG_TA_C
 0123445667

136
Two similar alignments; the score is 5 for both the alignment paths.

Alignment as a Path in the Edit Graph

The Needleman-Wunsch Algorithm (Global alignment)

Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

d is a penalty

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A

T

T

C

A

A

A C G G A A
2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A

T

T

C

A

A

A C G G A A

0

fromSource(i) toSink(i)
138

Computing FromSource and toSink

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A

T

T

C

A

A

2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A

T

T

C

A

A
0

area/2 area/2area/2+area/2=area

A C G G A A A C G G A A

fromSource(i) toSink(i)
139

How Much Time Did It Take to Find the Middle Node ?

Total Time: area+area/2+area/4+area/8+area/16+…

• Partition the n x n grid into blocks of size t x t
• We are comparing two sequences, each of size n, and

each sequence is sectioned off into chunks, each of
length t

• Sequence u = u1…un becomes
 |u1…ut| |ut+1…u2t| … |un-t+1…un|
 and sequence v = v1…vn becomes
 |v1…vt| |vt+1…v2t| … |vn-t+1…vn|

Can we compute the edit distance faster than O(nm)? yes: The Four
Russians Technique (Arlazarov, V., Dinic, E., Kronrod, M., Faradžev, I.)

Key concept: Divide the input into very small parts, pre-compute the values
using Dynamic Programming for all possible small parts and store them in a
table. Then, speed up the dynamic programming via Table Lookup.

Partitioning Alignment Grid into Blocks

partition

n n/t

n/t

t

tn

• Block alignment of sequences u and v:
1. An entire block in u is aligned with an entire block in v
2. An entire block is inserted
3. An entire block is deleted

• Block path: a path that traverses every t x t square through its corners

valid invalid

Goal: Find the longest
block path through an
edit graph
Input: Two sequences, u
and v partitioned into
blocks of size t. This is
equivalent to an n x n edit
graph partitioned into t x
t subgrids
Output: The block
alignment of u and v with
the maximum score
(longest block path
through the edit graph

Let si,j denote the optimal block alignment score between the first i
blocks of u and first j blocks of v

si,j = max
si-1,j - sblock
si,j-1 - sblock
si-1,j-1 - bi,j

sblock is the penalty
for inserting or
deleting an entire
block

bi,j is score of pair of
blocks in row i and
column j.

• To solve: compute alignment score ßi,j for each pair of blocks |u(i-
1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

• How many blocks are there per sequence?
 (n/t) blocks of size t
• How many pairs of blocks for aligning the two sequences?
 (n/t) x (n/t)
• For each block pair, solve a mini-alignment problem of size t x t

Constructing Alignments within Blocks

Block Alignment Runtime

• Indices i,j range from 0 to n/t

• Running time of algorithm is

 O([n/t]*[n/t]) = O(n2/t2)

 if we don’t count the time to compute each bi,j

• Computing all bi,j requires solving (n/t)*(n/t) mini block
alignments, each of size (t*t)

• Computing all bi,j takes time O([n/t]*[n/t]*t*t) = O(n2)
• How do we speed this up?

n/t

Block pair
represented by each
small square

Solve mini-alignmnent
problems

Four Russians Technique
Let t = log(n), where t is block size, n is sequence size. Instead of
having (n/t)*(n/t) minialignments, construct 4t x 4t minialignments for
all pairs of strings of t nucleotides (huge size), and put in a lookup
table. However, size of lookup table is not really that huge if t is small.
Let t = (logn)/4. Then 4t x 4t = n

Lookup table “Score”

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA

…

A
A
A
A
A
A

A
A
A
A
A
C

A
A
A
A
A
G

A
A
A
A
A
T

A
A
A
A
C
A

…

each sequence
has t nucleotides

size is only n,
instead of
(n/t)*(n/t)

si,j = max
si-1,j - sblock
si,j-1 - sblock
si-1,j-1 – Score(ith block of v, jth block of u)

The new lookup
table Score is
indexed by a
pair of t-
nucleotide
strings

Four Russians Speedup Runtime

We can divide up the grid into blocks and run dynamic programming
only on the corners of these blocks. In order to speed up the mini-
alignment calculations to under n2, we create a lookup table of size n,
which consists of all scores for all t-nucleotide pairs.

Since computing the lookup table Score of size n takes O(n) time, the
running time is mainly limited by the (n/t)*(n/t) accesses to the lookup
table;
Each access takes O(logn) time. Overall running time:
O([n2/t2]*logn); Since t = logn, substitute in: O([n2/{logn}2]*logn) >
O(n2/logn).

More explanations: Four Russians Speedup for LCS
Unlike the block partitioned graph, the LCS path does not have
to pass through the vertices of the blocks.

block alignment longest common subsequence

In block alignment, we only
care about the corners of the
blocks. In LCS, we care about
all points on the edges of the
blocks, because those are
points that the path can
traverse. Recall, each
sequence is of length n, each
block is of size t, so each
sequence has (n/t) blocks.

block alignment has
(n/t)*(n/t) = (n2/t2)
points of interest

LCS alignment
has O(n2/t) points
of interest

Traversing Blocks for LCS
Given alignment scores si,* in the first row and scores s*,j in
the first column of a t x t mini square, compute alignment
scores in the last row and column of the minisquare.
To compute the last row and the last column score, we use
these 4 variables:

– alignment scores si,* in the first row
– alignment scores s*,j in the first column
– substring of sequence u in this block (4t possibilities)
– substring of sequence v in this block (4t possibilities

If we used this to compute the grid, it would take quadratic,
O(n2) time, but we want to do better.

we know these
scores

we can calculate
these scores

t x t block

Four Russians Speedup
• Build a lookup table for all possible values of the four variables:

1. all possible scores for the first row s*,j
2. all possible scores for the first column s*,j
3. substring of sequence u in this block (4t possibilities)
4. substring of sequence v in this block (4t possibilities)

• For each quadruple we store the value of the score for the last row
and last column.

• This will be a huge table, but we can eliminate alignments scores that
don’t make sense: Alignment scores in LCS are monotonically
increasing, and adjacent elements can’t differ by more than 1

0 1 2 2 3 4

1 1 0 1 1

original encoding

binary encoding

• Instead of recording numbers that correspond to the index in the
sequences u and v, we can use binary to encode the differences
between the alignment scores

Reducing Lookup Table Size

• 2t possible scores (t = size of blocks)
• 4t possible strings

– Lookup table size is (2t * 2t)*(4t * 4t) = 26t

• Let t = (logn)/4;
– Table size is: 26((logn)/4) = n(6/4) = n(3/2)

• Time = O([n2/t2]*logn)
• O([n2/{logn}2]*logn) > O(n2/logn)

Summary: We take advantage of the fact that for each block of t = log(n), we can
pre-compute all possible scores and store them in a lookup table of size n(3/2). We
used the Four Russian speedup to go from a quadratic running time for LCS to
subquadratic running time: O(n2/logn).

The Four-Russian Algorithm

 x = AACT
 y = CACT

5 6 5 4

5 5 6 5

4 5 5 6

5 5 6 5

A A C T

C

A

C

T

0 1 -1 -1

0

0

-1

1

0 0 1 -1

0

1

1

-1

1 2 1 0

1 1 2 1

0 1 1 2

1 1 2 1

A A C T

C

A

C

T

0 1 -1 -1

0

0

-1

1

0 0 1 -1

0

1

1

-1

Example

152

Can we predict the RNA secondary structure from sequence?
Sort of self alignment of one molecule which is termed folding

The three levels of organization of RNA structure a) sequence; b) secondary structure;
c) Tertiary structure

153Source: https://www.sciencedirect.com/science/article/pii/S0958166916301082#fig0020

Biologists need algorithms to compute RNA local folding as this could
highlight important cell functions

RNA as lego bricks: many
foldings -> many functions in the
cell

The basic local foldings

154 bifurcationi,j pair j unpairedi unpaired

i j
j-1i+1

i
ji+1

j
j-1i

i k

jk+1

• Secondary Structure :
– Set of paired positions on interval [i,j]
– This tells which bases are paired in the subsequence from xi to xj

• Every optimal structure can be built by extending optimal substructures.
• Suppose we know all optimal substructures of length less than j-i+1.
 The optimal substructure for [i,j] must be formed in one of four ways:

1. i,j paired
2. i unpaired
3. j unpaired
4. combining two substructures

 Note that each of these consists of extending or joining substructures of length
less than j-i+1.

Biologists need algorithms to compute RNA local folding
as this could highlight important cell functions

Example: GGGAAAUCC

0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0

G G G A A A U C C
j

i

G
 G

 G
 A

 A
 A

 U
 C

 C

0i)(i, & 01)-i(i, == ggtionInitialisa

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

U

A A

C
A

C
G
G

G

Starting with all subsequences of
length 2, to length L:

Where d(i,j) = 1 if xi and xj
are a complementary base pair,
and d(i,j) = 0, otherwise.

γ(i,j) is the maximum number
of base pairs in segment [i,j]

155

RNA Secondary Structure: The Nussinov Folding Algorithm
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms for loop
matchings, SIAM J. Appl. Math

final structure

Ruth Nussinov

Nussinov Folding Algorithm:
After scores for subsequences of length 2

G G G A A A U C C

G

G

G

A

A

A

U

C

C

i

j

U

A A

C
A

C
G
G

G

0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 1
0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

156

Nussinov Folding Algorithm:
After scores for subsequences of length 3

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 1

0 0 1 0
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

157

Nussinov Folding Algorithm
 After scores for subsequences of length 4

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 1
0 0 0 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Two optimal substructures for same subsequence

158

Nussinov Folding Algorithm
 After scores for subsequences of length 5

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 0 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

159

Nussinov Folding Algorithm
 After scores for subsequences of length 6

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0

0 0 0 0 0 0 1
0 0 0 0 0 1 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

160

Nussinov Folding Algorithm
 After scores for subsequences of length 7

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1

0 0 0 0 0 0 1 2
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

161

Nussinov Folding Algorithm
 After scores for subsequences of length 8

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1 2

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

162

Nussinov Folding Algorithm
 After scores for subsequences of length 9

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1 2 3

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

163

Nussinov Folding Algorithm
 Traceback

G G G A A A U C C

G
 G

 G
 A

 A
 A

 U
 C

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1 2 3

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

164

Nussinov algorithm:
fill-stage

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1 2 3 4 5 6 7 8 9

G 1

G 2

C 3

C 4

A 5

G 6

U 7

U 8

C 9
Pink: joining of substructures 1..4 and 5..8

Green: addition of paired bases 1,7

Blue: addition of unpaired base 3 or 7

Scoring system:
δ(i,j) = 1 for all RNA Watson-Crick base-
pairs including G-U else δ(i,j) = 0.

165

Example and RECAP

Nussinov algorithm:
trace-back

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1 2 3 4 5 6 7 8 9

G 1

G 2

C 3

C 4

A 5

G 6

U 7

U 8

C 9

current record stack
 1,9
1,9 1,8
1,8 1,4 5,8
1,4 1,4 2,3 5,8
2,3 2,3 3,2 5,8
3,2 5,8
5,8 5,8 6,7
6,7 6,7 7,6
7,6

166

Final structure

Example and RECAP

167

Example
and

RECAP

0i)(i, & 01)-i(i, == ggtionInitialisa

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Complexity

Complexity: there are O(n2)
terms to be computed, each
requiring calling of O(n) already
computed terms for the case of
bifurcation. Thus overall
complexity is O(n3) in time and
O(n2) in space.

Open problems

Some noncoding RNAs, called
antisense RNAs, aim at inhibiting
their target RNA function through
base complementary binding;
several kissing hairpin structures
(left) caused by loop-loop
interaction have been reported.

Add energy

3D structure

Alignment-producing programs assume that
homologous sequences comprise a series of linearly
arranged and more or less conserved sequence
stretches.
Genetic recombination events, horizontal gene
transfers, gene duplications, and gene gains/losses
often disrupt the colinearity.
Alignment-based approaches are generally memory
consuming and time consuming and the
computation of an accurate multiple-sequence
alignment is an NP-hard problem

170

Zielezinski, A., Vinga, S., Almeida, J. et al. Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biol 18, 186 (2017).
https://doi.org/10.1186/s13059-017-1319-7

Alignment-free sequence comparison

Alignment-free approaches to sequence
comparison can be defined as any method of
quantifying sequence similarity/dissimilarity that
does not use or produce alignment (assignment of
residue–residue correspondence) at any step of
algorithm application. They do not rely on
dynamic programming.
Alignment-free approaches can be broadly divided
into two groups: methods based on the
frequencies of subsequences of a defined length
(word-based methods) and methods that evaluate
the informational content between full-length
sequences (information-theory based methods).

171

Alignment-free sequence comparison

Similar sequences share similar words/k-mers (subsequences of length k), and
mathematical operations with the words’ occurrences give a good relative
measure of sequence dissimilarity. This process can be broken into three key
steps.

172

First, the sequences being compared
must be sliced up into collections of
unique words of a given length. The
second step is to transform each
sequence into an array of numbers
(vector) (e.g., by counting the
number of times each particular
word appears within the sequences).
The last step includes quantification
of the dissimilarity between
sequences through the application of
a distance function to the sequence-
representing vectors.
This difference is very commonly
computed by the Euclidean distance,
although any metric can be applied.

Frequency-based methods

Lempel–Ziv complexity is a popular measure that calculates the number
of different subsequences encountered when viewing the sequence
from beginning to end.
Once the complexities of the sequences are calculated, a measure of
their differences (e.g., the normalized compression distance) can be
easily computed.

173

Information theory-based methods

Using Shannon entropy measure, Kullback and Leibler
introduced a relative entropy measure (Kullback–Leibler
divergence, KL) that allowed for a comparison of two sequences.

174

Information theory-based methods

The procedure
involves the
calculation of the
frequencies of
symbols or words
in a sequence and
the summation of
their entropies in
the compared
sequences.

175

Reference for this section

Ø Chapter 5 Vol 1

Zielezinski, A., Vinga, S., Almeida, J. et al. Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biol 18, 186 (2017).
https://doi.org/10.1186/s13059-017-1319-7

176

Algorithms to build Trees

Section 3

Ø Additive Phylogeny
Ø Using Least-Squares to Construct Distance-Based Phylogenies
Ø Ultrametric Evolutionary Trees
Ø The Neighbor-Joining Algorithm
Ø Character-Based Tree Reconstruction
Ø The Small Parsimony Problem
Ø The Large Parsimony Problem
Ø Back to the alignment: progressive alignment

177

Ancestral Node
or ROOT of

the Tree
Internal Nodes

(fossil)

Branches or
 Lineages A

B

C

D

E

((A,(B,C)),(D,E)) = The above phylogeny as nested parentheses

Terminal Nodes
(Living species)

unrooted

rooted

Time (mutations)

What it is in a tree

species tree by Darwin

Why is important for biologists:Nothing in Biology Makes Sense Except in the
Light of Evolution (Dobzhansky, 1964)

cnidarians

flowering!
seed plants

non-flowering!
seed plants

sponges

bacteria

archaebacteria

protoctists

green algae

ferns

mosses

fungi
ANIMALS

PLANTS

EUKARYOTES

LIFE

flatworms

rotifers roundworms lophophorates

snakes!
& lizards

crocodiles!
& birds

ARTHROPODS

echinoderms

VERTEBRATES

mollusks segmented!
worms

chelicerates

crustaceans insects

cartilaginous!
fish

bony fish

TETRAPODS

amphibians

AMNIOTES

mammals

turtles

Leaves (degree = 1):
present-day species

Internal nodes
(degree ≥ 1):
ancestral species

Tree: Connected
graph containing
no cycles.

Trees

Reconstruction of evolutive patterns:
tree of life based on mitochondrial
sequences

tracing influenza strain variations
Based on variations in hemagglutinin
sequence

Why biologists need algorithms to build trees

Why biologists need algorithms to build trees

We can reconstruct the
likely sequence of protein of
an archosaur based on the
sequence of the same
protein in existant species.

We look at the changes
between chicken and
alligator

We can use a tree to guide a multiple
sequence alignment. The sequence of genes
and proteins are conserved in nature. It
is common to observe strong sequence
similarity between a protein and its counterpart
in another species that diverged hundreds of
millions of years ago. Accordingly, the best
method to identify the function of a new gene
or protein is to find its sequence- related genes
or proteins whose functions are already known.

Did the Florida Dentist infect his patients with HIV?

DENTIST

Patient H

Patient D

Patient F

Patient C
Patient A
Patient G
Patient B
Patient E
Patient A

Local control 2
Local control 3

Local control 9

Local control 35

Local control 3

Yes:
The HIV sequences from
these patients fall within
the clade of HIV sequences
found in the dentist.

No

No
From Ou et al. (1992) and Page & Holmes (1998)

Phylogenetic tree
of HIV sequences
from the DENTIST,
his Patients, & Local
HIV-infected People:

Phylogenetic tree
applications

Lice have few opportunities for gopher-switching, and lice on gopher lineage A
don't mate with lice living on gopher lineage B. This "geographic" isolation of
the louse lineages may cause them to become reproductively isolated as well,
and hence, separate species.

Why biologists need algorithms to build trees: evolution

Ultrametric tree: distance
from root to any leaf is the
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel
Monkey

23
33

10

10

6

1

22
6

edge weights: correspond
to difference in ages on the
nodes the edge connects.33

23

13

7

6

2

Rooted binary tree: an
unrooted binary tree with
a root (of degree 2) on
one of its edges.

Ultrametric Trees

Ultrametric tree: distance
from root to any leaf is the
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel
Monkey

23
33

10

10

6

1

22
6

33

23

13

7

6

2

Ultrametric Trees

1. Form a cluster for each present-day species, each
containing a single leaf.

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
i j k l 0000

UPGMA: A Clustering Heuristic

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

2. Find the two closest clusters C1 and C2 according
to the average distance
 Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|
where |C| denotes the number of elements in C.

i j k l 0000

UPGMA: A Clustering Heuristic

i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

3. Merge C1 and C2 into a single cluster C.

{ k, l }

UPGMA: A Clustering Heuristic

i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

4. Form a new node for C and connect to C1 and C2
by an edge. Set age of C as Davg(C1, C2)/2.

{ k, l }
1

11

UPGMA: A Clustering Heuristic

i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ k, l }

5. Update the distance matrix by computing the
average distance between each pair of clusters.

UPGMA: A Clustering Heuristic

1.5

1.51.5

i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ i, j }

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

1.5

1.51.5

i j k l 0000

1

11

{ i, j }
{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

UPGMA(D):
1. Form a cluster for each present-day species, each

containing a single leaf.
2. Find the two closest clusters C1 and C2 according to the

average distance
 Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|
where |C| denotes the number of elements in C

3. Merge C1 and C2 into a single cluster C.
4. Form a new node for C and connect to C1 and C2 by an

edge. Set age of C as Davg(C1, C2)/2.
5. Update the distance matrix by computing the average

distance between each pair of clusters.
6. Iterate steps 2-5 until a single cluster contains all species.

UPGMA: A Clustering Heuristic

i j k l

1

11

1.5

1.51.5

2

1

0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix

i j k l

1

11

1.5

1.51.5

2

1

0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Di,j = number of differing symbols between i-th and
j-th rows of a “multiple alignment”.

Constructing a distance matrix

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Di,j = number of differing symbols between i-th and
j-th rows of a “multiple alignment”.

Constructing a distance matrix

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

How else could we form a distance matrix?

Di,j = number of differing symbols between i-th and
j-th rows of a multiple alignment.

Constructing a distance matrix

Present Day

Most Recent Ancestor

TIME

Tree: Connected graph
containing no cycles.
Leaves: (degree=1):
present day species.
Internal nodes (degree
≥ 1): ancestral species.
One node could be
designated as root
(most recent common
ancestor)

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.
• Input: A distance matrix.
• Output: The unrooted tree fitting this distance matrix.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

Fitting a tree to a matrix

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

where TotalDistanceD(i) is the sum of distances from i
to all other leaves.

D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

D*

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)

Neighbor-Joining method

D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0
D*

Neighbor-Joining Theorem: If D is additive, then the
smallest element of D* corresponds to neighboring
leaves in Tree(D).

Neighbor-Joining method

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

1. Construct neighbor-joining matrix D* from D.

Neighbor-Joining method

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining method

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining method

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -68 0 -60 -60

k -60 -60 0 -68

l -60 -60 -68 0

3. Compute Δi,j = (TotalDistanceD(i) –
TotalDistanceD(j)) / (n – 2).

Δi,j = (56 – 38) / (4 – 2)
 = 9

Neighbor-Joining method

TotalDistanceD

56

38

46

48

4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and
LimbLength(j) equal to ½(Di,j – Δi,j).

Δi,j = (56 – 38) / (4 – 2)
 = 9

D

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2

Neighbor-Joining method

5. Form a matrix D’ by removing i-th and j-th
row/column from D and adding an m-th row/column
such that for any k, Dk,m = (Di,k + Dj,k – Di,j) / 2.

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

TotalDistanceD

21

23

24

Neighbor-Joining method

j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Computation of dk,m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

Neighbor-Joining in Action

6. Apply NeighborJoining to D’ to obtain Tree(D’).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

j

i

m

k

4
6

7
l

Tree(D’)

j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2

j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)

NeighborJoining(D):
1. Construct neighbor-joining matrix D* from D.
2. Find a minimum element D*i,j of D*.
3. Compute Δi,j = (TotalDistanceD(i) – TotalDistanceD(j)) / (n

– 2).
4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and LimbLength(j)

equal to ½(Di,j – Δi,j).
5. Form a matrix D’ by removing i-th and j-th row/column

from D and adding an m-th row/column such that for any
k, Dk,m = (Dk,i + Dk,j – Di,j) / 2.

6. Apply NeighborJoining to D’ to obtain Tree(D’).
7. Reattach limbs of i and j to obtain Tree(D).

Neighbor-Joining

Reference: Saitou, N.; Nei, M. (1 July 1987). "The neighbor-joining method: a new method for
reconstructing phylogenetic trees". Molecular Biology and Evolution. 4 (4): 406–425.
doi:10.1093/oxfordjournals.molbev.a040454. PMID 3447015.

https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Foxfordjournals.molbev.a040454
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/3447015

Complexity

Exercise Break, check the following: Neighbor
joining on a set of r taxa (species, leaves) requires r-
3 iterations. At each step one has to build and
search a D* matrix. Initially the D* matrix is size r2,
then the next step it is (r -1)2, etc. This leads to a
time complexity of O(r 3).

Code Challenge: Implement NeighborJoining.

Neighbor-Joining

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Find the tree returned by
NeighborJoining on the following non-additive
matrix. How does the result compare with the tree
produced by UPGMA?

D

2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

UPGMA
tree

We lost information when we converted a multiple
alignment to a distance matrix...

Weakness of Distance-Based Methods

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.

218

Example and RECAP (note different notation)

From
http://evolution-textbook.org/content/free/tables/Ch_27/T11_EVOW_Ch27.pdf

The additive tree condition meant that for any two leaves, the distance between
them is the sum of edge weights of the path between them. We need a method to
check if a tree is additive or not by inspecting the distance matrix.We can now state
the four-point condition between four taxa.
Definition (four-point condition) Given four taxa i , j , k, and l, the four-point
condition holds if two of the possible sums dil + djk , dik + djl and dij + dkl are
equal and the third one is smaller than this sum.
As can be seen in Fig above, the possible distances between four taxa can be
specified as follows:

Four-point condition between four taxa

where T is the sum of the distances of the leaves to their
ancestors. This would mean that the larger sum should
appear twice in these three sums. A distance matrix D[n, n]
is additive if and only if the four-point condition holds for all
of its four elements

220

https://evolution.gs.washington.edu/phylip/software.html

Implementation

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

?????????? ??????????

??????????

Chimp Human Seal Whale

Chimp ACGTAGGCCT

Human ATGTAAGACT

Seal TCGAGAGCAC

Whale TCGAAAGCAT

n species

m characters

PARSIMONY: An Alignment As a Character Table

Here we do not use a
distance matrix and we
value each column of
the alignment; each
column could output a
tree

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

21

2

02

1

Parsimony score: sum of Hamming distances along
each edge.

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

21

2

02

1

Parsimony score: sum of Hamming distances along
each edge.

Parsimony Score: 8

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
• Input: A rooted binary tree with each leaf labeled

by a string of length m.
• Output: A labeling of all other nodes of the tree

by strings of length m that minimises the tree’s
parsimony score.

Toward a Computational Problem

Is there any way we can simplify this problem
statement?

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
• Input: A rooted binary tree with each leaf labeled

by a single symbol.
• Output: A labeling of all other nodes of the tree

by single symbols that minimises the tree’s
parsimony score.

v

A Dynamic Programming Algorithm

Let Tv denote the subtree of T
whose root is v.

Tv

Define sk(v) as the minimum
parsimony score of Tv over
all labelings of Tv, assuming
that v is labeled by k.

The minimum parsimony score for the tree is equal to
the minimum value of sk(root) over all symbols k.

Exercise Break: Prove the following recurrence
relation:

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A Dynamic Programming Algorithm

For symbols i and j, define
• δi,j = 0 if i = j

• δi,j = 1 otherwise.

v

Tv

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0

C C A C G G T C

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A C G T

2 0 2 2

A C G T

1 1 2 2

A C G T

2 2 0 2

A C G T

2 1 2 1

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0

C C A C G G T C

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A C G T

2 1 2 1

A C G T

2 2 0 2

A C G T

1 1 2 2

A C G T

2 0 2 2

A C G T

2 1 3 3

A C G T

3 2 2 2

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0

C C A C G G T C

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0

A C G T

2 0 2 2

A C G T

1 1 2 2

A C G T

2 2 0 2

A C G T

2 1 3 3

A C G T

3 2 2 2

A C G T

5 3 4 4

A C G T

2 1 2 1

C

C C A C G G T C

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0

A C G T

2 0 2 2

A C G T

1 1 2 2

A C G T

2 2 0 2

A C G T

2 1 3 3

A C G T

3 2 2 2

A C G T

5 3 4 4

A C G T

2 1 2 1

C

C C A C G G T C

A Dynamic Programming Algorithm

Exercise Break: “Backtrack” to fill in the remaining
nodes of the tree.

A Dynamic Programming Algorithm

A C G T

� 0 � �

A C G T

� 0 � �

A C G T

0 � � �

A C G T

� 0 � �

A C G T

� � 0 �

A C G T

� � 0 �

A C G T

� 0 � �

A C G T

� � � 0

A C G T

2 0 2 2

A C G T

1 1 2 2

A C G T

2 2 0 2

A C G T

2 1 3 3

A C G T

3 2 2 2

A C G T

5 3 4 4

A C G T

2 1 2 1

C

C C A C G G T C

C C

G CCC

Complexity: if we want to calculate the overall length
(cost) of a tree with m species, n characters, and k states,
the Parsimony algorithm is of complexity O(mnk2).

Small Parsimony in an Unrooted Tree Problem: Find
the most parsimonious labeling of the internal nodes
of an unrooted tree.
• Input: An unrooted binary tree with each leaf

labeled by a string of length m.
• Output: A position of the root and a labeling of

all other nodes of the tree by strings of length m
that minimises the tree’s parsimony score.

Code Challenge: Solve this problem.

Small Parsimony for Unrooted Trees

David Sankoff

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

21

2

02

1

Finding the Most Parsimonious Tree

Parsimony Score: 8

ACGTAGGCCT ATGTAAGACTTCGAGAGCAC TCGAAAGCAT

42

0

23

0

Chimp HumanSeal Whale

ACGTAAGCAT ACGTAAGCAT

ACGTAAGCAT

Parsimony Score: 11

Finding the Most Parsimonious Tree

ACGTAGGCCT ATGTAAGACT TCGAGAGCACTCGAAAGCAT

31

2

52

1

Chimp Human SealWhale

ACGTAAGCCT ACGTAAGCCT

ACGTAAGCCT

Parsimony Score: 14

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,
find a tree (with leaves labeled by all these strings)
having minimum parsimony score.
• Input: A collection of strings of equal length.
• Output: A rooted binary tree T that minimises the

parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,
find a tree (with leaves labeled by all these strings)
having minimum parsimony score.
• Input: A collection of strings of equal length.
• Output: A rooted binary tree T that minimises the

parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Unfortunately, this problem is NP-Complete...

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

Z

YW

X

w

x

a b

y

z

A Greedy Heuristic for Large Parsimony

Z

YW

X

w

x

a b

y

z

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Z

YW

X

w

x

y

z

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Z

Y W

X Z

X W

Y

X

Y W

Z

w

x

a b

y

z

w

z

a b

y

x

w

y

a b

x

z

Rearranging these subtrees is called a nearest
neighbor interchange.

Nearest Neighbors of a Tree Problem: Given an
edge in a binary tree, generate the two neighbors of
this tree.
• Input: An internal edge in a binary tree.
• Output: The two nearest neighbors of this tree

(for the given internal edge).

Code Challenge: Solve this problem.

A Greedy Heuristic for Large Parsimony

Code Challenge: Implement the nearest-neighbor
interchange heuristic.

A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:
1. Set current tree equal to arbitrary binary rooted

tree structure.
2. Go through all internal edges and perform all

possible nearest neighbor interchanges.
3. Solve Small Parsimony Problem on each tree.
4. If any tree has parsimony score improving over

optimal tree, set it equal to the current tree.
Otherwise, return current tree.

Tree validation: the bootstrap algorithm

1. From each sequence, n nucleotides are randomly chosen with
replacements, giving rise to m rows of n columns each. These
now constitute a new set of sequences.

2. A tree is then reconstructed with these new sequences using the
same tree building method as before.

3. the topology of this tree is compared to that of the original tree.
Each interior branch of the original tree that is different from the
bootstrap tree is given a score of 0; all other interior branches
are given the value 1.

4. This procedure of resampling the sites and tree reconstruction is
repeated several hundred times, and the percentage of times
each interior branch is given a value of 1 is noted.

5. This is known as the bootstrap value. As a general rule, if the
bootstrap value for a given interior branch is 95% or higher,
then the topology at that branch is considered "correct".

Consider m sequences, each with n nucleotides, a phylogenetic tree is
reconstructed using some tree building methods.

247

Tree validation: the bootstrap algorithm

Generalising Pairwise to Multiple Alignment

• Alignment of 2 sequences is a 2-row matrix.
• Alignment of 3 sequences is a 3-row matrix

 A T - G C G -
 A - C G T - A
 A T C A C - A

• Our scoring function should score alignments with
conserved columns higher.

248

A A T -- C

A -- T G C

-- A T G C

Alignments = Paths in 3-D

• Alignment of ATGC, AATC, and ATGC

0 1 1 2 3 4 #symbols up to a given position

0 1 2 3 3 4

249

A A T -- C

A -- T G C

-- A T G C

Alignments = Paths in 3-D

• Alignment of ATGC, AATC, and ATGC

0 1 1 2 3 4

0 1 2 3 3 4

0 0 1 2 3 4

(0,0,0)®(1,1,0)®(1,2,1) ®(2,3,2) ®(3,3,3) ®(4,4,4)

250

(i-1,j-1,k-1)

(i,j-1,k-1)

(i,j-1,k)

(i-1,j-1,k) (i-1,j,k)

(i,j,k)

(i-1,j,k-1)

(i,j,k-1)2-D

2-D Alignment Cell versus 3-D Alignment Cell

251

• d(x, y, z) is an entry in the 3-D scoring matrix.

Multiple Alignment: Dynamic Programming

()
()
()
()
()
()
()ï

ï
ï
ï
ï

î

ïï
ï
ï
ï

í

ì

--+

--+

--+

-+

-+

-+

+

=

-

-

-

--

--

--

kkji

jkji

ikji

kjkji

kikji

jikji

kjikji

kji

us
ws

vs
uws
uvs

wvs
uwvs

s

,,
,,
,,
,,
,,
,,
,,

max

1,,

,1,

,,1

1,1,

1,,1

,1,1

1,1,1

,,

d

d

d

d

d

d

d

252

Multiple Alignment: Running Time

• For 3 sequences of length n, the run time is
proportional to 7n3

• For a k-way alignment, build a k-dimensional
Manhattan graph with
– nk nodes
– most nodes have 2k – 1 incoming edges.
– Runtime: O(2knk)

253

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments:
 A C - G C G G - C
 A C - G C - G A G
 G C C G C - G A G

 ACGCGG-C AC-GCGG-C AC-GCGAG
 ACGC-GAC GCCGC-GAG GCCGCGAG

254

Idea: Construct Multiple from Pairwise Alignments

Given a set of arbitrary pairwise alignments, can
we construct a multiple alignment that induces
them?

AAAATTTT---- ----AAAATTTT TTTTGGGG----
----TTTTGGGG GGGGAAAA---- ----GGGGAAAA

255

Progressive alignment
Progressive alignment methods are heuristic in nature.
They produce multiple alignments from a number of
pairwise alignments. Perhaps the most widely used
algorithm of this type is the software CLUSTAL
(https://www.ebi.ac.uk/Tools/msa/clustalo/)

Progressive Alignment
Clustalw:
1. Given N sequences, align each sequence against each

other.
2. Use the score of the pairwise alignments to compute a

distance matrix.
3. Build a guide tree (tree shows the best order of

progressive alignment).
4. Progressive Alignment guided by the tree.

Progressive Alignment
Not all the pairwise alignments build well into a
multiple sequence alignment

Progressive Alignment
The progressive alignment (see below) builds a final alignment
by merging sub-alignments (bottom to top) with a guide tree

The tree allows the ordering the multi alignment

260Software: muscle, MAFFT

Progressive Alignment

261

Signals and entropy measures
Entropy of a multialignment is calculated as
a column score as the sum of the negative
logarithm of this probability of each symbol
(i = {A, C, T, or G}): E=-∑! 𝑝!log 𝑝! 	
This is an entropy measure directly related
to the equation for Shannon entropy in
information theory. It is a convenient
measure of the variability observed in an
aligned column of residues. The more
variable the column is, the higher the
entropy. A completely conserved column
would score 0.

The user can impose a penalty value for
sites that have alignment Gaps (see figure
below): w*P where w = Value inserted by
the user as the cost of a gap; Pj = The
number of gaps in the site j divided by the
number of sequences in the alignment.

This approach could identify regions of
phylogenetic noise: In some areas there is
very little information; a condition for the
alignment is to have enough information.

Sequence alignment (dbg: with debugging symbols, def: default settings, spd:
optimised for speed). (a) Before alignment. (b) After alignment using an identity
substitution matrix. (c) After alignment using a substitution matrix 262

EXAMPLE: Phylogenetic-
inspired techniques for reverse
engineering and detection of

malware families

What Computer Scientists could learn from Bioinformatics

Distance algorithm in computer science
A) A sequence logo for the FakeAV-DO function “ F1 ”. Positions
with large characters indicate invariant parts of the function;
positions with small characters vary due to code metamorphism

B) A neighbour joining tree of FakeAV-DO set of procedures F1.

C) Neighbor joining tree of FakeAV-DO set of procedures F2
from
the same samples of B.

(W.M. Khoo and P. Lio’ Unity in diversity: Phylogenetic-inspired
techniques for reverse engineering and detection of malware
families)

A
B

C

What Computer Scientists could learn from Bioinformatics

264

Reference for this section

Ø Chapter 7 Vol 2

Reference: D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for multiple
sequence alignments. Methods in Enzymology, 266:383402, 1996.

Chapter 6 and 7

265

Clustering biological data

Section 4

Ø The Lloyd algorithm for k-means clustering
Ø From Hard to Soft Clustering
Ø From Coin Flipping to k-means Clustering
Ø Expectation Maximisation
Ø Soft k-means Clustering
Ø Hierarchical Clustering
Ø Markov Clustering Algorithm

266

Biologists need algorithms to find similar behaving genes

the heat map shown here
represents a genome-wide
expression profile of 24-hour-
rhythmic genes in the mouse
under chronic short-day (left
two panels) and long-day
(right two panels) conditions.
(From Masumoto KM, Ukai-
Tadenuma M, Kasukawa T, et
al. Curr. Biol. 20 [2010]
2199–2206.

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

Time points

gene expression
vector
(log[expression])

-4

-3

-2

-1

0

1

2

3

4

267Time points

Biologists need algorithms to find similarly behaving genes

eij = expression level of
gene i at checkpoint j

Genes
(yeast
genome)

n x m
gene expression

matrix

n points in
m-dimensional

space

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to

each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

(1, 6)

(10, 3)(1, 3)

(5, 6)

(8, 7)

(7, 1)

(3, 4)

(5, 2)

268

Genes as Points in Multidimensional Space

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

Cluster 1

Cluster 4 Cluster 5 Cluster 6

Cluster 3Cluster 2

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

269

OUTPUT: partition all yeast genes into clusters so that: genes in the same cluster
have similar behavior; genes in different clusters have different behavior

Ge
ne

s

Samples/conditionsSamples/conditions
Ge

ne
s Cluster genes with similar

sample expression-profile.

Cluster samples with similar
gene expression-profile.

Combination model

Ge
ne

s

Samples

Each color corresponds to
some “cause”.

The cause affects a
subset of genes in a
subset of the samples.

e.g. Ihmels et al. Nature genetics 2002

Combinations of samples/genes
(different ways to do the clustering)

After clustering we want to
understand the biological
meaning behind each group of
genes (why they show the
same patterns?)

271

Clustering -> Functional Annotations of Genes

https://david.ncifcrf.gov/content.jsp?file=functio
nal_annotation.html
A Typical Analysis Flow for Gene-enrichment and
Functional Annotation Analysis
Load Gene List → View Summary Page → Explore
details through Chart Report, Table Report,
Clustering Report, etc. → Export and Save
Results.

https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html
https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html

• distance between elements in the same cluster < ∆
• distance between elements in different clusters > ∆

272

Good Clustering Principle: Elements within the
same cluster are closer to each other than
elements in different clusters.

Clustering Problem

Clustering Problem: Partition a set of expression
vectors into clusters.
• Input: A collection of n vectors and an integer k.
• Output: Partition of n vectors into k disjoint

clusters satisfying the Good Clustering Principle.

Any partition into
two clusters does not
satisfy the Good
Clustering Principle!

273

Clustering as Finding Centers

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data.

Goal: partition a set Data into k clusters.

274

Clustering as Finding Centers

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data
and will minimise some notion of distance from
Centers to Data .

Goal: partition a set Data into k clusters.

What is the “distance” from Centers to Data?

275

Distance from a Single DataPoint to Centers

d(DataPoint, Centers) = minall points x from Centers d(DataPoint, x)

The distance from DataPoint in Data to Centers is
the distance from DataPoint to the closest center:

276

Distance from Data to Centers

MaxDistance(Data, Centers) =
max all points DataPoint from Data d(DataPoint, Centers)

277

k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points
Data, find k centers minimising MaxDistance(Data,
Centers).
• Input: A set of points Data and an integer k.
• Output: A set of k points Centers that minimises

MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

278

k-Center Clustering Problem. Given a set of points
Data, find k centers minimising MaxDistance(Data,
Centers).
• Input: A set of points Data and an integer k.
• Output: A set of k points Centers that minimises

MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

k-Center Clustering Problem

An even better
set of centers!

279

k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
 Centers ← the set consisting of a single DataPoint from Data
 while Centers have fewer than k points
 DataPoint ← a point in Data maximising d(DataPoint, Centers)

 among all data points
 add DataPoint to Centers

280

k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
 Centers ← the set consisting of a single DataPoint from Data
 while Centers have fewer than k points
 DataPoint ← a point in Data maximising d(DataPoint, Centers)

 among all data points
 add DataPoint to Centers

281

What Is Wrong with FarthestFirstTraversal?

FarthestFirstTraversal selects Centers that minimise
MaxDistance(Data, Centers).

human eye FarthestFirstTraversal

But biologists are interested in typical rather than
maximum deviations, since maximum deviations may
represent outliers (experimental errors).

282

The maximal distance between Data
and Centers:

 MaxDistance(Data, Centers)=
max DataPoint from Data d(DataPoint, Centers)

The squared error distortion
between Data and Centers:

 Distortion(Data, Centers) =

∑ DataPoint from Data d(DataPoint, Centers)2/n

Modifying the Objective Function

A single data point contributes
to MaxDistance

All data points contribute to
Distortion

283

NP-Hard for k > 1

k-Means Clustering Problem

k-Center Clustering Problem:
 Input: A set of points Data and an
 integer k.
 Output: A set of k points Centers
 that minimises
MaxDistance(DataPoints,Centers)

over all choices of Centers.

k-Means Clustering Problem:
 Input: A set of points Data and an
 integer k.
 Output: A set of k points Centers
 that minimises

Distortion(Data,Centers)

over all choices of Centers.

284

k-Means Clustering for k = 1

2 4 6

5

3

1

i-th coordinate of the center of
gravity = the average of the i-th
coordinates of datapoints:

((2+4+6)/3, (3+1+5)/3) = (4, 3)

Center of Gravity Theorem: The center of gravity of
points Data is the only point solving the 1-Means
Clustering Problem.

The center of gravity of points Data is
 ∑all points DataPoint in Data DataPoint / #points in Data

285

Select k arbitrary data points as Centers

The Lloyd Algorithm in Action

The Lloyd Algorithm in Action

Clusters

Centers

assign each data point to its nearest center

The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers

The Lloyd Algorithm in Action

assign each data point to its nearest center

Clusters

Centers

again!

The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers

again!

The Lloyd Algorithm in Action

Clusters

Centers

again!

assign each data point to its nearest center

The Lloyd Algorithm

Select k arbitrary data points as Centers and then
iteratively performs the following two steps:

• Centers to Clusters: Assign each data point to the

cluster corresponding to its nearest center (ties
are broken arbitrarily).

• Clusters to Centers: After the assignment of data
points to k clusters, compute new centers as
clusters’ center of gravity.

The Lloyd algorithm terminates when the centers
stop moving (convergence).

292

Must the Lloyd Algorithm Converge?

• If a data point is assigned to a new center
during the Centers to Clusters step:
– the squared error distortion is reduced

because this center must be closer to
the point than the previous center was.

• If a center is moved during the Clusters to
Centers step:
– the squared error distortion is reduced

since the center of gravity is the only
point minimising the distortion (the
Center of Gravity Theorem).

293

RECAP

294

Soft vs. Hard Clustering

• The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
• “hard” assignment of data points to clusters.

• Can we color the midpoint half-red and half-blue?
• “soft” assignment of data points to clusters.

Midpoint: A point approximately
halfway between two clusters.

295

Soft vs. Hard Clustering

• The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
• “hard” assignment of data points to clusters.

• Can we color the midpoint half-red and half-blue?
• “soft” assignment of data points to clusters.

296

Soft vs. Hard Clustering

Soft choices: points are assigned
“red” and “blue” responsibilities
rblue and rred (rblue + rred =1)

(0.98, 0.02)

(0.48, 0.52)

(0.01, 0.99)

Hard choices: points are
colored red or blue depending
on their cluster membership.

297

• We flip a loaded coin with an unknown bias θ
(probability that the coin lands on heads).

• The coin lands on heads i out of n times.
• For each bias, we can compute the probability of the

resulting sequence of flips.

Probability of generating the given sequence of flips is

Pr(sequence|θ) = θi * (1-θ)n-i

This expression is maximised at θ= i/n (most likely bias)

Flipping One Biased Coins

298

 Data
HTTTHTTHTH 0.4
HHHHTHHHHH 0.9
HTHHHHHTHH 0.8
HTTTTTHHTT 0.3
THHHTHHHTH 0.7

Goal: estimate the probabilities θA and θB

Flipping Two Biased Coins
A B

299

If We Knew Which Coin
Was Used in Each Sequence…

 Data HiddenVector
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Goal: estimate Parameters = (θA ,θB)
when HiddenVector is given

300

θB = fraction of heads generated in all flips with coin B =
(9+8+7) / (10+10+10) = (0.9+0.8+0.7) / (1+1+1) = 0.80

 Data HiddenVector
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

If We Knew Which Coin
Was Used in Each Sequence…

θA = fraction of heads generated in all flips with coin A =
(4+3) / (10+10) = (0.4+0.3) / 2 = 0.35

301

1 * HiddenVector

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters as a Dot-Product

*
*
*
*
*

(0.4*1+0.9*0+0.8*0+0.3*1+0.7*0)/ (1+0+0+1+0) = 0.35

∑all data points i Datai*HiddenVectori / ∑all data points iHiddenVectori= 0.35

Data * HiddenVector /

1 refers to a vector (1,1, … ,1) consisting of all 1s

(1,1,…, 1)*HiddenVector =0.35

θA = fraction of heads generated in all flips with coin A =
= (4+3) / (10+10) = (0.4+0.3) / 2 = 0.35

302

θB = fraction of heads generated in all flips with coin B
= (9+8+7) / (10+10+10) = (0.9+0.8+0.7) /(1+1+1) = 0.80

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters as a Dot-Product

*
*
*
*
*

(0.5*0+0.9*1+0.8*1+0.4*0+0.7*1) / (0+1+1+0+1) = 0.80

∑all points i Datai * (1- HiddenVectori) / ∑ all points i (1- HiddenVectori)=

Data * (1-HiddenVector) / 1 * (1 - HiddenVector) 303

θA = fraction of heads generated in all flips with coin A
 = (0.4+0.3)/2=0.35
 = Data * HiddenVector / 1 * HiddenVector

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters as a Dot-Product

*
*
*
*
*

θB = fraction of heads generated in all flips with coin B
 = (0.9+0.8+0.7)/3=0.80
 = Data * (1-HiddenVector) / 1 * (1 - HiddenVector)

304

Data, HiddenVector, Parameters

ParametersHiddenVector

 Data HiddenVector Parameters=(θA, θB)
 0.4 1
 0.9 0
 0.8 0 (0.35, 0.80)
 0.3 1
 0.7 0

305

Data, HiddenVector, Parameters

 Data HiddenVector Parameters=(θA, θB)
 0.4 ?
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

ParametersHiddenVector
?

306

 Data HiddenVector Parameters=(θA, θB)
 0.4 ?
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656 ≈ 0.00113 >

Pr(1st sequence|θB)= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003

From Data & Parameters to HiddenVector

Which coin is more likely to generate the
1st sequence (with 4 H)?

307

 Data HiddenVector Parameters=(θA, θB)
 0.4
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656 ≈ 0.00113 >

Pr(1st sequence|θB)= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003

From Data & Parameters to HiddenVector

1

Which coin is more likely to generate the
1st sequence (with 4 H)?

308

 Data HiddenVector Parameters=(θA, θB)
 0.4
 0.9 ?
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

From Data & Parameters to HiddenVector

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005 <

 Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the
2nd sequence (with 9 H)?

1

309

 Data HiddenVector Parameters=(θA, θB)
 0.4
 0.9
 0.8 ? (0.35, 0.80)
 0.3 ?
 0.7 ?

From Data & Parameters to HiddenVector

0

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005 <

Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the
2nd sequence (with 9 H)?

1

310

HiddenVector Reconstructed!

 Data HiddenVector Parameters=(θA, θB)
 0.4 1
 0.9 0
 0.8 0 (0.35, 0.80)
 0.3 1
 0.7 0

311

Reconstructing HiddenVector and Parameters

Data

ParametersHiddenVector

312

Reconstructing HiddenVector and Parameters

Data

Parameters’HiddenVector

313

Reconstructing HiddenVector and Parameters

Data

Parameters’HiddenVector

314

Reconstructing HiddenVector and Parameters

Data

Parameters’HiddenVector’

Iterate!

315

From Coin Flipping to k-means Clustering:
Where Are Data, HiddenVector, and Parameters?

Data: data points Data = (Data1,…,Datan)

Parameters: Centers = (Center1,…,Centerk)

HiddenVector: assignments of data points to k centers
(n-dimensional vector with coordinates varying from 1 to k).

1

2

3

1 2

1

3
3

3

2

1

316

Coin Flipping and Soft Clustering

• Coin flipping: how would you select between coins A and B if
Pr(sequence|θA) = Pr(sequence|θB)?

• k-means clustering: what cluster would you assign a data point it
to if it is a midpoint of centers C1 and C2?

Soft assignments: assigning C1 and C2 “responsibility” ≈0.5 for
a midpoint. 317

 Data HiddenVector Parameters = (θA,θB)
 0.4 ?
 0.9 ?
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >

Pr(1st sequence|θB)= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015

From Data & Parameters to HiddenVector

Which coin is more likely to have generated the first
sequence (with 4 H)?

318

 Data HiddenVector Parameters = (θA,θB)
 0.4
 0.9 ?
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >

Pr(1st sequence|θB)= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015

Memory Flash:
From Data & Parameters to HiddenVector

1

Which coin is more likely to have generated the first
sequence (with 4 H)?

319

 Data HiddenMatrix Parameters = (θA,θB)
 0.4
 0.9 ?
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

Pr(1st sequence|θA) ≈ 0.000531 >
 Pr(1st sequence|θB) ≈ 0.000015

From Data & Parameters to HiddenMatrix

0.000531 / (0.000531 + 0.000015) ≈ 0.97
0.000015 / (0.000531 + 0.000015) ≈ 0.03

What are the responsibilities of coins for this sequence?

0.97 0.03

320

 Data HiddenMatrix Parameters = (θA, θB)
 0.4
 0.9
 0.8 ? (0.60, 0.82)
 0.3 ?
 0.7 ?

From Data & Parameters to HiddenMatrix

0.0040 / (0.0040 + 0.0302) = 0.12
0.0342 / (0.0040 + 0.0342) = 0.88

What are the responsibilities of coins for the 2nd sequence?

Pr(2nd sequence|θA) ≈ 0.0040 <
 Pr(2nd sequence|θB) ≈ 0.0302

0.97 0.03
0.12 0.88

321

 Data HiddenMatrix Parameters = (θA,θB)
 0.4
 0.9
 0.8 0.29 0.71 (0.60, 0.82)
 0.3 0.99 0.01
 0.7 0.55 0.45

HiddenMatrix Reconstructed!

0.97 0.03
0.12 0.88

322

Expectation Maximization Algorithm

Data

ParametersHiddenMatrix

323

E-step

Data

ParametersHiddenMatrix

324

M-step

Data

Parameters’HiddenVector

???

325

 Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 ???
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

*
*
*
*
*

Memory Flash: Dot Product

θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

326

HiddenVector = (1 0 0 1 0)

θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

 Data HiddenVector Parameters=(θA,θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

From Data & HiddenMatrix to Parameters

What is HiddenMatrix corresponding to this HiddenVector?
327

HiddenVector = (1 0 0 1 0)

Hidden Matrix =

1 0 0 1 0
0 1 1 0 1

θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

 Data HiddenVector Parameters=(θA,θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

From Data & HiddenMatrix to Parameters

θB = Data * 2nd row of HiddenMatrix / 1*2nd row of HiddenMatrix

θA = Data * 1st row of HiddenMatrix / 1*1st row of HiddenMatrix

= HiddenVector
= 1 - HiddenVector328

HiddenVector = (1 0 0 1 0)

Hidden Matrix =

.97 .03 .29 .99 .55

.03 .97 .71 .01 .45

θA = Data * HiddenVector / 1 * HiddenVector

 θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

 Data HiddenMatrix Parameters=(θA,θB)
HTTTHTTHTH 0.4 0.97 0.03
HHHHTHHHHH 0.9 0.12 0.88
HTHHHHHTHH 0.8 0.29 0.71
HTTTTTHHTT 0.3 0.99 0.01
THHHTHHHTH 0.7 0.55 0.45

From Data & HiddenMatrix to Parameters

θB = Data * 2nd row of HiddenMatrix / 1*2nd row of HiddenMatrix

θA = Data * 1st row of HiddenMatrix / 1*1st row of HiddenMatrix

329

Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenVector: assignments of data points to centers

1 2 1 3 2 1 3 3HiddenVector

1

2

3

1 2

1

3
3

3

2

1

A

A B C D E F G
H

C
F

B
E

D
G

H

1 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1

HiddenMatrix
1
2
3

From HiddenVector to HiddenMatrix

330

0 1 0 0 1 0 0

1 0 0 1 0 0 0

0 0 1 0 0 1 1

From HiddenVector to HiddenMatrix
Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j

HiddenMatrix
1
2
3

0.7

0.2

0.1

A B C D E F G
H

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H

331

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

From HiddenVector to HiddenMatrix
Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j

A B C D E F G H

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H

HiddenMatrix
1
2
3

332

Responsibilities and the Law of Gravitation

HiddenMatrixij: =
Forcei,j / ∑all centers j Forcei,j

stars

planets

responsibility of star i for a planet j is proportional to the
pull (Newtonian law of gravitation):

Forcei,j=1/distance(Dataj, Centeri)2

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

333

Responsibilities and Statistical Mechanics

centers

data points

responsibility of center i for a data point j is proportional to

Forcei,j = e-β∙distance(Dataj, Centeri)

where β is a stiffness parameter.

HiddenMatrixij: =
Forcei,j / ∑all centers j Forcei,j

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

334

How Does Stiffness Affect Clustering?

Hard k-means
clustering

Soft k-means
clustering

(stiffness β=1)

Soft k-means
clustering

(stiffness β= 0.3)

335

Stratification of Clusters

Clusters often have subclusters, which have
subsubclusters, and so on.

336

Hierarchical Clustering

Stratification of Clusters

Clusters often have subclusters, which have sub-
subclusters, and so on.

337

From Data to a Tree

To capture stratification, the hierarchical clustering
algorithm organises n data points into a tree.

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

338

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

From a Tree to a Partition into 4 Clusters

To capture stratification, the hierarchical clustering
algorithm organises n data points into a tree.

Line
crossing
the tree

at 4 points

339

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

From a Tree to a Partition into 6 Clusters

To capture stratification, the hierarchical clustering
algorithm first organises n data points into a tree.

Line
crossing
the tree

at 6 points

6 Clusters
340

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

Constructing the Tree

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

Hierarchical clustering starts from a transformation of n m
expression matrix into n x n similarity matrix or distance matrix.

Distance Matrix

341

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Identify the two closest clusters and merge them.

342

g1 g2 g3, g5 g4 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0

g3, g5 9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Recompute the distance between two clusters as
average distance between elements in the cluster.

343

g1 g2 g3, g5 g4 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0

g3, g5 9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Identify the two closest clusters and merge them.

344

g1 g2, g4 g3, g5 g6 g7 g8 g9 g10

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0

g2, g4 7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0

g3, g5 9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Recompute the distance between two clusters (as
average distance between elements in the cluster).

345

g1 g2, g4 g3, g5 g6 g7 g8 g9 g10

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0

g2, g4 7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0

g3, g5 9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0

Constructing the Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g2, g4}

{g3, g5, g8}

Identify the two closest clusters and merge them.

346

Constructing the Tree

Iterate until all elements form a single cluster (root).

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9 347

Examples: Determining the dimensionality of the clustering

Representation of the mRNA clustering problem consisting of >14,000 mRNAs measured
across 89 cell lines. Data are from Lu et al, MicroRNA expression profiles classify human
cancers. Nature 435, 834–838 (2005).. When the mRNAs are clustered, the mRNAs are the
objects and each cell line represents a feature, resulting in an 89-dimensional problem (A).
When attempting to classify normal and tumor cell lines using gene expression, the cells lines
are the objects and each mRNA is a feature, resulting in a clustering problem with thousands of
dimensions (B). (C) Effect of dimensionality on sparsity. (D) Effect of dimensionality on coverage
of the data based on SD from the mean. The cell line clustering problem is even more
challenging because the relatively small number of observations (89) compared with the large
dimensionality (>14,000) could be dominated by noise in the expression data.

Constructing a Tree from a Distance Matrix D

HierarchicalClustering (D, n)
 Clusters ← n single-element clusters labeled 1 to n
 T ← a graph with the n isolated nodes labeled 1 to n
 while there is more than one cluster
 find the two closest clusters Ci and Cj
 merge Ci and Cj into a new cluster Cnew with |Ci| + |Cj| elements
 add a new node labeled by cluster Cnew to T
 connect node Cnew to Ci and Cj by directed edges
 remove the rows and columns of D corresponding to Ci and Cj
 remove Ci and Cj from Clusters
 add a row and column to D for the cluster Cnew by computing
 D(Cnew ,C) for each cluster C in Clusters
 add Cnew to Clusters
 assign root in T as a node with no incoming edges
 return T

349

Different Distance Functions Result in Different Trees

Average distance between elements of two clusters:

Davg(C1, C2) = (∑ all points i and j in clusters C1 and C2, respectively Di,j)/ (|C1|*|C2|)

Minimum distance between elements of two clusters:

Dmin(C1, C2) = min all points i and j in clusters C1 and C2, respectively Di,j

350

Markov Clustering Algorithm (MCL)
MCL is unsupervised cluster algorithm for graphs derived by
Stijn van Dongen during his Ph.D. (at the link below there
is also his thesis).
Unlike most clustering algorithms, the MCL does not
require the number of expected clusters to be specified
beforehand. The basic idea underlying the algorithm is that
dense clusters correspond to regions with a larger number
of paths (” A random walk that visits a dense cluster will
likely not leave the cluster until many of its vertices have
been visited.”). The algorithm works well with within a
highly connected graphs. You can find the code for many
programming languages at micans.org/mcl

353

Markov Clustering Algorithm
We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.
A random walk has a higher probability to stay inside the
cluster than to leave it soon. The crucial point lies in
boosting this effect by an iterative alternation of expansion
and inflation steps. An inflation parameter is responsible
for both strengthening and weakening of current, i.e.
Strengthens strong currents, and weakens already weak
currents. An expansion parameter, r, controls the extent of
this strengthening / weakening. In the end, this influences
the granularity of clusters.

354

Matrix representation

355

Markov Clustering Algorithm

356

Markov Clustering Algorithm: example

357

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and
mostly consist of sparse matrices after the first few
steps.

The expansion step of MCL has time complexity O(n3).

The inflation has complexity O(n2). However, the

matrices are generally very sparse, or at least the vast

majority of the entries are near zero. Pruning in MCL

involves setting near-zero matrix entries to zero, and

can allow sparse matrix operations to improve the speed

of the algorithm vastly.

Markov Clustering Algorithm

358

Markov Clustering Algorithm

359

It uses edge betweenness to find and remove central edges
that connect communities within a larger graph. The formula
for edge betweenness is

where σᵤ,ᵥ is the number of shortest paths between two
distinct vertices and σᵤ,ᵥ(e) is the corresponding number of
shortest paths containing a particular edge.

Girvan-Newman algorithm for community detection predates
the Lovain algorithm which predates the Leiden algorithm

They are based on modularity

360

After removing an edge, the Girvan-Newman algorithm calculates
the modularity (Q) of the graph, which is a value between the
range [-0.5,1]. A higher value suggests a more significant
community structure. Therefore, we can identify communities by
maximizing modularity. Given m = number of modules, ls = the
number of edges inside module s, L = the number of edges in the
network, dₛ = total degree of the nodes in module s), the formula
for modularity is

This process of removing an edge and calculating the modularity
is iteratively repeated. The algorithm will stop when the new
modularity is no longer greater than the modularity from the
previous iteration.

Girvan-Newman algorithm

One caveat to this algorithm is that it is difficult to find smaller
communities. Due to the modularity optimization, the algorithm
fails to detect “modules smaller than a scale which depends on
the total size of the network and on the degree of
interconnectedness of the modules. As a result, one should use
this algorithm for detecting larger community structures and then
examine the detected communities for sub communities.
Time Complexity
Despite Girvan-Newman’s popularity and quality of community
detection, it has a high time complexity, increasing up to O(m²n)
on a sparse graph having m edges and n nodes. As a result,
Girvan-Newman is generally not used on large scale networks. Its
optimal node count is a few thousand nodes or less.
Because of this, there exist greedy algorithms for detecting
communities to reduce the time but at the same time sacrificing
the most accurate results. One such example is the Louvain
algorithm.

Girvan-Newman algorithm

The Louvain algorithm is a fast implementation of community
detection. It is a hierarchical clustering algorithm that involves
two phases: modularity optimization and community aggregation.
Modularity Optimization: The first step is to optimize the
modularity of the entire graph. In this example, it splits the nodes
into four communities. To find these clusters, each node is
moved into its neighboring community. If the change in
modularity (ΔQ) is greater than 0, it is moved into the
neighboring community, Otherwise, it remains in its current
community. This process is repeated until ΔQ=0 for all nodes.
Community Aggregation: After modularity optimization, super
nodes are created to represent each cluster. After the initial
phase of the algorithm, there will exist many communities.
However, the two phases repeat, creating larger and larger
communities. The algorithm stops only when no improvement
can be made by any of the two operations.

Louvain Algorithm: optimizing modularity

363

Community finding algorithm in two phases: Modularity
Optimization (local moving of nodes) and Community
Aggregation.

In the local moving phase, individual nodes are moved to the
community that yields the largest increase in the quality
function. In the aggregation phase, an aggregate network is
created based on the partition obtained in the local moving
phase.

Each community in this partition becomes a node in the
aggregate network. After the first step is completed, the
second follows. Both will be executed until there are no
more changes in the network and maximum modularity is
achieved.

Louvain Algorithm: optimizing modularity

364

Louvain Algorithm: optimizing modularity.

The modularity of a partition is a scalar value between −1 and 1
that measures the density of links inside communities as compared
to links between Communities and is an objective function to
optimise :

𝑄 = "
#$
∑%,' 𝐴%' −

(!("
#$

𝛿 𝑐% , 𝑐' , where Aij represents the weight
of the edge between i and j, 𝑘% = ∑' 𝐴𝑖𝑗	is the sum of the weights
of the edges attached to vertex i, ci is the community to which
vertex i is assigned, the δ function δ(u, v) is 1 if u = v and 0
otherwise and m = "

#
	∑%' 𝐴𝑖𝑗.

Exact modularity optimization is a problem that is computationally
hard and so approximation algorithms are necessary when dealing
with large networks.

365Vincent D Blondel et al J. Stat. Mech. (2008) P10008 /all authors from Lovain, Belgium

366

The Louvain algorithm starts from a singleton
partition in which each node is in its own
community (a). The algorithm moves individual
nodes from one community to another to find a
partition (b). Based on this partition, an aggregate
network is created (c). The algorithm then moves
individual nodes in the aggregate network (d).
These steps are repeated until the quality cannot
be increased further.

Each pass is made of two phases: one where modularity
is optimized by allowing only local changes of
communities; one where the communities found are
aggregated in order to build a new network of
communities. The passes are repeated iteratively until
no increase of modularity is possible
(from https://iopscience.iop.org/article/10.1088/1742-
5468/2008/10/P10008/pdf).

Louvain Algorithm: optimizing modularity.

367

The gain in modularity ΔQ obtained by moving an isolated node i into a community
C can easily be computed by

Δ𝑄 =
∑!" + 2𝑘!,!"

2𝑚 −
∑$%$ + 𝑘!

2𝑚 −
∑!"
2𝑚 −

∑$%$
2𝑚

&

−
𝑘!
2𝑚

&

Where ∑!" is the sum of the weights of the links inside C, ∑#$# 	is the sum of
the weights of the links incident to nodes in C, ki is the sum of the weights of the
links incident to node i, ki,in is the sum of the weights of the links from i to nodes in
C and m is the sum of the weights of all the links in the network.

A similar expression is used in order to evaluate the change of modularity when i is
removed from its community. In practice, one therefore evaluates the change of
modularity by removing i from its community and then by moving it into a
neighbouring community.

Louvain Algorithm: optimizing modularity.

368

First, its steps are intuitive and easy to implement, and the outcome is unsupervised. The
algorithm is extremely fast, i.e. computer simulations on large ad hoc modular networks
suggest that its complexity is linear on typical and sparse data.

This is due to the fact that the possible gains in modularity are easy to compute with the
above formula and that the number of communities decreases drastically after just a few
passes so that most of the running time is concentrated on the first iterations.

By construction, the number of meta-communities decreases at each pass, and as a
consequence most of the computing time is used in the first pass. The passes are iterated
until there are no more changes and a maximum of modularity is attained. The algorithm
is reminiscent of the self-similar nature of complex networks.

Louvain Algorithm: optimizing modularity.

Louvain community detection in a sequence similarity network. The network is
assembled from the results of an all-versus-all alignment, as previously described. Edges
can be weighted by E-value, percentage of identity, or bitscore.

For the purpose of simplification, we consider strong or weak weights rather than actual
values. (a) A giant connected component at relaxed threshold. (b) Three connected
components at a more stringent threshold. (c) Three communities with Louvain
clustering algorithm, taking into account edge weights.
From Watson et al, The Methodology Behind Network Thinking: Graphs to Analyze
Microbial Complexity and Evolution

369

Louvain Algorithm: optimizing modularity.

Girwan-Newman vs Louvain Algorithm

https://medium.com/smucs/girvan-
newman-and-louvain-algorithms-
for-community-detection-
f3feb7c31908

Lovain algorithm

371

From Louvain to Leiden clustering

Disconnected community. Consider the partition shown in (a).
When node 0 is moved to a different community, the red
community becomes internally disconnected, as shown in (b).
However, nodes 1–6 are still locally optimally assigned, and
therefore these nodes will stay in the red community.

372

An aggregate network (d) is created based on the refined partition, using the non-
refined partition to create an initial partition for the aggregate network. For
example, the red community in (b) is refined into two subcommunities in (c), which
after aggregation become two separate nodes in (d), both belonging to the same
community. The algorithm then moves individual nodes in the aggregate network
(e). In this case, refinement does not change the partition (f). These steps are
repeated until no further improvements can be made. 373

Leiden algorithm
The Leiden algorithm
starts from a
singleton partition
(a). The algorithm
moves individual
nodes from one
community to
another to find a
partition (b), which is
then refined (c).

From Louvain to Leiden clustering

374

From numerical
experiments, both seem
to run in near-linear time
in the number of edges.
However, the constant
factor of the Louvain
algorithm is larger than
the constant factor of the
Leiden algorithm, i.e. it is
slower overall.
Implementation:
https://github.com/vtraag
/leidenalg

The student could make
experiments to test the
complexity

https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg

375

Genome Sequencing

Section 5

• 2010: Nicholas Volker became the first human
being to be saved by genome sequencing.
– Doctors could not diagnose his condition; he went

through dozens of surgeries.
– Sequencing revealed a rare mutation in a XIAP gene

linked to a defect in his immune system.
– This led doctors to use immunotherapy, which saved the

child.

• Different people have slightly different genomes:
on average, roughly 1 mutation in 1000
nucleotides.

376

Biologists need algorithms for personal genome sequencing

• Modern sequencing machines cannot read an
entire genome one nucleotide at a time from
beginning to end (like we read a book)

• They can only shred the genome and generate
short reads.

• The genome assembly is not the same as a jigsaw
puzzle: we must use overlapping reads to
reconstruct the genome, a giant overlap puzzle!

What Makes Genome Sequencing Difficult?

Genome Sequencing Problem. Reconstruct a genome from reads.
• Input. A collection of strings Reads.
• Output. A string Genome reconstructed from Reads.

377

Multiple (unsequenced) genome copies

Reads

Assembled genome
…GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC…

Read generation

Genome assembly

From Experimental to Computational Challenges

378

• What Is Genome Sequencing: Exploding Newspapers
analogy

• The String Reconstruction Problem
• String Reconstruction as a Hamiltonian Path Problem
• String Reconstruction as an Eulerian Path Problem
• De Bruijn Graphs
• Euler’s Theorem
• Assembling Read-Pairs
• De Bruijn Graphs Face Harsh Realities of Assembly

379

Computational topics in this lecture

The Newspaper Problem

380

The newspaper problem as an overlapping puzzle

381

The Newspaper Problem as an Overlapping Puzzle

382

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Multiple Copies of a Genome (Millions of them)

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Breaking the Genomes at Random Positions

383

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC

CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

Generating “Reads”

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC

CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

“Burning” Some Reads

384

CTGATGA

TGGACTACGCTAC
TA
CT
GC
TA
G

CTG
TAT

TAC
G

AT
CA
GC
TA
CC
AC
A

TC
GT
AG
CT
AC
G

ATGCATTAGCAA
GCTATCGGA

TC
AG
CT
AC
CA

CAT
CGT

AGC

CTGATGATG

GACTACGCT

ACTACTGCTA

GCTGTATTACG

ATC
AGC

TAC
C

ACATCGTAGCT

ACGATGCATTA

GCA
AGC

TAT
C

GCA
AGC

TAT
C

GGATCAGCTAC

CACATCGTAGC

CTGATGATGG

CT
GA
TG
AT
GG

ACTACGCTAC

TACTGCTAGCT

TA
CT
GC
TA
GC
T

GTATTACGATC

AGC
TAC

CAC

ATCGTAGCTACG

AT
CG
TA
GC
TA
CG

ATGCATTAGCA

ATGCATTAGCA

AGCTATCGG

ATCAGCTACCA

C
A
T
C
G
T
A
G
C

CTGATGATGGACT

ACG
CTA

CTA
CT

GCTAGCTGTAT

T
A
C
G
A
T
C
A
G
C

TACCACATCGT

AGCTACGATGCA TTAGCAAGCT

ATC
GGA

TCA

GCTACCACATC

No Idea What Position Every Read Comes From

385

Composition3(TAATGCCATGGGATGTT)=

What Is k-mer Composition?

 TAA
 AAT
 ATG
 TGC
 GCC
 CCA
 CAT
 ATG
 TGG
 GGG
 GGA
 GAT
 ATG
 TGT
 GTT

386

Composition3(TAATGCCATGGGATGTT)=
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
 =
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g., lexicographic order (like in a dictionary)

k-mer Composition

387

String Reconstruction Problem. Reconstruct a string from
its k-mer composition.

• Input. A collection of k-mers.

• Output. A Genome such that Compositionk(Genome) is
equal to the collection of k-mers.

Reconstructing a String from its Composition

388

ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT

TAA
AAT

ATG

A Naive String Reconstruction Approach

ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG

TAA
AAT

ATG
TGT

GTT 389

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Composition3(TAATGCCATGGGATGTT)=

Representing a Genome as a Path

Can we construct this genome path without knowing the genome TAATGCCATGGGATGTT, only
from its composition?

Yes. We simply need to connect k-mer1 with k-mer2 if suffix(k-mer1)=prefix(k-mer2).
E.g. TAA → AAT

390

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

A Path Turns into a Graph

Yes. We simply need to connect k-mer1 with k-mer2 if suffix(k-mer1)=prefix(k-mer2).
E.g. TAA → AAT

391

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Can we still find the genome path in this graph?

A Path Turns into a Graph

392

Where Is the Genomic Path?

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

Nodes are arranged from left to right in lexicographic order. What are we trying to find in this graph?

A Hamiltonian path: a path that visits each node in a graph
exactly once.

TAATGCCATGGGATGTT

393

Does This Graph Have a Hamiltonian Path?

Icosian game (1857)

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
Input. A graph.
Output. A path visiting every node in the graph exactly once.

William
Hamilton

Undirected graph

1 2
346

7
8

9

10

11

1213

14

15

1617

18
19

20

5

394

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

TAATGCCATGGGATGTT

TAATG ATGGG ATGTTCC

395

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

A Slightly Different Path

3-mers as nodes

3-mers as edges

TAA

How do we label the starting and ending nodes of an edge?

TA AAprefix of TAA suffix of TAA

396

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Labeling Nodes in the New Path

3-mers as nodes

3-mers as edges and 2-mers as nodes

397

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

Labeling Nodes in the New Path

3-mers as edges and 2-mers as nodes

398

TAA AAT
ATG

TGG GGG GGA GAT ATG TGT GTT
TA AA AT TG GG GG GA AT TG GT TT

TGC

GCCCCA

CAT
CA

TG

GC

CC

ATGAT

Gluing Identically Labeled Nodes
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

399

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing Identically Labeled Nodes

400

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing Identically Labeled Nodes

401

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing Identically Labeled Nodes

402

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing Identically Labeled Nodes

403

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

De Bruijn Graph of TAATGCCATGGGATGTT

Where is the Genome
hiding in this graph?

404

What are we trying to
find in this graph?

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

It Was Always There!

An Eulerian path in a
graph is a path that
visits each edge exactly
once.

TAATGCCATGGGATGTT

405

Eulerian Path Problem
Eulerian Path Problem. Find an Eulerian path in a graph.

• Input. A graph.

• Output. A path visiting every edge in the graph exactly once.

406

Eulerian Versus Hamiltonian Paths
Eulerian Path Problem. Find an Eulerian path in a graph.

• Input. A graph.

• Output. A path visiting every edge in the graph exactly once.

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.

• Input. A graph.

• Output. A path visiting every node in the graph exactly once.

407

What Problem Would You Prefer to Solve?

Hamiltonian Path Problem Eulerian Path Problem

While Euler solved the Eulerian Path Problem
(even for a city with a million bridges), nobody
has developed a fast algorithm for the
Hamiltonian Path Problem yet.

408

NP-Complete Problems

• The Hamiltonian Path Problem belongs to a
collection containing thousands of
computational problems for which no fast
algorithms are known.

That would be an excellent argument, but the
question of whether or not NP-Complete
problems can be solved efficiently is one of
seven Millennium Problems in mathematics.

NP-Complete problems are all equivalent: find an
efficient solution to one, and you have an
efficient solution to them all. 409

Eulerian Path Problem
Eulerian Path Problem. Find an Eulerian path in a graph.

• Input. A graph.

• Output. A path visiting every edge in the graph exactly once.

We constructed the de Bruijn
graph from Genome, but in
reality, Genome is unknown!

410

What We Have Done: From Genome to de Bruijn Graph

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

411

What We Want: From Reads (k-mers) to Genome
TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

412

What We will Show: From Reads to de Bruijn Graph to Genome

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

413

Constructing de Bruijn Graph when Genome Is Known

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAATGCCATGGGATGTT

414

TAA

AAT

ATG

TGC

GCC

CCA

CAT

ATG

TGG

GGG

GGA

GAT

ATG

TGT

GTT

Constructing de Bruijn when Genome Is Unknown

Composition3(TAATGCCATGGGATGTT)

415

TAA

AAT

ATG

TGC

GCC

CCA

CAT

ATG

TGG

GGG

GGA

GAT

ATG

TGT

GTT

Representing Composition as a Graph Consisting of Isolated Edges

Composition3(TAATGCCATGGGATGTT)

416

TAA
TA AA

AAT
AA AT

ATG
AT TG

TGC
TG GC

GCC
GC CC

CCA
CACC

CAT
CA AT

ATG
AT TG

TGG
TG GG

GGG
GG GG

GGA
GG GA

GAT
GA AT

ATG
AT TG

TGT
TG GT

GTT
GT TT

Constructing de Bruijn Graph from k-mer Composition

Composition3(TAATGCCATGGGATGTT)

417

TAA
TA AA

AATAA
AT

ATG
AT TG

TGC
TG GC

GCC
GC CC

CCA
CACC

CAT
CA AT

ATG
AT TG

TGG
TG GG

GGG
GG GG

GGA
GG GA

GAT
GA AT

ATG
AT TG

TGT
TG GT

GTT
GT TT

Gluing Identically Labeled Nodes

418

TAA
TA AA

AAT ATG
AT TG

TGC GCC
GC CC

CCA CAT
CA AT

TGG
TG GG

GGG GGA
GG GA

GAT ATG
AT TG

TGT
GT

GTT
GT TT

ATG

419

TAA
TA AA

AAT ATG
AT TG

TGC GCC
GC CC

CCA CAT
CA AT

TGG
TG GG

GGG GGA
GG GA

GAT ATG
AT TG

TGT GTT
GT TT

ATG

We Are Not Done with Gluing Yet

420

TAA AAT
ATG

TGG GGG GGA GAT ATG TGT GTT
TA AA AT TG GG GG GA AT TG GT TT

TGC

GCCCCA

CAT
CA

TG

GC

CC

ATGAT

Gluing Identically Labeled Nodes
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

421

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing Identically Labeled Nodes

422

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

423

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA AT

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing Identically Labeled Nodes

424

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

The Same de Bruijn Graph:
DeBruin(Genome)=DeBruin(Genome Composition)

425

DeBruijn(k-mers)
 form a node for each (k-1)-mer from k-mers
 for each k-mer in k-mers
 connect its prefix node with its suffix node by an edge

Constructing de Bruijn Graph

De Bruijn graph of a collection of k-mers:
– Represent every k-mer as an edge between its prefix

and suffix
– Glue ALL nodes with identical labels.

426

From Hamilton to Euler to de Bruijn

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly
once.

000 001 010 011 100 101 110 111

0 0

0

1

11

0

1

427

From Hamilton to Euler to de Bruijn

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly
once.

000 001 010 011 100 101 110 111
000

00 00
001

00 01
010

01 10
011

01 11
100

10 00
101

10 01
110

11 10
111

11 11

00 01

10 11

428

From Hamilton to Euler to de Bruijn

00 01

10 11

0 0

0

1

11

0

1

429

De Bruijn Graph for 4-Universal String

Does it have an Eulerian cycle? If yes, how can we find it?

430

Eulerian CYCLE Problem
Eulerian CYCLE Problem. Find an Eulerian cycle in a graph.

• Input. A graph.

• Output. A cycle visiting every edge in the graph exactly once.

431

A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?

432

A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?
1 in, 2 out

A graph is balanced if indegree = outdegree for each node

433

• Every Eulerian graph is balanced
• Every balanced* graph is Eulerian

(*) and strongly connected, of course! 434

Euler’s Theorem

435

The de Bruijn graph for k = 4
and a 2-character alphabet
composed of the digits 0 and
1.
This graph has an Eulerian
cycle since each node has
indegree and outdegree
equal to 2.
Following the blue numbered
edges in order 1, 2, ..., 16
gives an Eulerian cycle
0000, 0001, 0011, 0110,
1100, 1001, 0010, 0101,
1011, 0111, 1111, 1110,
1101, 1010, 0100, 1000,
which spells the cyclic
superstring
0000110010111101
.

Euler’s Theorem

436

Eulerian versus Hamiltonian cycles

Recruiting an Ant to Prove Euler’s Theorem

Let an ant randomly walk through the graph.
The ant cannot use the same edge twice!

437

If Ant Was a Genius…

“Yay! Now
can I go
home
please?”

438

A Less Intelligent Ant Would Randomly Choose a
Node and Start Walking…

Can it get stuck? In what node?

439

The Ant Has Completed a Cycle BUT has not
Proven Euler’s theorem yet…

The constructed cycle is not Eulerian. Can we enlarge it?

440

Let’s Start at a Different Node in the Green Cycle

Let’s start at a node with still unexplored edges.

“Why should I start at a different node?
Backtracking? I’m not evolved to walk
backwards! And what difference does it
make???”

441

1

2

3
“Why do I have to walk along the
same cycle again??? Can I see
something new?”

An Ant Traversing Previously Constructed Cycle
Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

442

13

2

4

I Returned Back BUT… I Can Continue Walking!

After completing the cycle, start random exploration of still
untraversed edges in the graph.

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

443

1

2

3

4

5

6 7

8

Stuck Again!

No Eulerian cycle yet… can we enlarge the green-blue cycle?

The ant should walk along the constructed cycle starting at
yet another node. Which one?

444

1

2

3

4

5

6

7 8

I Returned Back BUT… I Can Continue Walking!

“Hmm, maybe these
instructions were not
that stupid…”

445

I Proved Euler’s Theorem!

4

5

2

3

7 8

1

6

9

10
11

EulerianCycle(BalancedGraph)
 form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
 while Cycle is not Eulerian
 select a node newStart in Cycle with still unexplored outgoing edges
 form a Cycle’ by traversing Cycle from newStart and randomly walking afterwards
 Cycle ← Cycle’
 return Cycle

000

001

010

011

100

101

110

1111001

1100

0000 1111

1010

0101

0011

0110

11010100

0010 1011

0111

11101000

0001

446

From Reads to de Bruijn Graph to Genome

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

447

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

Multiple Eulerian Paths

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT TAATG ATGGG ATGTTCC

448

Breaking Genome into Contigs

TAATGCCATGGGATGTT

TAA AAT
TA AA AT

TGT GTT
TG GT TT

TGC

GCCCCA

CA

AT TG

GC

CC

TGG

GGA

AT

GGGA

TAAT

TGCCAT

GGGAT

TGTT

ATG

AT TG

ATG

ATGAT TG

ATG

AT TG

TGG

GG

TG

GGG
GG

GGG

TGG

449

DNA Sequencing with Read-pairs

Randomly cut genomes into large equally
sized fragments of size InsertLength

Multiple identical copies of genome

Generate read-pairs:
two reads from the
ends of each fragment
(separated by a fixed
distance)200 bp 200 bp

InsertLength 450

From k-mers to Paired k-mers

Genome

Read 1 Read 2

...A T C A G A T T A C G T T C C G A G …

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.
E.g. TCA and TCC are at distance d=11 apart.

Distance d=11

Disclaimers:
1. In reality, Read1 and Read2 are typically sampled from different strands:
 (→ ……. ← rather than → ……. →)
2. In reality, the distance d between reads is measured with errors.

451

TAA GCC
 AAT CCA
 ATG CAT
 TGC ATG
 GCC TGG
 CCA GGG
 CAT GGA
 ATG GAT
 TGG ATG
 GGG TGT
 GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

What is PairedComposition(TAATGCCATGGGATGTT)?

Representing a paired 3-mer TAA GCC as a 2-line expression: TAA
GCC

Show first line first
And then show all the lines

452

TAA GCC
 AAT CCA
 ATG CAT
 TGC ATG
 GCC TGG
 CCA GGG
 CAT GGA
 ATG GAT
 TGG ATG
 GGG TGT
 GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

PairedComposition(TAATGCCATGGGATGTT)

Representing PairedComposition in lexicographic order

Show first line first
And then show all the lines

TAA
GCC

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

AAT
CCA

453

String Reconstruction from Read-Pairs Problem

String Reconstruction from Read-Pairs Problem. Reconstruct
a string from its paired k-mers.
• Input. A collection of paired k-mers.
• Output. A string Text such that PairedComposition(Text) is

equal to the collection of paired k-mers.

How Would de Bruijn Assemble Paired k-mers?

454

TAA GCC
 AAT CCA
 ATG CAT
 TGC ATG
 GCC TGG
 CCA GGG
 CAT GGA
 ATG GAT
 TGG ATG
 GGG TGT
 GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Representing Genome TAATGCCATGGGATGTT as a Path

paired prefix of → ← paired suffix of

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG

455

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Labeling Nodes by Paired Prefixes and Suffixes

paired prefix of → ← paired suffix of

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG

456

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Glue nodes with identical labels

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

457

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired de Bruijn Graph from the Genome

Glue nodes with identical labels

458

Constructing Paired de Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

paired prefix of → ← paired suffix of

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG

459

Constructing Paired de Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

• Paired de Bruijn graph for a collection of paired k-mers:
– Represent every paired k-mer as an edge between its

paired prefix and paired suffix.
– Glue ALL nodes with identical labels.

460

Constructing Paired de Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

We Are Not Done with Gluing Yet

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

461

Constructing Paired de Bruijn Graph

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired de Bruijn Graph from read-pairs

• Paired de Bruijn graph for a collection of paired k-mers:
– Represent every paired k-mer as an edge between its

paired prefix and paired suffix.
– Glue ALL nodes with identical labels.

462

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

Which Graph Represents a Better Assembly?

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Unique genome reconstruction

 TAATGCCATGGGATGTT

Multiple genome reconstructions

 TAATGCCATGGGATGTT

 TAATGGGATGCCATGTT

GGA

Paired de Bruijn Graph De Bruijn Graph

463

Some Ridiculously Unrealistic Assumptions

• Perfect coverage of genome by reads (every k-mer
from the genome is represented by a read)

• Reads are error-free.

• Multiplicities of k-mers are known

• Distances between reads within read-pairs are exact.

464

Some Ridiculously Unrealistic Assumptions

• Imperfect coverage of genome by reads (every k-
mer from the genome is represented by a read)

• Reads are error-prone.

• Multiplicities of k-mers are unknown.

• Distances between reads within read-pairs are
inexact.

• Etc., etc., etc.

465

1st Unrealistic Assumption: Perfect Coverage

atgccgtatggacaacgact
atgccgtatg
 gccgtatgga
 gtatggacaa
 gacaacgact

250-nucleotide reads generated by Illumina
technology capture only a small fraction of 250-
mers from the genome, thus violating the key
assumption of the de Bruijn graphs.

466

Breaking Reads into Shorter k-mers

atgccgtatggacaacgact atgccgtatggacaacgact
atgccgtatg atgcc
 gccgtatgga tgccg
 gtatggacaa gccgt
 gacaacgact ccgta
 cgtat
 gtatg
 tatgg
 atgga
 tggac
 ggaca
 gacaa
 acaac
 caacg
 aacga
 acgac
 cgact

467

atgccgtatggacaacgact atgccgtatggacaacgact
atgccgtatg atgcc
 gccgtatgga tgccg
 gtatggacaa gccgt
 gacaacgact ccgta
 cgtaCggaca cgtat
 gtatg
 tatgg
 atgga
 tggac
 ggaca
 gacaa
 acaac
 caacg
 aacga
 acgac
 cgact
 cgtaC
 gtaCg
 taCgg
 aCgga
 Cggac

2nd Unrealistic Assumption: Error-free Reads

Erroneous read
(change of t into C)

468

De Bruijn Graph of ATGGCGTGCAATG…
Constructed from Error-Free Reads

. CGTA GTAT TATG ATGG TGGA GGAC GACATGCC GCCG CCGTATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

Errors in Reads Lead to Bubbles in the
De Bruijn Graph

CGCA GCAT CATGCCGC

GCCGC

CCGCA CGCAT GCATG

CATGBubble!

CGTA GTAT TATG ATGG TGGA GGAC GACATGCC GCCG CCGTATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

469

Bubble Explosion

470

A single error in a read results in a bubble of length k in a de Bruijn graph constructed from
k-mers. Multiple errors in various reads may form longer bubbles, but since the error rate in
reads is rather small (less than 1% per nucleotide in Illumina reads), most bubbles are
small.

Red edges represent repeats 471

Example Results: De Bruin Graph of N. meningitidis
Genome AFTER Removing Bubbles

472

Example and RECAP
(note we call prefix = left 2-mer and suffix=right-2 mer)

473

Example and RECAP

474

Example and RECAP

De Bruijn Graph

475

Example and RECAP

476

Example and RECAP

477

Example and RECAP

478

Example and RECAP

479

Example and RECAP

480

Example and RECAP

481

References: https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-
biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture6.pdf
http://nbviewer.jupyter.org/github/BenLangmead/comp-genomics-
class/blob/master/notebooks/CG_deBruijn.ipynb

Example and RECAP

482

Reference for this section

Ø Chapter 8 Vol 2

Note: an interesting algorithm for community detection, frequently used in Bioinformatics is
the Leiden algorithm which corrects the Louvain algorithm. See V. A. Traag, L. Waltman & N.
J. van Eck: From Louvain to Leiden: guaranteeing well-connected communities. Scientific
Reports volume 9, Article number: 5233 (2019) https://www.nature.com/articles/s41598-019-
41695-z/

Reference for the Markov Clustering algorithm:
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Res. 2002 30:1575-84.

483

Assembling Genomes

Section 6

Ø Suffix tree
Ø Algorithm: Burrow-Wheeler Transform

• Reference genome: database genome used
for comparison (GRCh38).

• https://www.ncbi.nlm.nih.gov/genome/guide/human/

• Question: How can we assemble individual
genomes efficiently using the reference
genome?

CTGATGATGGACTACGCTACTACTGCTAGCTGTAT Individual

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference

484

Biologists need algorithms for genome assemble

Why Not Use Assembly?

Multiple copies of
a genome

AGAATATCASequence the
reads

Shatter the
genome into
reads

Assemble the
genome with
overlapping reads

...TGAGAATATCA...

 AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT

485

Why Not Use Assembly?

• Constructing a de Bruijn graph
takes a lot of memory.

• Hope: a machine in a clinic
that would collect and
map reads in 10 minutes.

• Idea: use existing structure of reference
genome to help us sequence a patient’s
genome.

TAA# AAT#

TGC#

GCC#CCA#

CAT#

ATG#

TGG#

GGG#
GGA#

GAT#

ATG#
TA#

CA#

AA# AT#

GG#GA#

TG#

GC#

CC#

ATG#
TGT# GTT#

GT# TT#

486

Read Mapping

• Read mapping: determine where each read
has high similarity to the reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT
 GAGGA CCACG TGA-A

Reference
Reads

487

Why Not Use Alignment?

• Fitting alignment: align each read Pattern to
the best substring of Genome.

• Has runtime O(|Pattern| * |Genome|) for
each Pattern.

• Has runtime O(|Patterns| * |Genome|) for a
collection of Patterns.

488

Exact Pattern Matching

• Focus on a simple question: where do the
reads match the reference genome exactly?

• Single Pattern Matching Problem:
– Input: A string Pattern and a string Genome.
– Output: All positions in Genome where Pattern

appears as a substring.

489

Exact Pattern Matching

• Focus on a simple question: where do the
reads match the reference genome exactly?

• Multiple Pattern Matching Problem:
– Input: A collection of strings Patterns and a string

Genome.
– Output: All positions in Genome where a string

from Patterns appears as a substring.

490

A Brute Force Approach

• We can simply iterate a brute force approach
method, sliding each Pattern down Genome.

• Note: we use words instead of DNA strings for
convenience.

panamabananas
 nana Pattern

Genome

491

Brute Force Is Too Slow

• The runtime of the brute force approach is too
high!
– Single Pattern: O(|Genome| * |Pattern|)
– Multiple Patterns: O(|Genome| * |Patterns|)
– |Patterns| = combined length of Patterns

492

Processing Patterns into a Trie

• Idea: combine reads into a graph. Each
substring of the genome can match at most
one read. So each read will correspond to a
unique path through this graph.

• The resulting graph is called a trie.

493

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

pn

a

n

s

a

n

a

Root Patterns

banana
pan
and
nab
antenna
bandana
ananas
nana

494

Using the Trie for Pattern Matching

• TrieMatching: Slide the trie down the
genome.

• At each position, walk down the trie and see if
we can reach a leaf by matching symbols.

495

p a n a m a b a n a n a s
Root

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

pn

a

n

s

a

n

a

496

• Runtime of Brute Force:
– Total: O(|Genome|*|Patterns|)

• Runtime of Trie Matching:
– Trie Construction: O(|Patterns|)
– Pattern Matching: O(|Genome| * |LongestPattern|)

497

Memory Analysis of Trie Matching

• Our trie: 30 edges,
|Patterns| = 39

• Worst case: # edges
= O(|Patterns|)

Root

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

pn

a

n

s

a

n

a

498

Preprocessing the Genome

• What if instead we create a data structure
from the genome itself?

• Split Genome into all its suffixes. (Show
matching “banana” by finding the suffix
“bananas”.)

• How can we combine these suffixes into a
data structure?

• Let’s use a trie!

499

Root

n

a

a

n

a

b

s

m

n
a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

500

The Suffix Trie and Pattern Matching

• For each Pattern, see if Pattern can be spelled
out from the root downward in the suffix trie.

501

Root

n

a

a

n

a

b

s

m

n
a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

5

3

1

7

9

6

11

2

8

10

0

12

4

p a n a m a b a n a n a s $

502

Memory Trouble Once Again

• Worst case: the suffix trie
holds O(|Suffixes|) nodes.

• For a Genome of length n,
|Suffixes| = n(n – 1)/2 = O(n2)

panamabananas$
anamabananas$
namabananas$
amabananas$
mabananas$
abananas$
bananas$
ananas$
nanas$
anas$
nas$
as$
s$
$

Suffixes

503

Compressing the Trie

• This doesn’t mean that our idea was bad!

• To reduce memory, we can compress each
“nonbranching path” of the tree into an edge.

504

Root

n

a

a

n

a

b

s

m

n
a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

505

• This data structure is called a suffix tree.

• For any Genome, # nodes < 2|Genome|.
– # leaves = |Genome|;
– # internal nodes < |Genome| – 1

Root

panamabananas$

a

mabananas$

na

mabananas$

na
mab

an
an

as
$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12

506

Complexity

• Runtime:
– O(|Genome|2) to construct the suffix tree.
– O(|Genome| + |Patterns|) to find pattern matches.

• Memory:
– O(|Genome|2) to construct the suffix tree.
– O(|Genome|) to store the suffix tree.

507

Complexity

• Runtime:
– O(|Genome|) to construct the suffix tree directly.
– O(|Genome| + |Patterns|) to find pattern matches.
– Total: O(|Genome| + |Patterns|)

• Memory:
– O(|Genome|) to construct the suffix tree directly.
– O(|Genome|) to store the suffix tree.
– Total: O(|Genome| + |Patterns|)

508

We are Not Finished Yet

• I am happy with the suffix tree, but I am not
completely satisfied.
• Runtime: O(|Genome| + |Patterns|)
• Memory: O(|Genome|)

• However, big-O notation ignores constants!
• The best known suffix tree implementations

require ~ 20 times the length of |Genome|.
• Can we reduce this constant factor?

509

Genome Compression

• Idea: decrease the amount of memory
required to hold Genome.

• This indicates that we need methods of
compressing a large genome, which is
seemingly a separate problem.

510

Idea #1: Run-Length Encoding

• Run-length encoding: compresses a run of n
identical symbols.

• Problem: Genomes don’t have lots of runs…

GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

10G11C7A15T5C1G

Genome

Run-length encoding

511

Converting Repeats to Runs

• …but they do have lots of repeats!

Genome

Genome*

CompressedGenome*

Run-length encoding

Convert repeats to runsHow do we do this step?

512

513

The Burrows – Wheeler Transform

Michael Burrows (left), David Wheeler (right)
both at the Computer Laboratory

The Burrows Wheeler Transform
Three steps: 1) Given a string T in input, we form a N*N matrix by
cyclically rotating (left) the given text to form the rows of the matrix.
Here we use ’$’ as a sentinel (lexicographically the greatest character
in the alphabet and occurs exactly once in the text); 2) We sort the
matrix according to the alphabetic order. Note that the cycle and the
sort procedures of the Burrows-Wheeler induce a partial clustering
of similar characters providing the means for compression; 3) The
last column of the matrix is BWT(T) (we need also the row number
where the original string ends up).

514

BWT

Property that makes BWT(T) reversible is LF Mapping:
the i-th occurrence of a character in Last column is
same text occurrence as the i-th occurrence in the
First column (i.e. the sorting strategy preserves the
relative order in both last column and first column).

515

BWT

516

Burrows-Wheeler Transform (BWT)

acaacg$

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac

gc$aaac

Burrows-Wheeler Matrix (BWM)

BWT

Burrows-Wheeler Matrix

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac

Burrows-Wheeler Matrix

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a
cg$acaa
g$acaac

See the suffix array?

3
1
4
2
5
6

Key observation

1$acaacg1
2aacg$ac1
1acaacg$1
3acg$aca2
1caacg$a1
2cg$acaa3
1g$acaac2

a1c1a2a3c2g1$1

“last first (LF) mapping”

The i-th occurrence of character X in the
last column corresponds to
the same text character as the i-th
occurrence of X in the first column.

Burrow Wheeler Transform

521

The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$

522

Burrows, Michael and Wheeler, David J. (1994), A block sorting lossless data compression
algorithm, Technical Report 124, Digital Equipment Corporation
Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25:1754-60.

The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$

523

The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

Sort the strings
lexicographically
($ comes first)

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

524

The Burrows-Wheeler Transform

p a n a m a b a n a n a s $
$ p a n a m a b a n a n a s
s $ p a n a m a b a n a n a
a s $ p a n a m a b a n a n
n a s $ p a n a m a b a n a
a n a s $ p a n a m a b a n
n a n a s $ p a n a m a b a
a n a n a s $ p a n a m a b
b a n a n a s $ p a n a m a
a b a n a n a s $ p a n a m
m a b a n a n a s $ p a n a
a m a b a n a n a s $ p a n
n a m a b a n a n a s $ p a
a n a m a b a n a n a s $ p

Form all cyclic rotations of
“panamabananas$”

Burrows-Wheeler
Transform:

Last column =
smnpbnnaaaaa$a

$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

525

BWT: Converting Repeats to Runs

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Convert repeats to runsBurrows-Wheeler Transform!

526

How Can We Decompress?

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Burrows-Wheeler Transform

EASY

IS IT POSSIBLE?

527

Reconstructing banana

• We now know 2-mer composition of the
circular string banana$

• Sorting gives us the first 2 columns of the
matrix.

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$
na
na
ba
$b
an
an

$b
a$
an
an
ba
na
na

Sort2-mers

528

Reconstructing banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know 3-mer composition of the
circular string banana$

• Sorting gives us the first 3 columns of the
matrix.

a$b
na$
nan
ban
$ba
ana
ana

3-mers Sort

$ba
a$b
ana
ana
ban
na$
nan

529

Reconstructing banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know 4-mer composition of the
circular string banana$

• Sorting gives us the first 4 columns of the
matrix.

a$ba
na$b
nana
bana
$ban
ana$
anan

4-mers Sort

$ban
a$bb
anaa
anaa
bann
na$b
nana

530

Reconstructing banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know 5-mer composition of the
circular string banana$

• Sorting gives us the first 5 columns of the
matrix.

a$ban
na$ba
nana$
banan
$bana
ana$b
anana

5-mers Sort

$bana
a$bbn
anaab
anaaa
bannn
na$ba
nana$

531

Reconstructing banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba
anaaa$
bannna
na$ban
nana$b

• We now know 6-mer composition of the
circular string banana$

• Sorting gives us the first 6 columns of the
matrix.

532

Reconstructing banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba
anaaa$
bannna
na$ban
nana$b

• We now know 6-mer composition of the
circular string banana$

• Sorting gives us the first 6 columns of the
matrix.

533

Reconstructing banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We now know the entire matrix!

• Taking all elements in the first row (after $)
produces banana.

534

More Memory Issues

• Reconstructing Genome from BWT(Genome)
required us to store |Genome| copies of
|Genome|.

• Can we invert BWT with less space?

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

535

A Strange Observation

p a

n

a

m

a

b
a

n

a

n

a

s

$$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

536

A Strange Observation

p a

n

a

m

a

b
a

n

a

n

a

s

$$ p a n a m a b a n a n a s
a b a n a n a s $ p a n a m
a m a b a n a n a s $ p a n
a n a m a b a n a n a s $ p
a n a n a s $ p a n a m a b
a n a s $ p a n a m a b a n
a s $ p a n a m a b a n a n
b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

537

Is It True in General?

$ p a n a m a b a n a n a s
1 a b a n a n a s $ p a n a m
2 a m a b a n a n a s $ p a n
3 a n a m a b a n a n a s $ p
4 a n a n a s $ p a n a m a b
5 a n a s $ p a n a m a b a n
6 a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

These strings are sorted

Chop off a

538

Is It True in General?

$ p a n a m a b a n a n a s
1 a b a n a n a s $ p a n a m
2 a m a b a n a n a s $ p a n
3 a n a m a b a n a n a s $ p
4 a n a n a s $ p a n a m a b
5 a n a s $ p a n a m a b a n
6 a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Still
sorted

Chop off a

539

Is It True in General?

$ p a n a m a b a n a n a s
1 a b a n a n a s $ p a n a m
2 a m a b a n a n a s $ p a n
3 a n a m a b a n a n a s $ p
4 a n a n a s $ p a n a m a b
5 a n a s $ p a n a m a b a n
6 a s $ p a n a m a b a n a n

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
p a n a m a b a n a n a s $
s $ p a n a m a b a n a n a

These strings are sorted

b a n a n a s $ p a n a m
m a b a n a n a s $ p a n
n a m a b a n a n a s $ p
n a n a s $ p a n a m a b
n a s $ p a n a m a b a n
s $ p a n a m a b a n a n

Chop off a

Still
sorted

b a n a n a s $ p a n a m a
m a b a n a n a s $ p a n a
n a m a b a n a n a s $ p a
n a n a s $ p a n a m a b a
n a s $ p a n a m a b a n a
s $ p a n a m a b a n a n a

Add a
to end

Still
sorted

Ordering
doesn’t
change!

1
2
3
4
5

6

540

Is It True in General?

• First-Last Property: The k-th
occurrence of symbol in
FirstColumn and the k-th
occurrence of symbol in
LastColumn correspond to
the same position of symbol
in Genome.

$1panamabananas1
a1bananas$panam1
a2mabananas$pan1
a3namabananas$p1
a4nanas$panamab1
a5nas$panamaban2
a6s$panamabanan3
b1ananas$panama1
m1abananas$pana2
n1amabananas$pa3
n2anas$panamaba4
n3as$panamabana5
p1anamabananas$1
s1$panamabanana6

541

More Efficient BWT Decompression

p a

n

a

m

a

b
a

n

a

n

a

s

$$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

542

More Efficient BWT Decompression

p a

n

a

m

a

b
a

n

n

a

s

$$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
a

543

More Efficient BWT Decompression

p a

n

a

m

a

b
a

n

n

a

s

$$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6
a

• Memory: 2|Genome| = O(|Genome|).
544

Recalling Our Goal

• Suffix Tree Pattern Matching:
– Runtime: O(|Genome| + |Patterns|)
– Memory: O(|Genome|)
– Problem: suffix tree takes 20 x |Genome| space

• Can we use BWT(Genome) as our data
structure instead?

545

Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

546

Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

547

Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

548

Finding Pattern Matches Using BWT

• Searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

549

Where Are the Matches?

• Multiple Pattern Matching Problem:
– Input: A collection of strings Patterns and a string

Genome.
– Output: All positions in Genome where one of

Patterns appears as a substring.

• Where are the positions? BWT has not
revealed them.

550

Where Are the Matches?

• Example: We know that
ana occurs 3 times, but
where?

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

551

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

552

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13

panamabananas$

553

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5

panamabananas$

554

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3

panamabananas$

555

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1

panamabananas$

556

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7

panamabananas$

557

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

panamabananas$

558

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11

panamabananas$

559

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6

panamabananas$

560

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10panamabananas$

561

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

panamabananas$

562

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$

563

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$

564

Using the Suffix Array to Find Matches

• Suffix array: holds
starting position of
each suffix beginning
a row.

• Thus, ana occurs at
positions 1, 7, 9 of
panamabananas$.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3
b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

565

The Suffix Array: Memory Once Again

• Memory: ~ 4 x |Genome|.

Root

panamabananas$

a

mabananas$

na

mabananas$

na

mab
an

an
as

$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]

566

The Suffix Array: Memory Once Again

• Memory: ~ 4 x |Genome|.

Root

panamabananas$

a

mabananas$

na

mabananas$

na

mab
an

an
as

$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]
567

The Suffix Array: Memory Once Again

• Memory: ~ 4 x |Genome|.

Root

panamabananas$

a

mabananas$

na

mabananas$

na

mab
an

an
as

$

mabananas$

banana$

nas$
s$

s$
s$

bananas$

nas$
s$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]

568

Returning to Our Original Problem

• We need to look at INEXACT matching in order
to find variants.

• Approx. Pattern Matching Problem:
– Input: A string Pattern, a string Genome, and an

integer d.
– Output: All positions in Genome where Pattern

appears as a substring with at most d mismatches.

569

Returning to Our Original Problem

• We need to look at INEXACT matching in order
to find variants.

• Multiple Approx. Pattern Matching Problem:
– Input: A collection of strings Patterns, a string

Genome, and an integer d.
– Output: All positions in Genome where a string

from Patterns appears as a substring with at most
d mismatches.

570

Method 1: Seeding

• Say that Pattern appears in Genome with 1
mismatch:

…ggcacactaggctcc…

Pattern

Genome

acttggct

571

Method 1: Seeding

• Say that Pattern appears in Genome with 1
mismatch:

• One of the substrings must match!

…ggcacactaggctcc…

Pattern

Genome

acttggct

572

Method 1: Seeding

• Theorem: If Pattern occurs in Genome with d
mismatches, then we can divide Pattern into
d + 1 “equal” pieces and find at least one exact
match.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

573

Method 1: Seeding

• Say we are looking for at most d mismatches.

• Divide each of our strings into d + 1 smaller
pieces, called seeds.

• Check if each Pattern has a seed that matches
Genome exactly.

• If so, check the entire Pattern against Genome.574

Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

Now we extend
all strings with at
most 1 mismatch.

Mismatches

1
0
1
1
0
0

575

Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

One string
produces a
second mismatch
(the $), so we
discard it.

Mismatches

1
1
0
0
0
2

576

Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

In the end, we
have five 3-mers
with at most 1
mismatch.

Mismatches

1
1
0
0
0

577

Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

Suffix Array

5
3
1
7
9

In the end, we
have five 3-mers
with at most 1
mismatch.

578

Method 2: BWT Saves the Day Again

• Recall: searching for ana in panamabananas

$ 1p a n a m a b a n a n a s 1

a 1b a n a n a s $ p a n a m 1

a 2m a b a n a n a s $ p a n 1

a 3n a m a b a n a n a s $ p 1

a 4n a n a s $ p a n a m a b 1

a 5n a s $ p a n a m a b a n 2

a 6s $ p a n a m a b a n a n 3
b 1a n a n a s $ p a n a m a 1

m 1a b a n a n a s $ p a n a 2

n 1a m a b a n a n a s $ p a 3

n 2a n a s $ p a n a m a b a 4

n 3a s $ p a n a m a b a n a 5

p 1a n a m a b a n a n a s $ 1

s 1$ p a n a m a b a n a n a 6

Suffix Array

5
3
1
7
9

In the end, we
have five 3-mers
with at most 1
mismatch.

579

580

Reference for this section

Ø Chapter 9 Vol 2

Computing BWT:
http://www.allisons.org/ll/AlgDS/Strings/BWT/

581

Algorithms to find parts

Section 7

Ø Algorithm: Viterbi
Ø Algorithm: Forward
Ø Algorithm: Backward

The gene information starts with the promoter, which
is followed by a transcribed (i.e. RNA) but non-coding
(i.e. not translated) region called 5’ untranslated
region (5’ UTR). The initial exon contains the start
codon which is usually ATG. There is an alternating
series of introns and exons, followed by the
terminating exon, which contains the stop codon. It is
followed by another non-coding region called the 3’
UTR; at the end there is a polyadenylation (polyA)
signal, i.e. a repetition of the amino acid adenine. The
intron/exon and exon/intron boundaries are conserved
short
sequences and called the acceptor and donor sites.
For all these different parts we need to know their
probability of occurrence in a large database.

Biologists need algorithms to identify genes and gene parts

583

Using alignments

Membrane proteins that are important for cell
import/export. We would like to predict the
position in the amino acids with respect to the
membrane. The prediction of protein topology
(i.e. which parts are outside, inside and buried in
the membrane) will require to train the model
with a dataset of experimentally determined
genes / transmembrane helices and to validate
the model with another dataset. The figure on
right describes a 7 helix membrane protein
forming a sort of a cylinder (porus) across the cell
membrane

584

Biologists need algorithms to identify protein parts

FAIR LOADED

0.05

0.05

0.950.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

P(1|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

The dishonest casino model

Definition: A hidden Markov model (HMM)
• Alphabet S = { b1, b2, …, bM }
• Set of states Q = { 1, ..., K }
• Transition probabilities between any two states

 aij = transition prob from state i to state j

 ai1 + … + aiK = 1, for all states i = 1…K

• Start probabilities a0i

 a01 + … + a0K = 1

• Emission probabilities within each state

 ei(b) = P(xi = b | pi = k)

 ei(b1) + … + ei(bM) = 1, for all states i = 1…K

K

1

…

2

HMM

At each time step t,
the only thing that affects future states
is the current state pt

P(pt+1 = k | “whatever happened so far”) =
P(pt+1 = k | p1, p2, …, pt, x1, x2, …, xt) =
P(pt+1 = k | pt)

K

1

…

2

A Hidden Markov Model is memory-less

Given a sequence x = x1……xN,
A parse of x is a sequence of states p = p1, ……, pN

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

A parse of a sequence

Given a sequence x = x1……xN

and a parse p = p1, ……, pN,

To find how likely is the parse:
 (given our HMM)

P(x, p) = P(x1, …, xN, p1, ……, pN) =
 P(xN, pN | pN-1) P(xN-1, pN-1 | pN-2)……P(x2, p2 | p1)

P(x1, p1) =
 P(xN | pN) P(pN | pN-1) ……P(x2 | p2) P(p2 | p1) P(x1 |
p1) P(p1) =

 a0p1 ap1p2……apN-1pN ep1(x1)……epN(xN)

1

2

K

…

1

2

K

…

1

2

K

…

…

…

…

1

2

K

…

x1 x2 x3 xK

2

1

K

2

Likelihood of a parse

Example: the dishonest casino
Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4

Then, what is the likelihood of

p = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs a0Fair = ½, aoLoaded = ½)

½ ´ P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) … P(4 | Fair) =

½ ´ (1/6)10 ´ (0.95)9 = .00000000521158647211 = 0.5 ´ 10-9

Example: the dishonest casino
So, the likelihood the die is fair in all this run
is just 0.521 ´ 10-9

OK, but what is the likelihood of
= Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,

Loaded, Loaded, Loaded?
½ ´ P(1 | Loaded) P(Loaded, Loaded) … P(4 | Loaded) =
½ ´ (1/10)8 ´ (1/2)2 (0.95)9 = .00000000078781176215 = 7.9
´ 10-10

Therefore, it is after all 6.59 times more likely that the die is
fair all the way, than that it is loaded all the way.

Example: the dishonest casino
Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood p = F, F, …, F?

½ ´ (1/6)10 ´ (0.95)9 = 0.5 ´ 10-9, same as before

What is the likelihood

p = L, L, …, L?

½ ´ (1/10)4 ´ (1/2)6 (0.95)9 = .00000049238235134735 = 0.5 ´ 10-7

So, it is 100 times more likely the die is loaded

The three main questions on HMMs
1. Evaluation

GIVEN a HMM M, and a sequence x,
FIND Prob[x | M]

2. Decoding
GIVEN a HMM M, and a sequence x,
FIND the sequence p of states that maximizes P[x, p | M]

3. Learning
GIVEN a HMM M, with unspecified transition/emission

probs., and a sequence x,
FIND parameters q = (ei(.), aij) that maximize P[x | q]

Let’s not be confused by notation

P[x | M]: The probability that sequence x was generated by
 the model

 The model is: architecture (#states, etc)
 + parameters q = aij, ei(.)

So, P[x | q], and P[x] are the same, when the architecture, and

the entire model, respectively, are implied

Similarly, P[x, p | M] and P[x, p] are the same

In the LEARNING problem we always write P[x | q] to emphasize
that we are seeking the q that maximizes P[x | q]

Decoding
GIVEN x = x1x2……xN

We want to find p = p1, ……, pN,
such that P[x, p] is maximized

p* = argmaxp P[x, p]

We can use dynamic programming!

Let Vk(i) = max{p1,…,i-1} P[x1…xi-1, p1, …, pi-1, xi, pi = k]
 = Probability of most likely sequence of

states ending at state pi = k

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xK

2

1

K

2

Decoding – main idea
Given that for all states k, and for a fixed position i,
 Vk(i) = max{p1,…,i-1} P[x1…xi-1, p1, …, pi-1, xi, pi = k]
What is Vk(i+1)?
From definition,
Vl(i+1) = max{p1,…,i}P[x1…xi, p1, …, pi, xi+1, pi+1 = l]
= max{p1,…,i}P(xi+1, pi+1 = l | x1…xi,p1,…, pi) P[x1…xi, p1,…, pi]
= max{p1,…,i}P(xi+1, pi+1 = l | pi) P[x1…xi-1, p1, …, pi-1, xi, pi]
= maxk P(xi+1, pi+1 = l | pi = k) max{p1,…,i-1}P[x1…xi-1,p1,…,pi-1,

xi,pi=k] = el(xi+1) maxk akl Vk(i)

The Viterbi Algorithm
Input: x = x1……xN
Initialization:
 V0(0) = 1 (0 is the imaginary first position)
 Vk(0) = 0, for all k > 0

Iteration:
 Vj(i) = ej(xi) ´ maxk akj Vk(i-1)

 Ptrj(i) = argmaxk akj Vk(i-1)

Termination:
 P(x, p*) = maxk Vk(N)

Traceback:
 pN* = argmaxk Vk(N)
 pi-1* = Ptrpi (i)

Andrew
Viterbi

The Viterbi Algorithm: complexity

left: Similar to “aligning” a set of states to a sequence,
Time: O(K2N); Space: O(KN); bottom right : comparison of

valid directions in the alignment and decoding problem.

Viterbi Algorithm – a practical detail
Underflows are a significant problem

P[x1,…., xi, p1, …, pi] = a0p1 ap1p2……api ep1(x1)……epi(xi)

These numbers become extremely small – underflow

Solution: Take the logs of all values

Vl(i) = log ek(xi) + maxk [Vk(i-1) + log akl]

Examples
Let x be a sequence with a portion of ~ 1/6 6’s, followed by a

portion of ~ ½ 6’s…

x = 123456123456…12345 6626364656…1626364656

Then, it is not hard to show that optimal parse is (exercise):

 FFF…………………...F LLL………………………...L

6 nucleotides “123456” parsed as F, contribute .956´(1/6)6
= 1.6´10-5

 parsed as L, contribute .956´(1/2)1´(1/10)5 = 0.4´10-5

 “162636” parsed as F, contribute .956´(1/6)6 = 1.6´10-5

 parsed as L, contribute .956´(1/2)3´(1/10)3 = 9.0´10-5

Given a HMM, we can generate a sequence of length n
as follows:

Start at state p1 according to prob a0p1
1. Emit letter x1 according to prob ep1(x1)
2. Go to state p2 according to prob ap1p2
3. … until emitting xn

1

2

K
…

1

2

K
…

1

2

K
…

…

…

…

1

2

K
…

x1 x2 x3 xn

2

1

K

2
0

e2(x1)

a02

Generating a sequence by the model

Given a sequence x,

• What is the probability that x was generated by the
model?

• Given a position i, what is the most likely state that
emitted xi?

Example: the dishonest casino

 Say x = 12341623162616364616234161221341

 Most likely path: p = FF……F
 However: marked letters more likely to be L than unmarked

letters

A couple of questions

We will develop algorithms that allow us to compute:

 P(x) Probability of x given the model

 P(xi…xj) Probability of a substring of x given the model

 P(pI = k | x) Probability that the ith state is k, given x

 A more refined measure of which states x may be in

Evaluation

The Forward Algorithm
We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

 P(x) = Sp P(x, p) = Sp P(x | p) P(p)

To avoid summing over an exponential number of paths p,
define

 fk(i) = P(x1…xi, pi = k) (the forward probability)

Define the forward probability:

fl(i) = P(x1…xi, pi = l)

 = Sp1…pi-1 P(x1…xi-1, p1,…, pi-1, pi = l) el(xi)

 = Sk Sp1…pi-2 P(x1…xi-1, p1,…, pi-2, pi-1 = k) akl el(xi)

 = el(xi) Sk fk(i-1) akl

The Forward Algorithm – derivation

We can compute fk(i) for all k, i, using dynamic programming!
Initialization:
 f0(0) = 1
 fk(0) = 0, for all k > 0
Iteration:
 fl(i) = el(xi) Sk fk(i-1) akl
Termination:
 P(x) = Sk fk(N) ak0

 Where, ak0 is the probability that the terminating state is k
(usually = a0k)

The Forward Algorithm

Relation between Forward and Viterbi

 VITERBI
Initialization:
 V0(0) = 1
 Vk(0) = 0, for all k > 0

Iteration:

 Vj(i) = ej(xi) maxk Vk(i-1) akj

Termination:

P(x, p*) = maxk Vk(N)

 FORWARD
Initialization:
 f0(0) = 1
 fk(0) = 0, for all k > 0

Iteration:

 fl(i) = el(xi) Sk fk(i-1) akl

Termination:

 P(x) = Sk fk(N) ak0

We want to compute
 P(pi = k | x),
the probability distribution on the ith position, given x

We start by computing
P(pi = k, x) = P(x1…xi, pi = k, xi+1…xN)
 = P(x1…xi, pi = k) P(xi+1…xN | x1…xi, pi = k)
 = P(x1…xi, pi = k) P(xi+1…xN | pi = k)

Forward, fk(i) Backward, bk(i)

Motivation for the Backward Algorithm

Define the backward probability:

 bk(i) = P(xi+1…xN | pi = k)

 = Spi+1…pN P(xi+1,xi+2, …, xN, pi+1, …, pN | pi = k)

 = Sl Spi+1…pN P(xi+1,xi+2, …, xN, pi+1 = l, pi+2, …, pN | pi = k)

 = Sl el(xi+1) akl Spi+1…pN P(xi+2, …, xN, pi+2, …, pN | pi+1 = l)

 = Sl el(xi+1) akl bl(i+1)

The Backward Algorithm – derivation

We can compute bk(i) for all k, i, using dynamic
programming

Initialization:
 bk(N) = ak0, for all k

Iteration:

 bk(i) = Sl el(xi+1) akl bl(i+1)

Termination:

 P(x) = Sl a0l el(x1) bl(1)

The Backward Algorithm

Computational Complexity

What is the running time, and space required, for
Forward, and Backward?

 Time: O(K2N)
 Space: O(KN)
Useful implementation technique to avoid underflows

 Viterbi: sum of logs
 Forward/Backward: rescaling at each position by

multiplying by a constant

612

GenScan

• N - intergenic region
• P - promoter
• F - 5’ untranslated region
• Esngl – single exon (intronless) (translation

start -> stop codon)
• Einit – initial exon (translation start ->

donor splice site)
• Ek – phase k internal exon (acceptor

splice site -> donor splice site)
• Eterm – terminal exon (acceptor splice site

-> stop codon)
• Ik – phase k intron: 0 – between codons;

1 – after the first base of a codon; 2 –
after the second base of a codon

613

GenScan

E0 E1 E2

E

poly-A

3'UTR5'UTR

termEini

Esingle

I0 I 1 I 2

intergenic
region

Forward (+) strand
Reverse (-) strand

Forward (+) strand
Reverse (-) strand

promoter

…

…

ttaaggagcagtgactagcgactagcatcg
atgctacgtacgatgc
………..

acgtactagctagctagcgcatgacgtagc
tagcacgcatcgaga

6201
6261
6321
6381
6441
6501
6561
6621
6681
6741
6801
6861
6921
6981
7041
7101
7601
7661
7721
7781
7841
7901
7961
8021
8081
8141
8201
8261
8321
8381
8441
8901
8961
9021
9081
9141
9201
9261

614

GenScan

Genscan model
• Duration of states – length distributions of

– Exons (coding)
– Introns (non coding)

• Signals at state transitions
– ATG
– Stop Codon TAG/TGA/TAA
– Exon/Intron and Intron/Exon Splice Sites

• Emissions
– Coding potential and frame at exons
– Intron emissions

Performance
> 80% correct exon predictions, and > 90% correct coding/non coding predictions by bp.
BUT - the ability to predict the whole gene correctly is much lower

Human p53 tumor suppressor gene -chromosome 17

3’ untranslated
region

Final exon

Initial exon

Introns

Internal exons

Example result: exons, introns prediction

TMHMM: Prediction of transmembrane topology of protein sequence
Model consists of submodels for:

• helix core and cap regions (cytoplasmic and extracellular)
• cytoplasmic and extracellular loop regions
• globular domain regions

Trained form 160 proteins with experimentally determined transmembrane
helices.

617

Prediction method:
Posterior decoding, the
program computes for each
residue of the sequence
the probability of being part
if a transmembrane helix,
an intracellular loop or
globular domain region, or
an extracellular loop or
domain region.

TMHMM: uses cyclic model with 7 states for
- TM helix core
- TM helix caps on the N- and C-terminal side
- non-membrane region on the cytoplasmic side
- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops
to account for different membrane insertion mechanism)
- a globular domain state in the middle of each non-membrane region

618

Model architecture of TMHMM

Example result: TMHMM-Output

619

http://www.cbs.dtu.dk/services/TMHMM-2.0/

620

Validation for exons, introns, genes, protein parts etc
Sensitivity (Sn, recall, or TPR) measures the
proportion of actual positives that are correctly
identified as such, while specificity (Sp or TNR)
measures the proportion of actual negatives
that are correctly identified as such. Precision
(PPV) is the proportion of positive results that
are true positive results, while NPV is the
proportion of negative results that are true
negative results. FDR is the binary (not the
multiple testing) measure of false positives
divided by all positive predictions. Accuracy or
ACC (for binary classification) is defined as the
number of correct predictions made divided by
the total number of predictions made. ACC is
one of the best ways of assessing binary test or
predictor accuracy. The F1 score is another
measure of test accuracy and is defined as the
harmonic average of precision (PPV) and recall
(Sn). MCC is a popular measure of test or
predictor accuracy. It is essentially a chi-
squared statistic for a standard 2 × 2
contingency table. In effect, MCC is the
correlation coefficient between the observed
and predicted binary classifications.

621

Reference for this section

Ø Chapter 10 Vol 2

Ø Chapter 3

622

Algorithms for DNA computing and storage

Section 8

Ø Algorithm: Adleman DNA Computing
Ø Algorithm: Random access in large-scale DNA data storage

Adleman's DNA computation approach (1994) solved a Hamilton problem of
seven cities. He used DNA techniques to assemble itineraries at random;
Select itineraries from initial city to final city. The correct number of cities
must be visited. No city can be left out.

Each city is represented by a unique sequence of bases. Connections
between two cities are created from a combination of the complement of the
first half of the sequence of one city, and the complement of the second half
of the sequence of a connected city. In this way DNA representing the trip will
be created with one strand representing a sequence of cities and the
complementing strand representing a series of connections.

The next step is filtering out trips that start and end in the correct cities, then
filtering trips with the correct number of cities, and finally filtering out trips
that contain each city only once.

623

DNA for computing

DNA for computing
Represent Each City By A DNA Strand of 20 Bases City1 ATGCTCAGCTACTATAGCGA

City2 TGCGATGTACTAGCATATAT

City3 GCATATGGTACACTGTACAA

City4 TTATTAGCGTGCGGCCTATG

City5 CCGCGATAGTCTAGATTTCC

Etc.

City 1->2 TGATATCGCTACGCTACATG

City 2->3 ATCGTATATACGTATACCAT

City 3->4 GTGACATGTTAATAATCGCA

City 4->5 CGCCGGATACGGCGCTATCA

City 5->6 GATCTAAAGGTATGCATACG

Etc.

Represent Each Air Route By Mixed Complementary Strands

L. Adelman, Scientific American, pp. 54-61 (Aug
1998);

Hamiltonian problem: list of steps

The challenge is finding a route between various cities,
passing through each only once.
Adleman first generated all the possible itineraries and then
selected the correct itinerary.
Specifically, the method based on Adleman’s experiment
would be as follows:
• 1 Generate all possible routes.
• 2 Select itineraries that start with the proper city and end

with the final city.
• 3 Select itineraries with the correct number of cities.
• 4 Select itineraries that contain each city only once.
• All of the above steps can be accomplished with standard

molecular biology techniques.

625

626

routes

cities

Step 1: Generate all possible routes

Step 1: Technique for Generating Routes Strategy
Encode city names in short DNA sequences. Encode itineraries by connecting the city
sequences for which routes exist.
Synthesizing short single stranded DNA is now a routine process, so encoding the city
strings is straightforward. Itineraries can then be produced from the city encodings by
linking them together in proper order.
To accomplish this you can take advantage of the fact that DNA hybridizes (=binds) with its
complimentary sequence (complementary strands of DNA bind each other).
For example, you can encode the routes between cities by encoding the complement of the
second half (last n letters) of the departure city and the first half (first n letters) of the
arrival city.
For example the route between Miami (CTACGG) and NY (ATGCCG) can be made by taking
the second half of the coding for Miami (CGG) and the first half of the coding for NY (ATG).
This gives CGGATG.
By taking the complement of this you get, GCCTAC, which not only uniquely represents the
route from Miami to NY, but will connect the DNA representing Miami and NY by
hybridizing itself to the second half of the code representing Miami (...CGG) and the first
half of the code representing NY (ATG…).
Random itineraries can be made by mixing city encodings with the route encodings. Finally,
the DNA strands can be connected together by an enzyme called ligase (ligases are
enzymes, i.e. proteins connecting strings). What we are left with are strands of DNA
representing itineraries with a random number of cities and random set of routes.

627

Step 2,3: Sort the DNA by length and select the DNA
whose length corresponds to 7 cities

A test tube is now filled with DNA encoded itineraries
that start with LA and end with NY, where the number of
cities in between LA and NY varies.
We now want to select those itineraries that are seven
cities long. To accomplish this we can use a technique
called Gel Electrophoresis, which is a common procedure
used to resolve the size of DNA. 628

selection for length and initial/end points

629

DNA is a negatively charged molecule, so if placed in an
electric field it will be attracted to the positive potential.
The basic principle behind Gel Electrophoresis is to force
DNA through a gel matrix by using an electric field.

The gel is made up of a polymer that forms a meshwork of
linked strands. The DNA now is forced to thread its way
through the tiny spaces, which slows down the DNA at
different rates depending on its length.

What we typically end up with after running a gel is a series
of DNA bands, with each band corresponding to a certain
length.

We can then simply cut out the band of interest to isolate
DNA of a specific length. We know that each city is encoded
with a certain number of base pairs of DNA, knowing the
length of the itinerary gives us the number of cities.

UV shows DNA position

Step 2,3: Sort the DNA by length and select the DNA
whose length corresponds to 7 cities (tech details)

Strategy: Selectively copy and amplify only the section of the DNA that starts with LA and ends
with NY by using the Polymerase Chain Reaction (PCR). See next slide.

After generating the routes, we now have a test tube full of various lengths of DNA that encode
possible routes between cities.
What we want are routes that start with LA and end with NY. To accomplish this we can use a
technique called Polymerase Chain Reaction (PCR), which allows you to produce many copies of
a specific sequence of DNA.
After many iterations of PCR, the DNA you're working on is amplified exponentially.

So to selectively amplify the itineraries that start and stop with our cities of interest, we use
primers that are complimentary to LA and NY.

What we end up with after PCR is a test tube full of double stranded DNA of various lengths,
encoding itineraries that start with LA and end with NY.

630

Step 4: itineraries Selection:
Start and End with Correct Cities (using PCR)

631

Figure from wikipedia

PCR is an iterative process that cycle through a series of copying events using an enzyme
called polymerase. Polymerase will copy a section of single stranded DNA starting at the
position of a primer, a short piece of DNA complimentary to one end of a section of the DNA
that you're interested in.
By selecting primers that flank the section of DNA you want to amplify, the polymerase
preferentially amplifies the DNA between these primers, doubling the amount of DNA
containing this sequence.

DNA containing a specific sequence can be purified from a sample of mixed DNA by a technique called
affinity purification, as shown below. This is accomplished by attaching the compliment of the sequence
in question to a substrate like a magnetic bead. The beads are then mixed with the DNA. DNA, which
contains the sequence you're after then hybridizes with the complement sequence on the beads. These
beads can then be retrieved and the DNA isolated.

632

Step 5: Itineraries Selection: have a Complete Set of
Cities

Select itineraries that have a complete set of cities. Sequentially affinity-purify n times, using a
different city complement for each run. We are left with itineraries that start in LA, visit each
city once, and end in NY.

Adleman’s approach pros & cons
1 gram of DNA can hold about 1x1014 MB of data. A test tube
of DNA can contain trillions of strands. 5 grams of DNA contain
10 21 bases (Zetta Bytes) Each operation on a test tube of DNA
is carried out on all strands in the tube in parallel (Speed: 500-
5000 base pairs a second); Adleman estimated 2 x 1019
operations per joule.
Adleman's experiment solved a seven city problem, but there
are two major shortcomings preventing a large scaling up of
his computation.
The complexity of the Hamiltonian problem simply doesn’t
disappear when applying a different method of solution - it
still increases exponentially. Adleman’s process to solve the
Hamiltonian problem for 200 cities would require an amount
of DNA that weighed more than the Earth.

634

The data longevity and information density of current DNA data storage systems already surpass those of
traditional storage systems, but the cost and the read and write speeds do not.

Storing one megabyte of data in DNA with existing technology costs hundreds of dollars, compared with less
than $0.0001 per year using tape, the standard for archival data storage.
The price of DNA storage will undoubtedly drop substantially as the costs of DNA synthesis and
sequencing fall.

The more pressing challenge is that DNA synthesis and sequencing are inherently slow.

DNA synthesis and sequencing DNA can be extensively parallelized, their slow speeds limit the amount of data
that can be written and read in a given time interval. The bottleneck for both cost and speed is
synthesis.

A fully automated DNA drive would include synthesis and sequencing technology, components to store and
handle the DNA, as well as a supply of chemicals.

635

Random access in large-scale DNA data storage

DNA is not only BIG data:
It is also a way to store information
and computing. More at the end!

636

Random access in large-scale DNA data storage
DNA strands that store 96 bits are synthesized, with each of the bases (TGAC) representing a
binary value (T and G = 1, A and C = 0).
To read the data stored in DNA, you simply sequence it — just as if you were sequencing the
human genome — and convert each of the TGAC bases back into binary. To aid with
sequencing, each strand of DNA has a 19-bit address block at the start (the red bits in the
image below) — so a whole vat of DNA can be sequenced out of order, and then sorted into
usable data using the addresses.

637

Random access in large-scale DNA data storage

Synthetic DNA is durable and can encode digital data with high density,
making it an attractive medium for data storage.

However, recovering stored data on a large-scale currently requires all the
DNA in a pool to be sequenced, even if only a subset of the information needs
to be extracted.

Here, they encode and store 35 distinct files (over 200 MB of data), in more
than 13 million DNA oligonucleotides, and show that they can recover each
file individually and with no errors, using a random access approach.

Organik et al design and validate a large library of primers that enable
individual recovery of all files stored within the DNA. These advances
demonstrate a viable, large-scale system for DNA data storage and retrieval.

Organick et al. stored and retrieved more than 200 megabytes of
data.
Specifically, they attach distinct primers to each set of DNA
molecules carrying information about a file. This allows them to
retrieve a given file by selectively amplifying and sequencing only
the molecules with the primer marking the desired file.
To test their scheme, they designed a primer library that allowed
them to uniquely tag data stored in DNA. They encoded 35 digital
files into 13,448,372 DNA sequences, each 150-nucleotides long.
Redundant information using error detection codes is also included
to increase robustness to missing sequences and errors.

To improve recovery of the information, Organick et al. develop
a clustering and consensus algorithm that aligns and filters
reads before error correction.

This algorithm also takes into account reads that differ from the
correct length. 638

Random access in large-scale DNA data storage

639

The principle of DNA information storage in Organick et al. (a) Two files are stored by
encoding each file in a set of different DNA sequences. Redundant information is added to
enable error recovery at retrieval, and a distinct primer is appended to each set of sequences
corresponding to a file. The resulting strings are synthesized and stored as a pool of different
DNA molecules. (b) A specific file is retrieved by amplifying the molecules corresponding to the
file by ePCR, sequencing the PCR products, and algorithmically reconstructing the data from
the reads.

1

Random access in large-scale DNA data storage

This work describes large-scale random access, low redundancy, and robust
encoding and decoding of information stored in DNA, as well as a notable increase
in the volume of data stored (200 MB, the largest synthetic DNA pool available to
date).Overview of the DNA data storage workflow and stored data.
(a) The encoding process maps digital files into a large set of 150-nucleotide DNA

sequences, including Reed–Solomon code redundancy to overcome errors in
synthesis and sequencing. The resulting collection of sequences is
synthesized. The random access process starts with amplifying a subset of the
sequences corresponding to one of the files using PCR. The amplified pools
are sequenced. Finally, sequencing reads are decoded using clustering,
consensus and error correction algorithms. 640

Random access in large-scale DNA data storage

Design of random access primers and coding algorithm.
(i) They designed a primer library. The primer sequence set is then filtered that has
low similarity between the sequences. (a, ii) The resulting set of candidate primers is
then validated experimentally by synthesizing a pool of about 100,000 strands
containing sets of size 1 to 200 DNA sequences each, surrounded by one of the
candidate primer pairs, and then randomly selecting 48 of those pairs for
amplification. The product is sequenced, and sequences with each of the 48 primer
pairs appear among sequencing reads, albeit at different relative proportions when
normalized to the number of sequences in each set. 641

Random access in large-scale DNA data storage

The encoding process starts by randomizing data to reduce chances of secondary
structures, primer–payload non-specific binding, and improved properties during
decoding. It then breaks the data into fixed-size payloads, adds addressing information
(Addr), and applies outer coding, which adds redundant sequences using a Reed–
Solomon code to increase robustness to missing sequences and errors. The level of
redundancy is determined by expected errors in sequencing and synthesis, as well as DNA
degradation. Next, it applies inner coding, which ultimately converts the bits to DNA
sequences. The resulting set of sequences is surrounded by a primer pair chosen from the
library based on (low) level of overlap with payloads.

642

Random access in large-scale DNA data storage

643

The decoding process starts by clustering reads based on similarity, and
finding a consensus between the sequences in each cluster to reconstruct
the original sequences, which are then decoded back to digital data.

Random access in large-scale DNA data storage

645

Reference for this section

Reference: Adleman, L. M. (1994). “Molecular computation of solutions to combinatorial
problems”. Science 266 (5187): 1021-1024. doi:10.1126/science.7973651. PMID 7973651

M. Amos chapter

https://www.nature.com/articles/nbt.4079

646

Simulation of biological reactions (also epidemics, social
dynamics etc)

Section 9

Ø Algorithm: Doob-Gillespie

Simulation of DNA and protein reactions
Problem statement: if we start with N types of molecules that can interact
through one of M reactions at a given time, what will be the population levels of
species after a given period of time?

One approach is to use ODE (obtaining a deterministic solution); another is to use
an exact Stochastic Simulation that allows to: avoid averaging assumptions; it has a
probabilistic formulation of the type:
– When does next reaction occur?
– Which reaction occurs next?

Advantages: continuous time, discrete population changes;
captures effects of noise; simple implementation; small memory requirements.
Disadvantages: CPU intensive; typically must simulate many runs; must use good
random number generator

647

Doob-Gillespie algorithm to simulate reactions
• In a common chemical reaction system, two particles collide to form one

or more products (see figure at the bottom).
• Biochemical reaction systems with a low to moderate number of

molecules are often simulated (in well-stirred conditions) with methods
that produce statistically exact sample paths such as the Doob-Gillespie
algorithm

• The Doob-Gillespie algorithm uses two random numbers per step. The
first is used to find when the next reaction occurs and the second is used
to determine which reaction occurs at that time.

• It was developed by Joseph L. Doob and others (about 1945), used for
chemical reactions by Dan Gillespie in 1976. The figures below show the
set of reactions that involve 3 species; the system is updated after the
interval t.

648

1. The idea of the Doob-Gillespie algorithm is that one first determines
when something happens next.

2. Suppose the current time is t. Within a time t + t a reaction could
happen; we draw an exponentially distributed random number scaled
by the sum of all process rates.

3. Then, the Doob-Gillespie algorithm determines what happens next.
This is done by drawing a process randomly from all possible
processes according to their respective probabilities (propensity
functions).

4. When we have determined which process happens, we can update
the variables (the so-called state of the system). Then we iterate this
process as long as we want.

5. In practice the propensity function can be thought as a stochastic
reaction rate; more formally in chemistry it describes the probability
while reaction rate describes the changing rate. Propensity functions
are defined based on population of species while the reaction rates
are defined based on the concentration of species.

How to simulate reactions

649

A propensity function ai is associated to each reaction step. These
probabilites are related to the kinetics constants.

Initial number of molecules of each species are specified.

The time interval is computed stochastically according the reaction
rates.

Generate r1 and r2 and calculate the reaction that occurs as well as the
time till this reaction occurs.

At each time interval, the reaction that occurs is chosen randomly
according to the probabilities ai and both the number of molecules and
the reaction rates are updated.

650

How to simulate molecules
such as DNA and proteins

Dobb-Gillespie Algorithm

t

t

Details on step 6

652

Examples
In a given reaction system with v reactions, we know that the hazard for a type i reaction is
hi(x, ci), so the hazard for a reaction of some type occurring is

It is clear that the time to the next reaction is Exp(h0(x, c)), and also that this reaction will be a
random type, picked with probabilities proportional to the hi(x, ci), independent of the time to the
next event. That is, the reaction type will be i with probability hi(x, ci)/h0(x, c). Using the time to the
next event and the event type, the state of the system can be updated, and simulation can
continue.

Complexity

• Memory (N + 2M + 1)
• N species populations
• (Compute ai values for each of M reactions,

compute a0; compute random numbers)
• Total time scales with number of reactions

that occur
• Operation per reaction: generate two random

numbers, µ, t, calculate a0 and ai values.

653

Genetic network simulation: Example of Doob-
Gillespie application and output

654

Differences between a population of
isolated cells and a tissue of cells. a)
A population of isolated cells: each
cell contains an identical genetic
network (three species, two inhibiting
and one activating functions).

b) A tissue of cells: each cell contains
an identical genetic network and
some molecules can be transported
between neighbouring cells (dotted
lines).
c) Typical single-cell protein
trajectories of system (1) in isolated
cells.
d) Typical single-cell protein
trajectories of system (1) in a tissue
of connected cells: noise is clearly
reduced compared to c.

• The original Gillespie algorithm is physically accurate only
for systems that are both dilute and well-mixed in the
reactant (solute) molecules.

• An extension of the SSA for systems that are not well-mixed
is the reaction–diffusion SSA (RD-SSA). It divides the system
volume into subvolumes or “voxels” , which are small
enough that each can be considered to be well-mixed.

• Chemical reactions are then considered to occur inside
individual voxels and are modeled using the SSA, while
diffusion is modeled via jumps from a subvolume to one of
its neighbors.

• In this way, the Gillespie algorithm has been extended to
the challenging field of spatial stochastic modeling.

655

Beyond Dobb-Gillespie Algorithm

656

Reference for this section

Gillespie D.T., (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of
Coupled Chemical Reactions. J. Comp. Phys., 22: 403-434.
.

Library in python

Examples
– A. Arkin, J. Ross, H. McAdams. Stochastic Kinetic Analysis of Developmental Pathway
Bifurcation in λ Phage-Infected Escherichia coliCells. 1998. Genetics 149:1633-1648
– J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn. Dynamical resonance can account for
seasonality of influenza epidemics. 2004 PNAS.
– S. Hooshangi, S. Thiberge, R. Weiss. Ultrasensitivity and noise propagation in a synthetic
transcriptional cascade. 2005. PNAS 102:3581-3586
- Stephen Smith& Ramon Grima 2018 Single-cell variability in multicellular organisms. Nature
Communications

657

Exam questions

• Algorithm (method, problem)
– Name
– Type of algorithm
– Brief description (what it does?), input, output
– Motivation (the problem it is trying to solve and why is it important?)
– Assumptions
– Main steps
– Time and space complexity
– Speed-up solutions, if applicable
– When comparing: caveats and advantages (and when it is appropriate to use)

• Tip: make sure you know how to demonstrate with a small example
• Software, technique

– Name
– Brief description (what it does?)
– Motivation (the problem it is trying to solve and why is it important?)
– Assumptions
– Input
– Main steps
– Output
– When comparing: caveats and advantages (and when it is appropriate to use)

• Examples
– Simple as possible

• Terms
– Give a concise and complete definition

Guidelines

Exam questions

659

660

Exam questions

1. Give the alignment matrix of the sequences `AATCGCGCGGT' and
`ATGCGCCGT' assuming the following costs: Cost(a,a)=0; Cost(a,b)=3
when a ¹ b, Cost(a,-)=Cost(-,a)=2.

2. How would you set the function Cost in order to compute the longest
subsequence common to x and y?

3. Describe the differences between the algorithms for global and local
alignments

4. Which of the following reasons would lead you to use the Smith-Waterman
local alignment algorithm instead of the Needleman-Wunsch global
alignment algorithm?

Select all appropriate answers.
(a) Computer memory is too limited to compute the optimal global alignment.
(b) One wants to identify common protein domains in the two sequences.
(c) The sequences have very different lengths.
(d) Smith-Waterman is faster than Needleman-Wunsch on long sequences.
5. Describe the notion of a parsimonious phylogeny for a finite set of

sequences and the hypothesis assumed on them

Exam questions

