Bioinformatics

578 UNIVERSITY OF
% CAMBRIDGE

Computer Laboratory

Pietro Lio°

Ph.D. Engineering,
Ph.D. Theor Genetics

Bioinformatics (algorithms): sections and topics (12 lectures)

* 1 Molecular/cellular network Biology (1)

* 2 DNA/Amino acid Sequence Alignment (2)

* 3 Phylogenetic Tree building methods (2)

* 4 Clustering biological data (2)

5 Genome sequencing (1)

e 6 Assembling genomes (1)

* 7 Finding genome parts/Hidden Markov models (1)
* 8 Computing/storing information using DNA (1)

* 9 Simulation of biological reactions (1)

Some notes on deep learning in bioinformatics will be given at the end of the course but

they are not part of the assessment/examination. ;

Bioinformatics and computational biology: Applied Algorithms and
Interesting biological problems computer scientists should look at

Bioinformatics offers an opportunity
to help understand biology and
medicine more accurately.
Bioinformatics is an effective way to
blend biological and medical
concepts and programming tools to
help understand biology and
medicine better. A researcher must
identify the widest variety of data
that makes an organism. Second,
she must know the context in which
the disruption of information causes
a disease.

Bioinformatics is nowadays about
algorithms and/or machine learning
methods. In the course we focus on
algorithms. The course has 9 sections
(figure right).

Example

Biological
Reactions 9

DNA

computin
g
Storage 8

Parts
identifica
-tion 7

Key

concepts

Biology 1 Alignme

nt
P

-y

Building
trees 3

Clusterin
g4

Genome
sequenci

Genome ng4

Assembl
y5

General references for the course

BIOINFORMATICS ALGORITHMS BIOINFORMATICS ALGORITHMS Some of the slides are produced on the
An Active Learning Approach ‘An Active I I AP Taoh
2nd Edition, Vol. I = EEEd;u;x{ T aeMere

basis of chapters from the books below
(with agreement with the authors)

. largely based on P. Compeau and P. Pevzner:
| Bioinformatics algorithms; note that there are few
blogs about these widely used text books.

by Phillip Compeau & Pavel Pevzner by Phillip Compeau & Pavel Pevzner
X .

Biological
sequence
analysis

Probabitistic models
of proteins and
nucieic acids

R. Durbin

S. Eddy

A Krogh

G. Mitchison

also R. Durbin, at et al.: Biological Sequence
Analysis: Probabilistic Models of Proteins and
Nucleic Acids.

| Camariina

Section 1

Biological background

» Structures and Models of DNA and proteins

> Multiple layers of information

Central Dogma and Genetic Code

The central dogma of molecular biology
Central Dogma explains the flow of genetic information,

from DNA to RNA, to make a functional
product, a protein.
Transcriptio[> Translation >
2D The central dogma suggests that DNA
&)

contains the information needed to make
mRNA Protein all Of our proteins, and that RNA is a

cells express different subset of the genes messenger that carries this information to
In different tissues and under different conditions]
the ribosome

Gene

In transcription, the information in the DNA of s e poston A
every cell is converted into small, portable RNA ¢ U C A G ¢
messageS Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
U Leu Ser STOP STOP A
. - Leu Ser STOP Trp G
During translation, these messages travel from
where the DNA is in the cell nucleus to the Lev Pro s At ,
A 1] o eu (] 3 rg C
ribosomes where they are ‘read’ to make specific C Leu Pro G N
proteins using a genetic code (right).
lle Thr Asn Ser U
. . . lle Thr Asn Ser C
Gene expression is a tightly regulated process A o, e e Ay A
that increases or decreases the amount of
proteins made. Vel Ala Asp Gly
Val Ala Asp Gly C
Val Ala Glu Gly A
G Val Ala Glu Gly B

Central dogma of biology

DNA

m | Genomics |

DNA

A=A, L Y . 5
P i | Transcriptomics |
v RNA

.
»w | Proteomics |

Proteins
NH,*
Kﬂ/o. |
P T
o | o

Metabolites

v X
D,
\
N /' ‘\‘\:v /.
Oy : 1 /
v t i ;
[| .
oy | y/
1 ™ 4 \f
g f
1 v /
!

I ! /
. JI f‘ll ‘\‘II O/L'O
H | Metabolomics | o ,\',_'.J \‘O

Phenotype 1

nnnnnn

\

Phenotype 2 Phenotype n

The figure in the left shows the DNA compaction; the figure in the right the overall functional

impact of DNA
DNA -> RNA -> Proteins

DNA encodes genes, most of which encode for proteins (via the genetic code)
Proteins perform much of the work of the cell.
RNA acts as an intermediate step

(it also has other functions as well)
Huge amount of data now available, need algorithms to make sense of it.

Healthy Individual

A gene cab be seen as a string of DNA producing a “meaningful signal”
for the cell/individual; most genes act as instructions to make proteins
(others do not code for proteins); below the DNA sequence in Fasta
format of the beta globin gene. It codes for a subunit (sequence below) of
the hemoglobin protein.

>g1128302128 |ref|NM 000518.4| Homo sapiens hemoglobin, beta (HBB), DNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

GEgEgAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>g114504349|ref |INP 000509.1| beta globin [Homo sapiens]

MVHLTPIEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHEFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

Databases: www.ebi.ac.uk, http://www.ncbi.nlm.nih.gov/ and others in China, Japan etc ¢

http://www.ebi.ac.uk/

Individual with Sickle Cell Anemia

>g1128302128 |ref|NM 000518.4| Homo sapiens hemoglobin, beta (HBB), mRNA
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA

(%;EQAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATG
CTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGC
TCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGAT
CCTGAGAACTTCAGGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGC

>g114504349|ref [NP 000509.1| beta globin [Homo sapiens]

MVHLTﬁ\’ﬁKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG

AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

General structure of the gene

3'end
° B¥™ Regulatory region GENE (sense strand) -3’

G aAG UG AG:: GT) AGe

5" end ...CA... B JCo MR o WY 1 0 PRI o . \CU) [O %8

5 Y &I Regulatory region Transcription unit (template strand) -5’
Transcription - i - i - Transcription
start site | : I [! ! termination site
o T —Y (TSS) 1 : | ! (TTS)
= A Y L | | e 3’
| pr e-m RN A Ung Zg IZI:: ted Exon In(t1rc)>n E(xzc;n In(tgn E()g;n ln(trr‘())n E();gn Ungzgisolﬁled
e C 4" |
G .o.'.. s - / L
’/ 1 3
EEEEN -4 (1) o -
pen reading frrame 3'-UTR m
& mRNA (2)
3'end mRNA (3)
There is a pairing rule: N ‘)
>

A-T; C-G; the two
strands of DNA are
oriented differently

Examples of
sequence containing
an exon-intron
boundary

On DNA - sense strand

On the pre-mRNA

Exon-intron (donor) sites

Intron-exon (acceptor) sites

Exon-intron (donor) sites

Intron-exon (acceptor) sites

5’ -GAAGTGAGT-3'
5’ -TTCGTAAGT-3'
5/ -AAGGTACTT-3’
5/ -CTGGTGAGC-3’
5’ -AGAGTGAGT-3'
5 -CAGGTAGAG-3’
5/ -ACTGTACGT-3’
5/ -CTGGTGAGT-3’

5/ -TCTTAGGAT-3’
5’ -TTTAAGCCA-3’
5’ -CTGCAGCAT-3’
5/ -GCACAGGCC-3'
5/ -TCTTAGGAT-3’
5’ -GTTTAGCTC-3’
5/ -TTCTAGGAA-3'
5/ -TTGCAGTTG-3'

5’ -GAAGUGAGU-3’
5’ -UUCGUAAGU- 3’
5/ -AAGGUACUU-3’
5/ -CUGGUGAGC-3’
5’ - AGAGUGAGU- 3’
5’ -CAGGUAGAG-3'
5/ -ACUGUACGU-3’
5/ -CUGGUGAGU-3’
5’ Splice site

5’ -UCUUAGGAU-3’
5’ -UUUAAGCCA-3’
5/ -CUGCAGCAU-3’
5/ -GCACAGGCC-3/
5’ -UCUUAGGAU- 3’
5’ -GuUUAGCUC-3/
5/ -UUCUAGGAA-3'
5/ -UUGCAGUUG- 3’
3’ Splice site

Proteins: sequences of amino acids

Very small

Aliphatic

Small

Clustering amino
acids accordingly to

physical and

chemical properties:

this provides

evidences for effects

of changes in

proteins
Positive
Aromatic Polar
Charged
Hydrophobic :

PAMp0|nt ARND CQE GHILKMTFPSTUWYV
Al542-1 421042443 6011 9 5 -1
aCCepted Rl 4836 50-5603-622-72-140-7-5
i N[236 3 7-10 -11350-5-6-310-6-3-5
mutations p[-163 6 90 3 -1-15-827-104-12-10-7 -5
) 4579 9 99 6-54-109-9 -8 -5-1-5-11-2 4
matnces Qq20-10 97 2 425-3-12-9-133-38-8-4
E-150 3 92 6 2246249 323-11-6-4
represent Gl06-1-1 6-4-26-66-7-5-6-7-30-3-10-9 -3
H401 -1 522 68-6-4-36-4234-5-1-4
icti I|[233-5 454 667 1-410-54-1-9-43
StatIStICS Of L|-4-6-5-8-103-6-7416-52-1-56-4-4-40
i i K[420 2 9-12 534560-9-42-1-7-7-6
amino aCId M-325-7 924 6-612010-2-532-28-70
F|-6-76-10-89-9 -740-19228-746-214-5
replacemen PJ0O23 4 5-13 325545-77029-9-23
sf[t-11-1 -1-3-2034623-4052-353
trates T[140 2 533 34-14-12-6226 -8-4-1
: W[-90 -6-10-11-8-11-10-5-9 4 -7 -8 -2 9-3-8 13 -3-10
(Iogs) In Y5737 286 9-14-4-7-74 954395
evolution v[-155-5 444 343060 -5-33-1-10-56

Eek! 1 HATE e
fowching Wak W § e
k : & Me foo' 1 ceall
o\-sa.ut(:m‘) ln’:.df é admice those qn?;noaad.f
Dont let 9o hak tan idecface with

Dath 0queovs and (ipid
lavecs!

Right:
Cartoon of
the different
propensity of
amino
acids(amino
acids as
animals) for
the cell
external,
membrane
and cell
internal (
environments 1 A

b LI jwt hope

9 ot defhan.é
Dunno- just up thece doesat
hydrophilic 9¢E nervous!
1 gyess.

Proteins : from sequence to 3d structure (different representation)

Left: @) amino acid sequence; b) secondary

MVLSPADKTNVKAAWGKVGA 0 -
mimseis Sk aisin s, structure; c) 3d structure; 4) quaternary structure
KTYFPHFDLSHGSAQVKGHG (complex of proteins)
KKVADALTNAVAHVDDMPNA
R Below: various representations of
(a) (b)

3d structure (a good free software is pymol)

(© (d)

Below: various representations of 4 Purepointcloud with bonds
secondary structures

. with protein-specific o i
secondary structure

as surface

12

Structures and Models of DNA and proteins (historical and current)

Experimental data

5-CCTGAGCCAACTATTGATGAA-3
3-GGACTCGGTTGATAACTACTT-5

USEFUL ABSTRACTION/

DNA AS A STRING,
A PROTEIN AS A LABELLED GRAP
DNA AND PROTEINS AS NETWORKS

sources: Photograph 51°, March 1953, by Rosalind Franklin; pencil sketch of the DNA
double helix by Francis Crick; replica of Crick and Watson’s 1953 DNA Double Helix Model,
source https://blog.sciencemuseum.org.uk/why-the-double-helix-is-still-relevant/

13

Graphs are everywhere in biology

Drug molecules Protein structure

Protein-protein

interaction networks

Gene regulatory
networks

Unsurprisingly, Graph Neural Networks have achieved remarkable

results in biological modelling

Slide credit: Chaitanya Joshi

Parallel Technological evolution

High-performance computing Genome sequencing

1979

2006 | today

Who has a computer? Whose genome has been sequenced?
@ 1960s: Major research institutes @ 1996: First bacterium (E. coli)

@ 1970s: University departments @ 2001: Human reference genome

@ 1980s: Companies and schools @ 2007: First personal genomes

@ 2019: Aimost everybody & always @ 2020: Millions personal genomes

20012002 2003 2004 2005 2006 2

Your genome in your mobile for few hundred pounds: 4 \ Progress in science depends on new

k- techniques, new discoveries and
https://www.genome.gov/sequencingcosts S new ideas, probably in that order.

= S’L{!{H('L{ B‘u‘mxm ==

Determining the sequence of DNA is cheap and quick

b

/ Oxford @ The algc.ar.lthms we study have impact
on precision and personalised

| nanopore AN

J medicine:

Cancer: Disease stratification based
on driver mutations

Rare diseases: Most patients now
receive a genetic diagnosis

Drugs: Patient-specific prediction of
efficacy and side effects

Garage genomics

DNA is big data

1e+09

W Recorded growth
. B Double every 7 months (Historical growth rate)
@ Double every 12 months (lllumina Estimate)

1e+06

Cumulative Number of Human Genomes

1e+03

1e+00

\
T
12Zbp

1Pbp
Worldwide Annual Sequencing Capacity

1 Tbp

B Double every 18 months (Moore's Law) 7
7
7 -
-]
7 -
s - L &
7 - =
-
e — =
- -
Current Capacity 04 -
EXAC /
0
~~ 1stPacBio
TCGA o Chaisson et al.
1000 Genomes /
(-)
Wheeler et al.
1st Sanger 1st lllumina
IHGSC et al.
Bentley et al.
Venter et al. EETCEs _o Wangyet al.
o—9° Ley et al.
(]
T T T T T T
2000 2005 2010 2015 2020 2025

Data Repository: http://www.ebi.ac.uk; http://www.ncbi.

Year

http://genome.ucsc.edu/ www.ensembl.org

In situ data reduction

Real-time processing

Data Phase Astronomy
Acquisition 25 zetta-bytes/year
Storage 1 EB/year
Analysis

Massive volumes
Distribution

Dedicated lines from antennae
to server (600 TB/s)

doi:10.1371/journal.pbio.1002195.t001

Twitter
0.5-15 billion
tweets/year
1-17 PBlyear

Topic and
sentiment mining

Metadata analysis

Small units of
distribution

nlm.nih.gov/ ;

YouTube

500-900 million hours/year

1-2 EBl/year
Limited requirements

Major component of modern user’s
bandwidth (10 MB/s)

Genomics

1 zetta-bases/year

2—-40 EB/year
Heterogeneous data and analysis

Variant calling, ~2 trillion central
processing unit (CPU) hours

All-pairs genome alignments, ~10,000
trillion CPU hours

Many small (10 MB/s) and fewer massive
(10 TB/s) data movement

http://www.ebi.ac.uk
http://www.ensembl.org

Dense information

Purines

Each DNA base encodes 2 bits information (because you have to (1 bit)

choose between purines and pyrimidines and then within
each class).

You have 46 chromosomes in each (autosomal) cell.
If you tease out those 46 (double) strands and place them end to end
they'd be about 2 meters long - but that's just one cell. Every time a cell
replicates it has to copy 2 meters of DNA reliably. 3 billion base pairs, 2
meters long, 2nm thick, folded into a 6um ball/cell.

As there are about 3.7x10"3 cells in the human body (and hence 1.7x1015
chromosomes or strands), your entire DNA would stretch about 7.4x1010
km or fifty thousand million miles (133 Astronomical Units long) and the
DNA in the current human population would be 20 million light years long
(the Andromeda Galaxy is 2.5 Million light years).

Big numbers also as information content: lower bound on the total i’\(\/\,}
information content in the biosphere: 5.3 x 103" (£3.6 x 1037) megabases x “ % ﬂ ok
o o

(Mb) of DNA. Taking the rate of DNA transcription as an analogy for

processing speed, further estimated Earth's computational power: 101° :% X
yottaNOPS (1024 Nucleotide Operations Per Seconds). mn Gene mRNA p? Metabolites
s i |

Genome ‘m, < \/

~

Then you can take into account all the other flow of information processing Transcriptome Proteome Metabolome
such as proteomics, metabolomics etc

Gene and protein interactions as graphs

Transcription

MRNA 1

Translation

S

MRNA 2 mMRNA 3

protein X

\

modified
protein X

protein Y protein Z

protein

Mutations can disrupt the graph

Left: A gene regulatory network with three genes A, B, C; three mRNAs 1, 2, 3; and
three proteins X, Y, and Z. Gene A regulates gene B by protein X at transcription, gene
B regulates gene C at translation by protein Y, and gene C regulates gene A at post
translation by protein Z to modify protein X; right: effect of mutations.

19

Gene and protein interactions build devices

Protein

gene!

DNA
Regulatory -~ I]
Element Promoter Gene

flagellum

hook

rod

outer membrane ——

peptidoglycan
layer

cytoplasmic
membrane EE—

motor switch

Mot protein

RNA polymerase
+~ (reads the information of the

This complex protein arrangement allows
bacteria to swim in different directions. Similar
assemblies are found in sperm cells, in the
fallopian tubes (where eggs need to be moved
from the ovary to the uterus), and in the
respiratory tract (where cilia clear the airways of

mucus and debris).
20

Cells versus Computers

E. coli transcriptional

regulatory network Linux call graph

master regulator

middle manager

workhorse

I

Fig. 1. The hierarchical layout of the E. coli transcriptional regulatory network and the Linux call graph. (Left) The transcriptional regulatory network of E. coli.
(Right) The call graph of the Linux Kernel. Nodes are classified into three categories on the basis of their location in the hierarchy: master regulators (nodes with
zero in-degree, Yellow), workhorses (nodes with zero out-degree, Green), and middle managers (nodes with nonzero in- and out-degree, Purple). Persistent
genes and persistent functions (as defined in the main text) are shown in a larger size. The majority of persistent genes are located at the workhorse level, but
persistent functions are underrepresented in the workhorse level. For easy visualization of the Linux call graph, we sampled 10% of the nodes for display.
Under the sampling, the relative portion of nodes in the three levels and the ratio between persistent and nonpersistent nodes are preserved compared to the

original network. The entire E. coli transcriptional regulatory network is displayed.

percentage in c. Coll percentage Iin Linux
regulatory network call graph

master regulator 4.6 29.6

The transcriptional regulatory network (1,378 nodes)
middle manager 5.1 58.2 follows a conventional hierarchical picture, with a few
top regulators and many workhorse proteins. The

e - Linux call graph (12,391 nodes), on the other hand,
R A e possesses many regulators; the number of workhorse
PR e _‘O"X sy routines is much lower in proportion. The regulatory
g &f& 102 Rx network has a broad out-degree distribution but a
St LY e XX | narrow in-degree distribution. The situation is reversed
£ o0 LN in the call graph, where we can find in-degree hubs,
ougereats A\X s 1\ meeneput the out-degree distribution is rather narrow. Yan et
TS . ke al. PNAS 2010, 107, 20.

100 102 104 10° 10
Degree

Central dogma revisited and Regulation Feedback

(A) (B)
DNA DNA
(A)
> A > 6 > c > D >
mRNA mRNA =)
protein protei:> 5 !
I D
metabolites metabolites i
0 | | | I‘
1950s - 1970s Wdey Linear pathway with feedback. (A) Reaction
o _ scheme with feedback inhibition of the initial
The original Central Dogma compared with step by the end product. (B) Comparison of
modern understanding. In the original concept of responses to a sudden and persistent
the Central Dogma, transcription, translation, demand of metabolite D, Starting attimet=
and enzymatic catalysis were proposed to forma 8 With feedback (D+), the concentration of
linear chain of processes, although nobody D oscillates and converges to a level of
doubted the role of regulation. We know now that ~ gpout two-thirds of the initial value. Without
a complex feedback structure at every level is feedback (D-), the concentration of D sinks
crucial for appropriate cell functioning. to less than one-quarter.

22

. . (A) bacterial cell (specifically, E. coli:V = 1 um3; L= 1 um; t = 1 hour)
The Cell is a Computer In
water protein inorganic lipid
SO u p ﬁ ion ﬁ protein
5x10° J 5x107

2x10'°

3x10°
/ 2x103 2x104 5x106b

2 8 &
x @© x @ 5 5 g RNA transcript mRNA ribosome
d L i Y35 &
w Keratin - a hair component (B) yeast cell (specifically, S. cerevisiae: V = 30 pm3; L=5 um;t =3 hours)
DNA
Promoter (control) Region Protein Coding Region %f : m}
107 10°
. . 9 %
ABOVE: Idealized promoter for a gene involved sl S
in making hair. Proteins that bind to specific PP B I \\/\

3x10* 105 12x107bp

DNA sequences in the promoter region together
turn a gene on or off. These proteins are

themselves regulated by their own promoters © (R R G RS T o s Tam
leading to a gene regulatory network with many

of the same properties as a neural network. We ﬁf @

use chips (right) to measure the © @"’9 i

activity of all the genes (rows) in e

different conditions (gene s Q m o
Expression, columns). =

Logic gates: The Cell as an an information processing device

Transcribed to Translated to
RNA —

Transcription Factor
(Protein)

Causes transcription to begin
Promoter 7
Region DNA

protein binding
regulatory elements

Toggle switch (cro and cl are genes;
Pr and Prm are binding sites for the

RNA,,

Promaoter Operator

ACHVALOT s

INCAUCET s

proteins of genes cro and cl)

Inactive
activator

No transcription

Active
activator

Inducer

lranscription

. Promoter Operator Gene
Gene
Activator Inducer Output
Output 8 ? 8
1 0 0
1 1 1
Cro 'I'

Network Motifs

(b) Negative (c) Positive (d) Incoherent
(a) Cascade feedback loop feedback loop feedforward circuit
Input Input Input Input
J T} %) o
® e e O
O Output Output Output
Output
Rxnl: A+B—= C+D
Rxn2: E+B = F
(a) (b)
" |RxanRxn2|
Nodes: Metabolites Nodes: Reactions
Arcs: Reactions Arcs: Shared metabolites

and reactions

Nodes: Metabolites and reactions
Arce: Links between metabolites

Recurring motifs in signal transduction

(f) Interlinked

feeﬁlffa'??i?im posfi:ev:baarlilrfc?::ive SystemS. (a) A Signa“ng CascadE. (b) A
z i negative feedback loop. (c) A positive
® CO=0 feedback loop. (d) An incoherent feedforward
O/ | Sz | circuit. (e) A coherent feedforward circuit. (f)
\Q e A composite system with interlinked positive
| and negative feedback loops.

Different ways of representing a metabolic network using a
directed graph illustrated for a simple network of two reactions.
Metabolite graph, Reaction graph and (c) Bipartite graph

25

Complexity of living systems: the cell, the fundamental unit in biology,
as a network of genes and proteins

The detailed inventory of genes, proteins, and
metabolites is not sufficient to understand the cell’s
complexity

From Oltvai and Barabasi

Information storage, information processing, and the
execution of various cellular programs reside in
distinct levels of organization: the cell's genome,
transcriptome, proteome and metabolome.

For example, the proteome organizes itself into a
protein interaction network and metabolites are

}cﬂ} AIP ;np A:P ;Dp ATP ADP
. . . . — —\ — \
interconverted through an intricate metabolic web.

(U e LD e TP {CTPA

u.ur][u»\n][n 2 Mg T g

Regulatory motits Matabolic pathways
The elementary building blocks organize the
into small recurrent patterns, called pathways i
metabolism and motifs in genetic-regulatory
networks. In turn, motifs and pathways are - \
seamlessly integrated to form functional modules. \ Information storage s Processing o Exocution [

These modules are nested, generating a scale-free
hierarchical architecture . Although the individual
components are unique to a given organism,the
topologic properties of cellular networks share
surprising similarities with those of natural and social
networks.

Scales of electronic and bio devices

proteins inside
a bacterium

—> Scale in A
A=025 micréﬁ‘ms
in Pentium Il
A8 1 micron

A

B Bacterium Human
chromo
some.

(a) NAND gate layout geometry.

27

CS —Bio parallelism

Tissues,
cultures

Cells

Cells: see
https://www.humancellatlas.org/

Pathways: see

Biochemical

reactions
https://www.rhea-db.org/

‘\‘ Proteins,
\ genes...
]

! https://www.ncbi.nlm.nih.gov/

https://www.genome.jp/kegg/pathway.html

28

Cells versus Computers

Biology Computer science

1. Digital alphabet consists of bases A, C, T, G 1. Digital alphabet consists of 0, 1

2. Codons consist of three bases 2. Computer bits form bytes

3. Genes consist of codons 3. Files consist of bytes

4. Promoters indicate gene locations 4. File-allocation table indicates file locations
5. DNA information is transcribed into hnRNA and 5. Disc information is transcribed into RAM

processed into mMRNA

6. mRNA information is translated into proteins 6. RAM information is translated onto a screen or
paper

7. Genes may be organized into operons or groups with 7. Files are organized into folders
similar promoters

8. "Old" genes are not destroyed; their promoters 8. "Old" files are not destroyed; references to their
become nonfunctional location are deleted
9. Entire chromosomes are replicated 9. Entire discs can be copied

10. Genes can diversify into a family of genes through 10. Files can be modified into a family of related files
duplication

11. DNA from a donor can be inserted into host 11. Digital information can be inserted into files
chromosomes

12. Biological viruses disrupt genetic instructions 12. Computer viruses disrupt software instructions
13. Natural selection modifies the genetic basis of 13. Natural selection procedures modify the software
organism design that specifies a machine design

14. A successful genotype in a natural population 14. A successful website attracts more "hits" than
outcompetes others others

Challenges: quantify information in a cell; building
computers inspired by cells information flow

Nature is programmed for self-assemble;
Bioinformatics is needed to identify the key elements

* DNA, RNA and proteins can:

* Organise themselves to self assemble different types of devices
(mechanisms such rotors, motors) or structures with different
shapes across time and space scales.

* Organise other types of molecules such as lipids, sugars and
artificial ones.

* Organise large set of reactions (such as metabolic networks) and
Execute different kinetics

e Self-Assemble control devices

sensitive
channel aquaporin
(1msl) (1fqy)

ATP synthase

(1c17+1e79) gramicidin potassium
(1grm) channel
(1bl8)

phospholipid

Structure of T4 Bacteriophage

Nature is programmed for self
et ey assembly

Neck

Whiskers Size: 24 to 200 nanometers

they’re 10 to 100 times smaller
: \ than the average bacterium,
/ Tailfbre much too small to see with an
’ ordinary light microscope.
Tail Assembly We absorb about 30 billion
Cleid Aisaiili phages into our quies every
, =, DNA » day. They form an integral part
wr of our microbial ecosystem.
Baseplate \ ITaiI core added /

IKEA®

OVEN PARTS
For Models: IBSS50PWWO0, IBS550

\

DNA packaged inside head

Sheath added Tail Fibre Assembly

around core

Mature phage

The genome contains both the instructions for assembly and for the parts and it is shipped
with the virus

rarP13

—head (nuclease)
rofease inhibifor

anaerobic NDP reductase

DNA polymerase accessory profeins—
transiational regulator—, 1)

DNA polymerase-, \\

blocks superinfecting DNA-,)
dCMP hydroxymethylase

DNA endonuciease
recombination ATPase N

farP12

-
head —.
DNA primase-helicase —. ~—internal proteins
DNA primase—._ s ﬁ;’_\ FHy dTMP dGMP dAMP / ///—Iysozyme //
ONA A-methylase— S T . Fﬂq% t:"-gpr"';[f X /
dCTPase o, 2 acMP—SS—~aomP” L/ L e anpP | [:

dATP

dTTP dGTPR

e DNA endonuclease
. /

oA —fail fiber assembly

duTFP pas gl N
dHMP————=dHDP —————+ dHTP Bat 1851 ——dNMP kinase
o glucosylated DNA qp;‘g GO e BNA —_;x—sheafh terminator
. ., STORON - head completion
_ resoives
= prancres N et basepiate plug

3 apl7
N

DONA topoisomergse

All
ril NB5060

-gp30

ATP

52" ¥

_mofﬁ’ -

middie gene activafor——

protease
cleavage

9p22, 67,
68

Ggp2
189pl2 WEDGE
1

£ @ezs
x3

qp2

-~ gpSl

BASEPLATE

) Ria

dsDNA binding protein
late RNA—
ONA replication
helix-destabilizing profein

m . — DNA endonuclease
recombination profein

f§
:
&

i !
! !

e J / | . ‘- folate conjugase
tail fiber attachment & RNA ligase T DNA ligase- | '\ \ ‘—folyl polyglutamate synthetase
inhibits transcription on dCyt-DNA— | CMP deaminase' ' pgseplate assembly
A63‘32 polynucleotide 5'-kinase, 3'-phosphatase—' “RNAP ADP-ribosylase

Deep Learning could integrate with Bioinformatics as Data-driven approaches could
integrate different subtle signals and generate body scale knowledge

B
7

Kidney Erain
mporsion Sy Gut

i
e, iy SPonses

* Host,
+ ApeMictoba iteracyy

. tion, inte
o5 + Sutmeiatoq ! inegriy
* Chylomigrgy- IMammation o 2" function
H Prod, Contro|
Metabolic Fl ton

Steiog oy C T 1EXibil
O iy LY

Tovascu g
NO metaboyigry 0
“ER stresg

st iy

Lipid
op etabolj
LE‘;,",;';‘,:mwmohsm

Lipotoxjg;
Xicii
L “E
Aoty ty 7°19Y metaboisry
“Lipig 0Dl forg
“e\:ac\lde a0
«
. | P
W aedlin sensiyi,
0*\ Liver " U sengiy,
"G ?\ A ::ﬂ:sue
o\ P 'Pz:?::a;lma
0\ - -~ “Vascuar sygion,
o o 2!
oo eee (a0

AR
.o;\dowe e

o™ es

.\f$5“¢\“\uﬂ

e

Classical models in medicine are organ centered;
Multi organs: a process oriented model would be more
effective; Processes are mechanistically related

Single cell/ single tissue repositories

Tabula Sapiens

https://tabula-sapiens-portal.ds.czbiohub.org/

Tabula Sapiens

Human transcriptome reference at single cell resolution

HUMAN
CELL ,

About HCA ~ COVID-19 + Research News v Publications Data ~ Resources ~ m) National Human Genome
ATLAS R

esearch Institute

https://www.humancellatlas.org isthemhttps:/ fwww.genome.gov/Funded-Programs-

ChanMe.Projects/Geﬁotype-Tiésue-Expression

H U MAN Getype-Tissue é/ =S
C E L L Expression Project ¢

(GTEx)
ATLAS :
4 =

Single-Cell Analysis ' ’ *

— _— | e it The figure shows
- * 4 “7: % the differences

‘ , ’ - Reveals heterogeneity between Slng Ie Ce”
a Single-Cell input and subpopulation .
- Each cell type has a distinct expression variability of and CIaSS|C
."_L" expression profile thousands of cells . .
X : microarray analysis
== | —_—

~

Bulk Analysis

_/ = = ?

>
>

Bulk RNA input Average gene expression Cellular heterogeneity 34

from all cells masked

Extracting Single cell data from h5ad file

import sys
import argparse
import scanpy

from matplotlib import pyplot as plt

args_parser = argparse.ArgumentParser(description='Get expression matrix for a given h5ad file
from Tabula Sapiens')

args_parser.add_argument('--path’, type=str, help='Path of the h5ad file')
args_parser.add_argument('--list_of genes', nargs="+", help='"List of genes expected for the
expression matrix. (default: ALL, warning this may take a lot of time) ')
args_parser.add_argument('--output’, type=str, help='Path of the output png.')

if len(sys.argv)==1:
args_parser.print_help(sys.stderr)

SyS.EXit(l) TSP2
TSP11
TSP13 Mean expression
args = args_parser.parse_args() iy in group
[
0 1000

df = scanpy.read_h5ad(args.path)

MT-ND5
FAM138A
DDX11L1

fig = scanpy.pl.matrixplot(df, args.list_of_genes, groupby="'donor’, return_fig=True)

fig.savefig(args.output)

35

Ethical aspects of Bioinformatics

36

The use of Bioinformatics reduces Animal Experimentation

Decades ago, legislation on the use of animals was enacted
iIn many countries involving three R’s: Reduction, refinement,
and replacement of animal models.

Ever since this was enacted, there was a sudden buzz about
laboratory animals and their use to be reduced, refined, and
replaced wherever possible, for ethical and scientific reasons.
The three R’s concept was put forward by W.M.S. Russell and
R.L. Burch in 1959 in The Principles of Humane Experimental
Technique.

With bioinformatics, the generation of high-throughput data in
the form of genomics, transcriptomics, and metabolomics,
biology has essentially transformed into a computational
problem.

Due to this reason, we believe that the role of computation in
biology leading to reducing, refining, and replacing animal
experiments needs to be increased.

Bioinformatics could disclose sensitive information on your genome (even
through the genome of your relatives)

The Genetlc Informatlon NOﬂdISCFImInatIOn

against discrimination based on their personaIAM
genetic information, as it applies to health | "*1
insurance and employment. These protections

are intended to encourage Americans to take
advantage of genetic testing as part of their

edical care. GINA was signed into law on
®/lay 22, 2008.

‘‘‘‘‘‘‘‘‘‘

Bioinformaticians have the responsibility of a

correct use of the technology for reading (and
writing) DNA information.

Practice and glossary
(not examinable)

39

to code :

Edit this page on GitHub

: \I , Biopython

b | O pyt h O N See also our News feed and Twitter.

Introduction

Biopython is a set of freely available tools for biological computation written in Python by an
international team of developers.

https://biopython.org/

It is a distributed collaborative effort to develop Python libraries and applications which address the
needs of current and future work in bioinformatics. The source code is made available under the
Biopython License, which is extremely liberal and compatible with almost every license in the world.

Documentation
Download

Mailing lists

NEWS We are a member project of the Open Bioinformatics Foundation (OBF), who take care of our domain

name and hosting for our mailing list etc. The OBF used to host our development repository, issue

Biopython Contributors

tracker and website but these are now on GitHub.
Scriptcentral

Source Code This page will help you download and install Biopython, and start using the libraries and tools.
AT s Get Started Get help Contribute
Download Biopython Tutorial (PDF) What'’s being worked on
Main README Documentation on this wiki Developing on Github
Cookbook (working examples) Google Summer of Code
Discuss and ask questions Report bugs

The latest release is Biopython 1.81, released on 12 February 2023.

BioJava — www.biojava.org
BioPerl — www.bioperl.org
BioPython — www.biopython.org
BioCorba — www.biocorba.org
BioRuby — www.bioruby.org

BIOJAVA

oconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

BioHaskell — www.biohaskell.org B]

C++ www.ncbi.nim.nih.gov/IEB/ToolBox/CPP_DOC/
http://www.bioinformatics.org/biococoa/wiki/pmwiki.php

http://www.biojava.org/
http://www.bioperl.org/
http://www.biopython.org/
http://www.biocorba.org/
http://www.bioruby.org
http://www.bioruby.org
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/

Where to find Data :

Gen Bank : http://www.ncbi.nlm.nih.gov/genbank/

EMBL : http://www.ebi.ac.uk/embl/index.html

DDBJ : http://www.ddbj.nig.ac.jp/

PIR : http://www.pir.georgetown.edu/

MIPS : http://www.mips.biochem.mpg.de/

SWISS-PROT : http://pir.georgetown.edu/pirwww/dlinfo/nr13d.h
OWL : http://www.bioinf.man.ac.uk/dbbrowser/OWL/

PROSITE : http://www.expasy.ch/prosite/

PRINTS : http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/
BLOCKS : http://www.blocks.thcrc.org/

Profiles : http://www.isrec.isb-sib.ch/software/PFSCAN _form.html
Pfam : http://www.sanger.ac.uk/software/Pfam/

IDENTIFY : http://dna.stanford. EDU/identify/

Proweb : http://www.proweb.org/kinetin/ProWeb.html

SCOP : http://scop.mrc-Imb.cam.ac.uk/scop/

CATH : http://www.biochem.ucl.ac.uk/bsm/cath/

41

Glossary

Bioinformatics: Developing algorithms and methods for analyzing DNA, RNA
and protein sequence, structure and function. This includes tasks like sequence
alignment, database searching, phylogenetic tree construction, structure
prediction, and genomic annotation.

Computational Biology: involves the development and application of
mathematical modeling, computational simulation techniques, and data
analytics to address biological questions. It allows researchers to integrate
diverse datasets, test hypotheses, predict behaviors of biological systems.

Systems Biology: Using computational models to study interactions within
biological systems and predict systemic behaviors. This provides insights into
properties that emerge at the systems-level.

Synthetic Biology: Redesigning and engineering novel biological systems, such
as genetic circuits or metabolic pathways. Computational tools aid in designing
circuits.

Biomedical engineering: Creating computational models and analytic tools to
aid innovations in biomaterials, medical devices, tissue engineering, imaging
and diagnostics.

Glossary

Sequence analysis: Algorithms for searching databases, performing
multiple sequence alignments and identifying homologous rela-
tionships. Provides evolutionary and functional insights.

Structure prediction: Methods for predicting 3D protein structure
from sequence using comparative/homology modeling or ab initio
simulation.

Function prediction: Using sequence motifs, structural comparison,
machine learning etc. to annotate protein function. Improves
characterization of unstudied proteins.

Evolutionary analysis: Phylogenetic approaches for studying protein
family evolution. Reveals evolutionary relationships and divergence.

Mutation analysis: Evaluating effect of mutations on protein
structure and function using energy-based or machine learning
models. Interprets genetic variations.

What is in a name/Different layers of information

‘Omes’ Description

Genome The full complement of genetic information both coding and noncoding in an
organism

Proteome The complete set of proteins expressed by the genome in an organism

Transcriptome | The population of mRNA transcripts in the cell, weighted by their expression
levels as transcripts copy number

Metabolome The quantitative complement of all the small molecules present in a cell in a
specific physiological state

Interactome Product of interactions between all macromolecules in a cell

Phenome Qualitative identification of the form and function derived from genes, but
lacking a quantitative, integrative definition

Glycome The population of carbohydrate molecules in the cell

Translatome The population of mRNA transcripts in the cell, weighted by their expression
levels as protein products

Regulome Genome wide regulatory network of the cell

Operome The characterization of proteins with unknown biological function

Synthetome The population of the synthetic gene products

Hypothome Interactome of hypothetical proteins

44

Reference for this section and for the course

A nice free book : cell biology by the numbers
http://book.bionumbers.org/

Others:

https://www.cs.helsinki.fi/group/genetics/Genetics for CS March 04.pdf
http://tandy.cs.illinois.edu/Hunter _MolecularBiology.pdf

Biology and Computers: A lesson in what is possible

https://ethw.org/; https://www.wehi.edu.au/wehi-tv/; good resources at
https://www.ncbi.nlm.nih.gov/home/tutorials/ and ebi.ac.uk

¢ BIOINFORMATICS ALGORITHNS BIOINFORMATICS ALGORITHMS
Biological o B etk o et
seqllleqce ::
analysis o4 e —— Check the chapters
= (R corresponding to the
slides

o]
¢ I
| 2
e
e
e
¢ U
¢ I
¢ o
|
e

by Phillip Compeau & Pavel Pevzner by Phillip Compeau & Pavel Pevzner 45

http://book.bionumbers.org/
https://www.cs.helsinki.fi/group/genetics/Genetics_for_CS_March_04.pdf
https://ethw.org/
https://www.wehi.edu.au/wehi-tv/
https://www.ncbi.nlm.nih.gov/home/tutorials/

Recent books (not necessary for the course)

Computational Biology Computational Biology

Practical
Bioinformatics

K. Erciyes for Beginners
Distributed
and Sequential

Algorithms for
Bioinformatics

Nurit Haspel
Filip Jagodzinski
+ KevinMolloy Editors

Algorithms
and Methods

Edited by
Lloyd Low | Martti Tammi

in Structural
Bioinformatics

Springer Handbooks of Computational Statistics

Thomas Dandekar
Meik Kunz

Handbook e T Bioinformatics
Of Statlstlcal LLLRLL An Introductory Textbook
Bioinformatics BIOINFORMATICS

A Practical Guide to
Next Generation Sequencing Data Analysis

Hamid D. Ismail

) Springer i |

Interdisciplinary Applied Mathematics 58

Stephen S.-T. Yau - Xin Zhao -
Kun Tian - Hongyu Yu

Mathematical
Principles in
Bioinformatics

@ Springer

ALGORITHMS IN COMPUTATIONAL
MOLECULAR BIOLOGY
Techniques, Approaches and Applications

acgd
g
s
EDITEDBY

d g

MOURAD ELLOUMI
(/i '@

ALBERT Y. ZOMAYA

{ﬁ

46

Section 2

Measuring sequence similarity through the use of
alignment algorithms

Algorithm: Longest Common Subsequence
Algorithm: Needleman Wunch
Algorithm: Smith-Waterman
» Overlap detection
Affine Gaps
» Banded alignment
Algorithm: Hirshberg —linear memory alignment
Algorithm: Four Russians
Algorithm: Nussinov

YV VVYVY

Y VYV

47

1 Molecular/cellular network Biology
2 DNA/Amino acid Sequence Alighnment

VVVYVYVVVYVYVVYVYYVYY

Dotplot

Longest Common Subsequence
Global and Local alignment
Needleman Wunch
Smith-Waterman

Affine Gaps

Banded Alignment

Hirshberg —linear memory
Four Russians: faster time
RNA alignment — Nussinov
Alignment free

3 Phylogenetic Tree building methods

4 Clustering biological data

5 Genome sequencing

6 Assembling genomes

7 Finding genome parts/Hidden Markov models
8 Computing/storing information using DNA

9 Simulation of biological reactions

48

What is sequence alignment

Alignment is a way of arranging two DNA or protein sequences to
identify regions of similarity that are conserved among species.
Each aligned sequence appears as a row within a matrix. Gaps are
inserted between the residues (=amino acids) of each sequence so
that identical or similar bases in different sequences are aligned in
successive positions. Each gap spans one or more columns within
the alignment matrix. Given two strings x = x1, X2, , X\,

Y = y1,¥2,, YN, an alignment is an assignment of gaps to positions
0,,Minx, and 0,, N in vy, so as to line up each letter in one
sequence with either a letter, or a gap in the other sequence.

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-~-AGCCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

What Is the Sequence Alignment?

matches insertions deletions mismatches

AT-GTTATA
ATCGT-C-C
+1+1 +1+1 =4

Alignment of two sequences is a two-row matrix:

o

15t row: symbols of the 15t sequence (in order) interspersed by “-

o

2" row: symbols of the 2"? sequence (in order) interspersed by “-

50

Easiest way to compare sequences: a Dotplot

Human beta-globin
0 100 200 300 400 500 600 700
ATATTACTAT O s W T

. N N
NN N . . N .
~ N \ 3 A A LI
. ~ . . N A
- . DN . . N . —
. . . .
. . .
N N N N
N N N .
N N N o
.
200 -

400 |

uiqojB-ejeq dwiyo

500

600 .

e B B T B B B

.
AR
. ~ ~
700 N
N
. AR M
.

800 | | | | | |

Left: Dot plot for comparing ATATTACTAT to itself; Each matrix entry is either
blank for mismatch, or a dot for match. Notice first of all the stretch of dots
along themain diagonal. Match plot: it would be helpful if we could just plot
these longer matches rather than all the dots they consist of. Right: Match plot
of -globin MRNA from chimp and human with minimal match length 5 51

Why biologists need algorithms to do the alignment

The sequence and structures of genes and proteins are conserved in nature. It is common to
observe strong sequence similarity between a protein and its counterpart in another species
that diverged hundreds of millions of years ago. Accordingly, the best method to identify the
function of a new gene or protein is to find its sequence- related genes or proteins whose

functions are already known.

oo o
Y. pestis KIM~

000 | 400000 600!
=t
R

Y. pestis Antiqua

0000
lﬁ

Y. pestis 91001

200000 ?0000 600000 _l

N 777
Ypest/s C092 /

—1C -
Y. pest/s Nepal51 6

200000 _400000_5000¢

L
Y. pestis 15-70 Pest0|des F

200(0000 6000

1NN =

Y. pseudotuberCUIOSIs IP31 758

200:0 400000 _600¢

LA e I ____I_ _*_InAAArA

0 180!

80000

1600000

2206000 0

~

5000 _%400000~4608900

/sequence changes in
e s 5 the bacteria causing
plague. Different

0 2200000 \2400000~2 200003600000 3800000 400!

regions of the genome
of the bacterium could
be represented with

4600000

S o %? different colours. This

makes easier to show

2000

four =

= d]__ﬁ, changes (you can

|\ retrieve sequences at

4400000 46000Q0.

= www.ebi.ac.uk).

il

00 2400000261

Source: By Aaron E. Darling, Istvan Miklés, Mark A. Ragan - Figure 1 from Darling AE, Miklds I, Ragan MA (2008).
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

4000000 4200000 4406100 46

=3

DO
it
0=

https://commons.wikimedia.org/w/index.php?curid=30550950

All genomes are littered with repeated sequences of different length
(they form families) so alignment of large sequences is difficult

Human nuclear genome
3200 million bases

Genes and related Intergenic DNA (junk SNP ATTAGCGTAGTCCGGCAAGCATACGAA
sequences 1200 Mb DNA) 2000 Mb ATTAGCGTAGTCCTGCAAGCATACGAA
A =1 I Microsatellites ATTAGCGTAGTCC (GAC)sGCAAGCATACGA
Q
=3 A
Genes Related sequences Interspersed repeats Other intergenic 8 - Minisatellites GTCCA (ATTAGCGTAGTCCGACGCAAGCATACGA), ATGTGA
48 Mb 1152 Mb 1400 Mb regions 600 Mb |5]
2 Insertion ATTAGCGTAAGTCAG- - -« - - - - AGTCCGGCAAGCATACGAA
T Long interspersed nuclear] | Short tandem repeats ? ATTAGCGTAAGTCAGATCTTCAGAGTCCGGCAAGCATACGAA
elements 640 Mb 90 Mb T | -
£ Deletion ATTAGCGTAAGTCAGAGTCCGGCAAGCATACGAA
G 5 " ATTAGCG « <=« ==~ - AGTCCGGCAAGCATACGAA
ene fragments ——| Small interspersed nuclear |
elements 420 Mb Other repeats
510 Mb .g B Inversion ATTAGCGTAAGTCAGAGTCCGGCAAGCATACGAA
Introns, | | ® ATTAGCGCTGACTTAAGTCCGGCAAGCATACGAA
untranslated =
T > AGTCAGAGTCCGGCAAG
L |- B e JSSHEBMEXSOScucs
é MO JLUAMRD 3 o
-
Mobile DNA = Copy Number Variation ATTAGCGTAAGTCAGAGTCCGGCAAGCATACGAA
90 Mb el [ATTAGCGTAAGTCAGTAAGTCAGTAAGTCAGAGTCCGGCAAGCATACGAA
Mouse and Human Genetic Similarities i . Mouse
Left: mapping human 1-76-109-8 2 -11 -3 54
Mouse chromosomes , Human chromosomes , . ‘ .
I TEENEH i 0 chromosomes
2 14 " ° =]
g o | _; : | | onto mouse chromosome

BBl - reveal many similar regions
H I i H;! I I I I I ! I I (low resolution).

TEEF Right: a higher resolution,
I I . | | I each region reveals many ;
” local rearrangements A a0 I

Courtesy Lisa Stubbs Human
Oak Ridge National Laboratory

€ Genome Research

Longest Common Subsequence

A subsequence is a sequence that appears in the same relative order, but not necessarily
contiguous.

AT-GTTATA
ATCGT-C-2C

Matches in alignment of two sequences (ATGT) form their
Common Subsequence

Longest Common Subsequence Problem: Find a longest
common subsequence of two strings.
* Input: Two strings.
 Output: A longest common subsequence of these
strings.

Alignment: 2 row representation

Given 2 DNA sequences v and w:

v: ATGTTAT m=7/
w: ATCGTAC n=7/

Alignment: 2 * k matrix(k>m, n)

letters of v Al T |- |G|TI|T | A |T

letters of w Al T|C|G|T |- |A]|-|C

4 matches 2 insertions 2 deletions

55

Longest Common Subsequence

Longest Common Subsequence (LCS) — the simplest form of
sequence alignment — allows only insertions and deletions (no
mismatches). In the LCS Problem, we score 1 for matches and O for
indels; in real analysis we consider penalising indels and
mismatches with negative scores.

Given two sequences V=V, V..V, and w=w; w,..w_
The LCS of v and w is a sequence of positions in
vi 1 < <L <..<ig<m
and a sequence of positions in
w.l <j; <] <...<)<n

such that i, -th letter of v equals to j,-th letter of w and t is
maximal.

Longest Common Subsequence

i coords: o 1 2 2 3 3 4 5 6 7 8

elements of v AT -lcl-1TleglAa!lT C

elements of w - |lTlglclAlTI-|lAl-1IC
jcoords: 0 0 1 2 3 4 5 5 6 6 7

(0,0)=(1,0)=2 (2,1)> (2,2)=> (3,3)2> (3,4)~> (4,5)=2> (5,5)=> (6,6)=> (7,6)> (8,7)

positionsinv: 2<3<4<6<8
Matches shown in red . ,
POSIIONS INW: 1 <«3<5<(F< 7

Every common subsequence is a path in 2-D grid

57

Edit distance

The Edit distance between two strings is the minimum number of operations
(insertions, deletions, and substitutions) to transform one string into the other

Hamming distance Edit distance
always compares may compare

i'th letter of v with ith letter of v with
ith letter of w jth letter of w

V = ATATATAT Justone shift __ vV = -ATATATAT

AN et eion L
W= TATATATA MakeitalllineUp yy — TATATATA

Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2
Computing Hamming distance Computing edit distance

is a trivial task is a non-trivial task

Edit Distance: Example

TGCATAT > ATCCGAT in 4 steps

TGCATAT - (insert A at front)
ATGCATA - (delete 6t)
ATGCATA - (substitute G for 51" A)

ATGCGTA - (substitute C for 3@ G)
ATCCGAT (Done)

Alignment as a Path in the Edit Graph

w(@)Aﬁ]Tﬂ @3 @él 75&@@7

v Old Alignment
0 0122345677
& . v= AT_GTTAT_
1" - w= ATCGT_A_C
Gh N 0123455667
3
%4 l New Alignment
A
]

5 0122345677

< V= AT_GTTAT_
6 | w= ATCG_TA_C
7 1 0123445667

Two similar alignments; the score is 5 for both the alignment paths.

60

LCS Problem as - Edit Graph

Every path is a
common
subsequence.

Every diagonal
edge adds an extra
element to
common
subsequence

LCS Problem: Find
a path with
maximum number

of diagonal edges

61

Computing LCS

1-1,) -1 1-1,]

Letv; = prefixofvoflengthi: v;..v

and w; = prefix of w of length j: w; ... w; i1 »
The length of LCS(v;,w;) is computed by: ’ L]
Si.y; 0

Sij = MAX { Sijq + 0

Sirjatl, it vi=w,

W
A T C G Every Path in the Grid Corresponds

v \. 0o [1 | 2 | 3 | 4 | toanAignment
] N
\ 012 2 34
A V= AT-GT
T 2 \ o
N W= ATCG-
G 3 012 344

62

LCS pseudocode

LCS(v,w) : . 2
1 fori— Oton PRINTLCS(b, v,1, j)
2 S40— 0 1 fi=00rj=0
3 for j—1tom 2 . return
4 sg,3 < 0 3 if b(,] =N\
5 for i«— 1ton 4 PRINTLCS(b,v,i— 1,7 —1)
6 for j — 1tom 5 print v,
$1—1.1 6 else . »
7 84 < Max{ S 4-1 7 if byy="1 | |
si_1g-1+1, ifvg=w, § PRINTLCS(b, v,i - 1, j)
“w n if St = 8114 9 else
8 bijge— < “" ifs =841 10 PRINTLCS(b, v,i,j — 1)
"N if sy =s8-15-1+1

9 return (s, ;. b)

The above recursive program prints out the longest common subsequence using the
information stored in b. The initial invocation that prints the solution to the problem is
PRINTLCS(b, v, n,m).

A speedup is the Method of Four Russians, to partition the matrix into small square blocks of
size t x t for some parameter t, and to use a lookup table to perform the algorithm quickly within
each block. The algorithm may be performed by operating on only (n/t)? blocks instead of on n?
matrix cells, where n is the side length of the matrix. In order to keep the size of the lookup tables
(and the time needed to initialize them) sufficiently small, t is typically chosen to be O(log n).

General Alignment Graph

S j-O

. Sij1-0
27 MaX = Sip 1+ 1, if view,
Si-1 -1 - M, ifViEW,

Towards an algorithm to align biological sequences

Fli-1,j-1]] F[ij-1]
. . L\
Fli-14] | F[iJ]

Notice three possible cases:

1. xalignstoy, m, if x; =y,
X1 Xi—1 Xi F(',J) - F(|'1, J'1) +<
Yiouen. Yi-1 Y -s, if not

iy - F(i,j) = F(-1,]) - d

Vioee Vi Y F(ij) = F(i, j-1) - d
Dynamic Programming: A method for reducing a complex problem to a set of identical sub-
problems .The best solution to one sub-problem is independent from the best solution to the other

sub-problem.lt is a way of solving problems (involving recurrence relations) by storing partial
results.

Alignment

* How do we know which case is correct?

Fli-1,j-1] | F[isj-1]

Inductive assumption: F[i-1,j] F[1,]]

F(, j-1), F(i-1, j), F(-1,j-1) are optimal

Then,

o FG1, 1) + s(xi, y)
F(@,j) =max < F(i-1, j)—d
F(i,j-1)-d

"

Where F(x, y;)) =m, ifx=y; -s,ifnot

66

Alignment

alignment

e Global Alignment: tries to find the longest path between vertices
(0,0) and (n,m) in the edit graph.

——T—CC-C-AGT—TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

N N e 0L O O I O
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

e Local Alignment—better alignment to find highly conserved
segments; The Local Alignment Problem tries to find the longest path
among paths between arbitrary vertices (i,j) and (i, j’) in the edit
graph tccCAGTTATGTCAGgggacacgagcatgcagagac

EEREEEEREEN
aattgccgccgtecgttttcagCAGTTATGTCAGatc

Global Alignment

Global Alignment Problem: Find the highest-scoring
alignment between two strings by using a scoring matrix.

* Input: Strings v and w as well as a matrix score.
 Output: An alignment of v and w whose alignment

score (as defined by the scoring matrix score) is
maximal among all possible alignments of v and w.

The Needleman-Wunsch Algorithm (Global alignment)

Fli-1,j-1] | Flig-1]
v

1. Initialization. . . .
a. F0,00 =0 F 1-1,]] _:F 1,]]
b. F(0,]) =-jxd - .
c. F(,0) =-ixd
2. Main lteration. Filling-in partial alignments d is a penalty
a. For each i=1...... M
Foreach j=1...... N

F(i-1.0) —d [case 1]
F(, J) = max F(@, j-1)-d [case 2]
F(i-1, j-1) + s(x, v;) [case 3]

UP, if [case 1]
LEFT if [case 2]

Ptr(i.j)
DIAG if [case 3]

3. Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal
alignment

Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

The Overlap Detection variant

Maybe it is OK to have an unlimited # of gaps in the beginning and end:

—————————— CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG-——-—-——=—=——==————

Changes:

>

1. Initialization

T For all i, |,
F(i,0)=0
F(0,j))=0

2. Termination
max; F(i, N)
Fopr = max) max; F(M, j)

\.

70

Local Alighment= Global Alignment in a subrectangle

cC A GCAGTTAT

—==G==—=Cm——m= C-—CAGTTATGTCAGGGGGCACGAGCATGCAGA
Q, GCCGCCGTCGTTTTCAGCAGTTATGTCAG-———-. A-————- T ———
Local alignment

GCC—-C-AGT-TATGT-CAGGGGGCACG-—-A-GCATGCAGA—
GCCGCC—-GTCGT-T-TTCAG----CA-GTTATG-T-CAGAT
Global alignment

POPOOHEPOQAPAOPOARAAAAPOHOHEAPAEAAEOQPOO0O0OR

Protein DNA
LGPSSGCASRIVWTKSA -—-CAGTGCATG-ACATA
Global [I I B I T I [
TGPS-G--S-IWSKSG TCAG-GC-TCTACAGA
LGPSSGCASRIWTKSA - CAGTGCATGTACAGA
Local LT 1T I
TWNR-GCASRIWMRDUVW TTCG-TC-TGTACAGT

71

Local Alignment Problem

Local Alighment Problem: Find the highest-scoring local
alignment between two strings.

* Input: Strings v and w as well as a matrix score.
e Output: Substrings of v and w whose global alignment

(as defined by the matrix score), is maximal among all
global alignments of all substrings of v and w.

The local alignment: Smith-Waterman algorithm

T.F. Smith, M.S.Waterman, Identification of common molecular subsequences,] Mol Biol vol 147,195-197, 1981.

Idea: Ighore badly aligning regions: Modifications to
Needleman-Wunsch

e.g. X = aaaacccccgggs
y = cccgggaaccaacc
Initialization: F(0,0)=F(0, j) =F(i,0)=0

(0
Iteration: F(i,j)=max | F(i—1,j)—d

1 F(i,j-1)-d

\ F(i—1,j—1) + s(x;, y;) | [
Termination: -

Sl
1. If we want the best local alighment... s :w
Fopr = max;; F(i, j) "l N
2. If we want all local alignments scoring >t /
L
o’ 4

David Waterman

For alli, j find F(i, j) > t, and trace back

Which Alignment is Better?

e Alignment 1: score = 22 (matches) - 20 (indels)=2.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG—---CA-GTTATG--T-CAGAT

e Alignment 2: score = 17 (matches) - 30 (indels)=-13.

CAGTTATGTCAG
CAGTTATGTCAG
local alighment

Biologists are interested in the local alignment to detect a region
common to two genes which could suggest the same regulatory control:
Perhaps the two similar regions are bound to the same proteins

74

S
=

Scoring Gaps

* We previously assigned a fixed penalty o to
each indel.

* However, this fixed penalty may be too severe
for a series of 100 consecutive indels.

e Aseries of k indels often represents a single
evolutionary event (gap) rather than k events:

two gaps GATCCAG GATCCAG a single gap
(lower score) GA-C-AG GA--CAG (higher score)

Mismatches and Indel Penalties

H @ QP

#matches — u - #mismatches - o - #indels

AT-GTTATA
ATCGT-C-2C
+1+1-2+141-2-3-2-3=-7

I
i>
4
=
I
=
I
=
I
Q
HaQ P
I
1
<+
=
I
W
I
N
I
W

-0 -0 -0 -0 -4 -2 -2 -1

Scoring matrix Even more general scoring matrix

Positive exchange values

Scoring matrices to compare amino acid sequences: PAM250 is a log odds matrix

&] e denote mutations that are
S Ser | 012] more likely than randomly
T Thr -2 11 :3 expected, while negative
P Pro | -3 11 :0 :6 numbers correspond to
A Ala |21 :1 :1:2 avoided mutations compared
G Gly |3]1 :0 :-1:1 {5 to the randomly expected
N Asn -4 11 :0 :-1:0 :0 |2 situation Maraaret Davhoff
D Asp -5 10 20 :-1:0 11 |2 4]
E Gl [-510:0:-1:0:0 f1:3 54|
Q Gln [-5]-1i-1i0 i0 i-1]1 :2 :2 :4
H His -3 (-1:-1:0:-1:-212 :1 :1:3 16
R Arg |-4 |0 :-1:0 :-2:-310 :-1:-1:1 12 :6
B.Tys |55 10 0" ol o1 2|1 i0° 20 > |0 =3 75
M Met |5 1-2:-1:-2:-1:-31-2:-3:-2:-11-2:0 :0 16
I Te |-2f-1:0:-2:-1:3[2'-2:2:'-2|2:-2:2]2 :5
L Leu|-6|-3:-2:-3:-2:-4[3'4:3:2/2:3:.3]4 2
v val |2 |-1i0 a0 ia]eieiaia|2i2in]2 i iu s
F Phe |4 |3:3:5i5!5]4:-6:-5:-5]2:4:-5]0:1 :2 :-1]9
)Y Tyr |0 [-3:-3[85-3:-5|-2:4:4:410:-4:4)-2:-1:-1:-2 7% 10
WoTp |=s |2 555616 a7 i a5 |i3 g 23 |4 a5 o ide[ioi 0 17
cCc|Is |IT|PIA|G|IN|DI|E |QIH|IR|IKIM|I |L ((VI]|F |Y |W

example: Y (Tyr) often mutates into F (score +7) but rarely mutates into P (score 7—75)

Scoring matrices

A scoring matrix contains values proportional to the probability that amino acid i mutates into
amino acid j for all pairs of amino acids.

Scoring matrices are constructed by assembling a large and diverse sample of verified pairwise
alignments (or multiple sequence alignments) of amino acids. Scoring matrices should reflect
the true probabilities of mutations occurring through a period of evolution.

PAM (point accepted mutations) matrices are based on global alignments of closely related
proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than
1% divergence. At an evolutionary interval of PAM1, one change has occurred over a length of
100 amino acids.

Other PAM matrices are extrapolated from PAM1. For PAM250, 250 changes have occurred for
two proteins over a length of 100 amino acids. All the PAM data come from closely related
proteins (>85% amino acid identity).

A log odds matrix is the logarithmic form of the relatedness odds matrix.

S; is the score for aligning any two residues in a pairwise alignment.

M;; is of the observed frequency of substitutions for each pair of amino acids.

f. is the probability of amino acid residue i occurring in the second sequence by chance.

Glossary

o n

Gaps: Regions identified by “-” that represent indels.
Indels: Insertions and deletions of character.
Matches: Corresponding regions between two different sequences.

Mismatches: Regions with non-identical characters in different
sequences.

Gap penalty (GP): Parameter needed to assign a score to a gap.
|dentity: Percentage of similar characters between two sequences.

Similarity: Degree of resemblance between sequences based on
identity.

Homology: Evolutionary hypothesis between two sequences that
can be derived from a common ancestor

o - the gap opening penalty —upper level . .

€ - the gap extension penalty d .
eletions)
o > g, start a gap is penalized more than extending it. i —@—w—

v

%i%g%ﬁ ; can we emulate this
S path in the 3-level? middle level > >
ANANAVANAN atches/mismatches 3
INININININ /) —3 _, .
\ \ \ \ 7
\< \ \ \ —/>/—> """" = >
lower; ;; - € o7
lower;; = max { i~ 7’ \ Praligre

idd/ PR N N N
mi 6,11 o, \ \ \ \ \< “““““““ 0 upper, s -
// SN S e PPN EmaxXt e, - o

*
*
*
*
*
*
*
*
“
*

o NN NN N
oL £ 0 o
l . / e V fower,
gl ““““““ | middle;; = max {middle,; ; ; + score(v,w;)
l‘ upper,;

| b?ttolm I%vel

(insertions) 80

Models of gaps; Alignment with gaps

v(n)

Current model: a gap of length n incurs penalty nxd
Gaps usually occur in bunches so we use a convex gap
penalty function:
v(n): for all n, y(n + 1) - y(n) <y(n) - y(n — 1)
Initialization: same v(n)
Ilteration: /
(F(l-l, J_l) + S(Xil yj)

F(i,j) =maxy maxe._i1Fk,j) = v(i-k)
| MaXy=o..j-1F(i,k) — y(j-k)

Termination: same

Running Time: O(N’M) (assume N>M)
Space: O(NM)

A compromise: affine gaps

Y(n)=d+(n—-1) xe v(n)
| |
gap gap ©
open extend d
To compute optimal alignment, at position i,j, need to “remember” best/
score if gap is open and best score if gap is not open /

F(i, j):score of alignhment x;...x; to y;...y; if Xx;alignstoy,
G(i, j):score if x;, oryj, aligns to a gap

Initialization: F(i,0)=d+(i—1)xe; F(0,j)=d+(j—1)xe
Iteration: r
F(i—1,j—1) +s(x, v
F(i, j) = max <
G(i—1,j—1) +s(x, v
\
(F(i-1,j)-d
F(i,j—1)—d
G(i, j) = max)
G(i,j—1)—e
. G(i—-1,j)—e

Termination: same 82

Banded Dynamic Programming: a special case

Assume we know that x and y are very similar; If the optimal alignment of x
and y has few gaps, then t h path of the allgnment will be I e to the
diagonal

Assumption: # gaps(x,y) < k(N) (say N>M)

X, >‘:_x1 Xy
| implies |i—j | <k(N) =
Yi
Time, Space: O(N x k(N)) << O(N?) I
. . I
F[!,|+k(2] \Ol.Jt of. range
F[i+1, i+k/2] F[i+1, i+k/2 +1]
~— A

Note that for diagonals, i-j = constant.
83

Banded Dynamic Programming

Initialization:

.............................. X F(i,0), F(O,j) undefined for i, j > k

S Iteration:

Fori=1...M

F(i, j) = max |

For j = max(1, i — k)...min(N, i+k)

(F(i—1,j—1)+s(x,y)
Flj=1)—d, if] >i—k(N)
F(i—1,j)—d,ifj<i+k(N)

Termination:

\

same

Easy to extend to the affine gap case

match=
mismatch=-1

gap=-1

2

0 1 2 3 4 5 6
0 0« -1 Gi
1 —
2
3
4
5 Example global alignm?nt

match=2

mismatch=-

gap=-1

0/ 1| 2|3 |4 |56

0 O« -1e--2¢=-3¢--4<4=-54-6
/ACGCTE<
\ J

Ol | WO N | =

match=2

mismatch=-

gap=-1

0

} /

CATGT

Ol | WO N | =

match=2

mismatch=-

gap=-1

0

Ol | WO N | =

match=2

mismatch=-

gap=-1

0

Ol | WO N | =

match=2

mismatch=-

gap=-1

0

Ol | WO N | =

match=2

mismatch=-1

gap=-1

0| 1| 2|3 4
0 Qe--1e=-2¢- -3¢~ -4d4—-5«-6
e e S
1 -1 | -1 1l 0 e-1e=-24=-3
S S
2 | -2 1«0 0
\ i
3 | -3 .
A ACG
4 ';‘ ~-CA
5 | -5

O o |9 D P ol ora
ARV BARTEEE
=10 || NN —¢O0 | ™
Vi

O <= _ — | v _ —
7
O ™ %\%\%%M Al <+
() N %_ MRO\OAL_IATQ
< v w\1 Mn\,.ot_u%e
o nWAld_lvA\lnv_AToﬂuAlA__.AT:_u
w ™ AN | o | T | 16
WWW” ©o O << |k |O |-

© Q| @ o 3#@
\

o LYY -0 ®

i

S R I I R

RV RN % — %_ -
1

N M SHESE A

“GARTf

i PR PR ks =B RS

= %14 R i e s

FW — N »m | T 10

EES o

0 1|2 | 3| 4|5 | 6
0 0« -1
4 N
1| -1 1«0
L\E L N
2 1 0 <« -1
3 \O 1
4 \2 1 \3
<=
— t
5 3 2

match=2
mismatch=-1

0/ 1| 2| 3| 4|5 | 6

_ 4 I
0 0~ 1\ ACGCTG- |
1 1T«-0_| —-C-ATGT
LV g
2 -1
3 oK 1
L\
4 3
$
5 2

= | 0 | 1 3 | 4|5 | 6
- 4 I
0 O« 1\ ACGCTG- |
1 —~CA-TGT
L\ERENEY g
2 0 «—-1
3 \1
"
4 3
4
5 2

=11 0 3 | 4| 5| 6
a)
O 13 ~ACGCTG |
1| - CATG-T-
NS - P
2
; S
4 \\2 1
i
L
5 3 e 2

Local Sequence Alignment: example

tch=1
miasrcnatch=-1 X A T C
gopm 1 y 1.2 3
0 O O O
y = TAATA
X=TACTAA T 1

A2
A3
T 4
ADdS

o O O O O OO

O~ H

oo P

oo P

Local Sequence Alignment: example

N T A C T A A
y\\ 1 2 3 4 5 6
0 O 0 0.0 O O

y = TAATA X N
X =TACTAA T 1 1 0 0 1 0 O
N\ N\
A2 0 2 0 0 2 1

A3
T 4

A

o O O O O OO

Local Sequence Alignment: example

T A C T A A
2 3 4 5 6

1

AN
y \/ 0

y=TAATA-
X = TACTAA

Local Sequence Alignment: example

T A C T A A
2 3 4 5 6

1

AN
y \/ 0

TAATA

Y= — -
X=TACTAA-~

Comparison of global and local alignments

Match: +2
@ Mismatch: -1

Gap: -2

ml-_l,j_l +f(SOi,Slj)

m;; = max {m;_q j + gap

m;j—1 + gap @

— =
m;-1,j-1 + f(s0,51;) T fii E:;;

m;j = max i) ar G120

PHHOP>PO0O-14> >0 -HHCcCO@>PHA 40> 044> 2> 0 400

m; ;-1 + gap
0

—4+ (+1)
0+ (-2)

—6+ (—2)
0

my, =max]! 0+ (—2)

my,; = max

PHHOPO0-14>2>O0-H0cO@>P 110> 0-"1-4>>0 "10CcOoO@>P—1-10>0-4-4>»2>0 400

0
(0]
T
(€]
A
A
T
T
C
.\
(€]
T
T
A

103

Comparison of local and global alignments

Description

Global alignment

Local alignment

Alignment parameters

Substitution matrix

The scoring function

Scores

Traceback start location

Traceback stop location

a = match value
p = mismatch value

y = gap penalty

G1,1 o Gl,m
Gn,l Gn,m
a, X. = y
f(xiyyj) = { : J
B, X #Y
Gi1,j1 +f(xi’yj)
G, = max Gy t7r
GLJ-_1 +y
Gn,m
G1,1

a = match value
p = mismatch value

y = gap penalty

L1,1 U Ll,m
Lij =| :
Ln,l Ln,m
a, X. = y
f(xl’yj) = :]
B, xi#Y
Li y +f(xi’yj)
L. ..+
Ly = max{ -1 T
Li’ j-1 +vy
0
Max(Lij)
ifLij =0

104

Computing Alignment Score with Linear
Memory

Alignment Score

- Space complexity of
computing just the score itself (

N

\ JETE Vi i
- AL
is O(n) N
. L I |
- We only need the previous nd [
L, '],,
column to calculate the g [
I
current column, and we can |

then throw away that previous

column once we’re done
using it

105

Computing Prefix(/)

» prefix(i) is the length of the longest path from (0,0)
to (i,m/2)

« Compute prefix(f) by dynamic programming in the
left half of the matrix

v| @ K/\

vi® store prefix(/) column
A\ AN\ 4

v

v

106

Computing Suffix(/)

suffix(i) is the length of the longest path from (/,m/2) to (n,m)

suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed
Compute suffix(i) by dynamic programming in the right half

of the “reversed” matrix n

store suffix(i) column

&
o
o

3 SOOOS>

0 m/2

Computing Length(i)

Length(i) = Prefix(i) + Suffix(i)
» Add prefix(i) and suffix(/) to compute length(i):
- length()=prefix(i) + suffix(i)

* You now have a middle vertex of the maximum
path (;,m/2) as maximum of length(i)

0

:

.
\ N
L B

m/2

middle point found

<< <3<

° <A<
3 O

Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any

given time

\ 4

'

'

4 ¢ ¢ | ¢ ¢

/’—\.

v

'

'

T4 &

SERCHECHRCH RS
4 €| ¢ | ¢ | ¢

memory for column 1
is used to calculate

column 3

SHIECHIECHECH RS
SHIECHIECHIRCH RS
4 ¢ | ¢ | ¢ ¢

memory for column

2 is used to calculate

column 4

109

Crossing the Middle Line

We want to calculate the longest
m/2 m path from (0,0) to (n,m) that passes

T through (/,m/2) where i ranges from
0 to n and represents the /i-th row
(i, mi2) Define

length(i)

Prefix(i)

Suffix(i) as the length of the longest path

b from (0,0) to (n,m) that passes
through vertex (i, m/2)

110

Crossing the Middle Line

m/2 m

(\

/

Prefix(i)
Suffix(i)
n D

Define (mid,m/2) as the vertex where the longest path crosses the
middle column.

length(mid) = optimal length = max,_; _, length(i)

111

Middle Column of the Alignment

L

middle column
(middle=#columns/2)

112

Middle Node of the Alignment

A ININENENENDN
UFENENA I NANAN
IANENE ¥ NANAN
e ININENEN NN
A TN
A l\i\\\i\\ .

middle node

(a node where an optimal alignment path crosses the middle column)
113

Divide and Conquer Approach to Sequence Alignment

A C G G A A
AlignmentPath(source, sink)
find MiddleNode RN NANAN
IANENA 1] NANAN
T INININL NN
<IN
A ININIEIINENEN,
AL \i\\w\i\v

114

Divide and Conquer Approach to Sequence Alignment

>
O
()]
()]

AlignmentPath(source, sink)
find MiddleNode A
AlignmentPath(source, MiddleNode)

&~

TN -
NN

Ve EvE Ve

Cm

115

Divide and Conquer Approach to Sequence Alignment

>
O
()]
()]

AlignmentPath(source, sink)

A A
find MiddleNode A NAVAN
AlignmentPath(source, MiddleNode) '\
AlignmentPath(MiddleNode, sink) T \ \ \

T AN
: B
: PN
A AN

The only problem left is how to find this middle node in linear space1!16

Divide and Conquer Approach to Sequence Alignment

Finding the longest path in the alighment graph
requires storing all backtracking pointers — O(nm)
memory.

Finding the length of the longest path in the
alignment graph does not require storing any
backtracking pointers — O(n) memory.

Recycling the Columns in the Alignment Graph

© A A — QN M —— <
D2 I R A A |
I I _\ _\ _\ _\ _
o — — > > QN —=> —>
A S S [
17 17 17 \.\ 7
o ~— —> - Al —> QN > QN
Jr Jr Jr 4 1 7
S LS S L /
o > > Al — QN - QN
A A S SR S A S
Z Z Z Z Z Z
o 1\ LJI\ 2\J2 > QN
\\ \\ \\ \\ _\
- PNV A /
Jr
VAP VAP VAP VAP VY VAW
— — O < <

118

Can We Find the Middle Node without Constructing the Longest
Path?

4-path that visits the node
(4,middle)
In the middle column

i-path — a longest path among paths that visit the i-th node in the middle column
119

Can We Find The Lengths of All j-paths?

A G A A
AN ISR
! \ \v\ \ length(i):
T u\ \&\ »\ length of an i-path:
¢ \ _\)'\ \\ length(0)=2
A \ \\J \ length(4)=4
AL NN

120

Can We Find The Lengths of All j-paths?

121

Can We Find The Lengths of i-paths?

—]

length(i):
length of an j-path

278787 E"

> > O

/

\

AT
SN

length(i)=fromSource(i)+toSink(i)

122

Computing FromSource and toSink

toSink(i)

fromSource(i)

123

How Much Time Did It Take to Find the Middle Node ?

NN

LN

N

N N
N N
P J TR

fromSource(i) toSink(i)

124

Laughable Progress: O(nm) Time to Find ONE Node!

G A G C A A

\ \

s BNINENINSI N NN N

C \ \ \\ \\ \\ \ \ Each subproblem

T ENENINIERA N N NN | [nbeenaterss

L e

A \ \ \ J\;\\J\,*\, area/4+area/4=

A \\ \ \W\l\ \ area/2
NN SIS
SN ISESITEN

A7
/1

T

N\

How much time would it take to conquer 2 subproblems?

\

Laughable Progress: O(nm+nm/2) Time to Find THREE Nodes!

G A G C A A

q

/
/.
S
/

/
L
-

SINIRENI NN,
¢ \l\ N\ \ \ \ N\ \, Each subproblem
g0 AVANAVANANANE. bt
I N R
A INININ N \‘\4\} \ area/8+area/8+
A INININININININIEN | area/erarsares

NANAN N

AN N

T

/
./
/

\

How much time would it take to conquer 4 subproblems?

 O(nm+nm/2+nm/4) Time to Find NEARLY ALL Nodes!

» IS N

3 N NN
T f\»\ S L tareays
TININIY S\ \ YN ++aar;eaa//186
A NN \‘\4\,4\, F..F
JANRNANANIN VI
FANANANAN N s

How much time would it take to conquer ALL subproblems?

The Middle Edge

NAVAVANAVANANANAN

g S S o
bp © c <
—_ O +

S Lt o +
LLl + ©
eemng
—— o-—uen
ddpm.U
T UV O cc T
Sc »g
a ms

AVAN

c
v

N NN

NN

3

R SR

TINININ

A ISINING SN
A NN

T ININININININININ,
TININININININS AN

The Middle Edge Problem

Middle Edge in Linear Space Problem. Find a middle edge
in the alignment graph in linear space.

* Input: Two strings and matrix score.

 Output: A middle edge in the alignment graph of
these strings (as defined by the matrix score).

A

A

130

A

A

131

Recursive LinearSpaceAlignment

LinearSpaceAlignment(top,bottom,left,right)

if left = right

return alignment formed by bottom-top edges “\.”
middle < |(left+right)/2]
midNode < MiddleNode(top,bottom,left,right)
midEdge < MiddleEdge(top,bottom,left,right)
LinearSpaceAlignment(top, midNode,left, middle)
output midEdge
if midEdge = “=>“ or midEdge = “&J”

middle < middle+1 ﬁ
if midEdge = “4 “or midEdge = “&J”

midNode < midNode+1
LinearSpaceAlignment(midNode,bottom,middle,right)

Linear-Space Sequence Alignment
w2 = oum

—- —

0L

n

Qo

A: space complexity

B: time complexity

Total Time: area+area/2+area/4+area/8+area/16+...

B 5" pass:

RECAP

Measuring sequence similarity through the use of
alignment algorithms

134

Which Alignment is Better?

e Alignment 1: score = 22 (matches) - 20 (indels)=2.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG—---CA-GTTATG--T-CAGAT

e Alignment 2: score = 17 (matches) - 30 (indels)=-13.

CAGTTATGTCAG
CAGTTATGTCAG
local alighment

Biologists are interested in the local alignment to detect a region
common to two genes which could suggest the same regulatory control:
Perhaps the two similar regions are bound to the same proteins

135

S
=

Alignment as a Path in the Edit Graph

w(@)Aﬁ]Tﬂ @3 @él 75&@@7

v Old Alignment
0 0122345677
& . v= AT_GTTAT_
1" - w= ATCGT_A_C
Gh N 0123455667
3
%4 l New Alignment
A
]

5 0122345677

< V= AT_GTTAT_
6 | w= ATCG_TA_C
7 1 0123445667

Two similar alignments; the score is 5 for both the alignment paths.
136

The Needleman-Wunsch Algorithm (Global alignment)

1. Initialization.
a. F0,00 =0
b. F(0,]) =-jxd
c. F(,0) =-ixd
2. Main lteration. Filling-in partial alignments d is a penalty
a. For each i=1...... M
Foreach j=1...... N

F(i-1.0) —d [case 1]
FG.j) = max F(,j-1)-d [case 2]
F(i-1,j-1) + s(x, v) [case 3]

UP, if [case 1]
Ptr(ij) = LEFT if [case 2]
DIAG if [case 3]

3. Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal
alignment

Complexity: Space: O(mn); Time: O(mn)
Filling the matrix O(mn)
Backtrace O(m+n)

Computing FromSource and toSink

toSink(i)

fromSource(i)

138

How Much Time Did It Take to Find the Middle Node ?

NN

LN

N

N N
N N
P J TR

fromSource(i) toSink(i)

139

Linear-Space Sequence Alignment
w2 = oum

—- —

0L

n

Qo

A: space complexity

B: time complexity

Total Time: area+area/2+area/4+area/8+area/16+...

B 5" pass:

Can we compute the edit distance faster than O(nm)? yes: The Four
Russians Technique (Arlazarov, V., Dinic, E., Kronrod, M., Faradzey, |.)

Key concept: Divide the input into very small parts, pre-compute the values
using Dynamic Programming for all possible small parts and store them in a
table. Then, speed up the dynamic programming via Table Lookup.

e Partition the n x n grid into blocks of size t x t

* We are comparing two sequences, each of size n, and
each sequence is sectioned off into chunks, each of
length t

* Sequence u = u,...u, becomes

|UreUe] [Ugsgenline] oo [Ungaqenetin]
and sequence v = v;...v, becomes

AZEA 7S [L7070 R LV RN T

n <

-

Block alignment of sequences u and v:

A

partition

v

1. An entire block in u is aligned with an entire block in v
2. An entire block is inserted
3. An entire block is deleted

Block path: a path that traverses every t x t square through its corne

valid

invalid

> nlt

Goal: Find the longest
block path through an
edit graph

Input: Two sequences, u
and v partitioned into
blocks of size t. This is
equivalent to an n x n edit
graph partitioned into t x
t subgrids

QOutput: The block
alignment of u and v with
the maximum score
(longest block path
through the edit graph

Let s;; denote the optimal block alignment score between the first i

blocks of u and first j blocks of v

.

$;; = max

\

Si-1j = Oblock
Sij-1 = Oblock

Si-1j-1 = Pij

>

Oblock 18 the penalty
for inserting or
deleting an entire
block

[1s score of pair of
blocks in row i and
column j.

* To solve: compute alignment score f3; ; for each pair of blocks |u.

reete-Upee | @NA | Vi qyrpag.nVin |

* How many blocks are there per sequence?

(n/t) blocks of size t
 How many pairs of blocks for aligning the two sequences?

(n/t) x (n/t)

* For each block pair, solve a mini-alignment problem of size t x t

T

4 N\

P Solve mini-alignmnent
‘\ problems

Block pair
represented by each
small square

Indices i,j range from 0 to n/t

Running time of algorithm is
O([n/t]*[n/t]) = O(n*/t?)
if we don’t count the time to compute each [,
Computing all B requires solving (n/t)*(n/t) mini block
alignments, each of size (t*t)
Computing all §;;takes time O([n/t]*[n/t]*t*t) = O(n?)

How do we speed this up?

Let t = log(n), where t is block size, n is sequence size. Instead of
having (n/t)*(n/t) minialignments, construct 4t x 4t minialignments for
all pairs of strings of t nucleotides (huge size), and put in a lookup
table. However, size of lookup table is not really that huge if t is small.
Let t = (logn)/4. Then 4t x 4! =n

each sequence
has ¢ nucleotides

AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

-

§;; = max

Lookup table “Score”

AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

size 1s only n,
> instead of
(n/t)*(n/t)

Si-1j = Oblock

Sij-1 = Oblock

Si.1,.1 — Score(i™ block of v, /™ block of u)

The new lookup
table Score is
indexed by a
pair of t-
nucleotide
strings

We can divide up the grid into blocks and run dynamic programming
only on the corners of these blocks. In order to speed up the mini-
alignment calculations to under n?, we create a lookup table of size n,
which consists of all scores for all t-nucleotide pairs.

Since computing the lookup table Score of size n takes O(n) time, the
running time is mainly limited by the (n/t)*(n/t) accesses to the lookup
table;

Each access takes O(logn) time. Overall running time:
O([n?/t?]*logn); Since t = logn, substitute in: O([n?/{logn}?*]*logn) >
O(n?/logn).

Unlike the block partitioned graph, the LCS path does not have
to pass through the vertices of the blocks.

block alignment

@ & & O

& & O &

block alignment has
(nlt)*(nlt) = (n?/t?)
points of interest

longest common subsequence

LCS alignment
has O(n?/t) points
of interest

In block alignment, we only
care about the corners of the
blocks. In LCS, we care about
all points on the edges of the
blocks, because those are
points that the path can
traverse. Recall, each
sequence is of length n, each
block is of size t, so each

sequence has (n/t) blocks.

Given alignment scores s; « in the first row and scores s« ; in

the first column of a t x t mini square, compute alignment
scores in the last row and column of the minisquare.

To compute the last row and the last column score, we use
these 4 variables:

— alignment scores s; « in the first row

— alignment scores s« ; in the first column

— substring of sequence u in this block (4! possibilities)
— substring of sequence v in this block (4! possibilities

If we used this to compute the grid, it would take quadratic,
O(n?) time, but we want to do better.

we know these r N we can calculate

| < these scores

Scores l__d_/

t x t block

* Build a lookup table for all possible values of the four variables:
1. all possible scores for the first row s- |
2. all possible scores for the first column s. |
3. substring of sequence u in this block (4! possibilities)
4. substring of sequence v in this block (4! possibilities)
* For each quadruple we store the value of the score for the last row
and last column.
* This will be a huge table, but we can eliminate alighments scores that
don’t make sense: Alignment scores in LCS are monotonically
increasing, and adjacent elements can’t differ by more than 1

* Instead of recording numbers that correspond to the index in the
sequences u and v, we can use binary to encode the differences
between the alignment scores

original encoding

0 1 2 2 3 | 4
C_) 1 1 0 1 1 binary encoding

o 2!'possible scores (t = size of blocks)
* 4! possible strings
— Lookup table size is (2t * 29)*(4t * 4%) = 26t
 Lett=(logn)/4;
— Table size is: 20Wlogm/4) — 76/4) = p(3/2)
* Time = O([n?/t?]*logn)
* O([n*/{logn}*]*logn) > O(n*/logn)

Summary: We take advantage of the fact that for each block of t = log(n), we can
pre-compute all possible scores and store them in a lookup table of size n3/2), We
used the Four Russian speedup to go from a quadratic running time for LCS to
subquadratic running time: O(n?/logn).

x = AACT A A C T Example
y = CACT o 1 1

Can we predict the RNA secondary structure from sequence?
Sort of self alignment of one molecule which is termed folding

A
G \ . AU UU
C—GAC
Lz) U
¢-¢"" T\ © o=
U A A Yu=n
U—A Uu—A Uu—A
20 Y 5%
a=¢ UG oo
=i U
0= &= & ey
5'AAUUGCGGG Ay C—Ggq UGAUCUCUG=C _ Double helix
AAAGGGGUCA A k’ A . .,
ACAGCCGUUC s o A A c a8 Au
AGUACCAAGU cC—aG C—GA Llj/l\(i:(i:Llelj
CUCAGGGGAA A—U C—G
ACUUUGAGAU / Ay Ac—g Y AUGGAA |
GGCCUUGCAA %GAA G—C A, A Aac
AGGGUAUGGU ~ A T AGAAG Aoy—pch f
AAUAAGCUGA \ GgocuyG W u a=t ipi
CGGACAUGGU a <l G « UUCA uGCu, c UU Py Hairpin loop
CCUAACCACG Uu—A cC—Ga & CUAGUA ccc cocuua®TCA,
CUAAGUCAAC g:é Ag .G v GAUCGU 886 GGAAY A
AGAUCUUCUG o U— A re o A | S
UUGAUAUGGA G U C—G GAU ¢ 8 Au Y AC
UGCAGUUCA3’ g-y uC— Gu y—a
G, A A A TG Multibranch loop (helical juncti
AA A A ultibranch loop (helical junction)
8;% Internal loop /’GA G
G —Q g:ge
A—U G—C
£-a Ay
é_g Y agaacY Y
A_U Bulgeloop—_)G e
UCU AU AGUCUUGU U
(a) (b) (c)

The three levels of organization of RNA structure a) sequence; b) secondary structure;
c) Tertiary structure

Biologists need algl?rithms to compute RNA local folding as this could
ighlight important cell functions

RNA as lego bricks: many
foldings -> many functions in the
cell

=

The basic local foldings

Stem Hairpin Loop Pseudoknot

Bulge Internal Loop Multiloop

i

/

"

\

Ribozymes

2 % e W T of .
/:°:“O 00 00 e Y
L) || 8 e [T
—@—: : O/
+
- 3 T
a \

itches
é sRNAs

\
Ribosw

Source: https://www.sciencedirect.com/science/article/pii/S0958166916301082#fig0020

Biologists need algorithms to compute RNA local folding
as this could highlight important cell functions

Secondary Structure :

— Set of paired positions on interval [/,/]

— This tells which bases are paired in the subsequence from x; to x;
Every optimal structure can be built by extending optimal substructures.
Suppose we know all optimal substructures of length less than j-i+1.
The optimal substructure for [/,j] must be formed in one of four ways:

1. ij paired

2. iunpaired

3. j unpaired

4. combining two substructures

Note that each of these consists of extending or joining substructures of length
less than j-i+1.

A\ A N AN
QO O
\, A A\ \ \
o o o o
) } :
i+1 j-1 i+1 L o] L j -1
: j L | hl j
~ &
I,j pair I unpaired j unpaired bifurcation

154

RNA Secondary Structure: The Nussinov Folding Algorithm
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms for loop
matchings, SIAM J. Appl. Math

Example: GGGAAAUCC —
v(i,j) is the maximum number A A
of base pairs in segment |[i,j] N/

Initialisation y(1,1-1) =0& y(1,1) =0 final Strucwﬂ '2 :E
Starting with all subsequences of | —C|
length 2, to length L: GF
- j —
v (1,]) =
. GG G A AA UCZC
y(1+1,))
- 0
1,1-1
max:)/(J) 0 0

ya+1,j-1)+0(,))

max,, [y (LK) +y(k+1,))]

0O (0
Where 8(i,j) = 1 if x; and x;
are a complementary base pair, l 0 |0
and &(i,j) = 0, otherwise. 0

Q0 NVVVOOO

155
0

y(,]) =
" y(i+1,j)
y(,]-1)
y(i+1,j-1)+0(,])
\maxkkq[y AL,k +yk+1,7))]

max:?

[

A A
AN

A=Y

0O 0 N Y Y Y D DD

>

GG G AAA UCC

O |0
0O |0
0
0
0 O |0

o (0 (1

0 |0

0

156

(i) =) —

oL
o GGG AAAUCEC
max, y(i+1,j-1)+5(, j) ® o (0 |0
~maXi<k<j[y 1L,k +yk+1,j)] G) 0 0 0 0
) 0 0 0 0
m > 0 0 0 0
A\ }A > 0 0 0 1
[
ﬁ—trl > 0 0 1 0
‘?'C| lc 0O [0 |0 |0
/G'C o 0 0 0
c o 0 0

157

y(,j) =
" y(i+1,])
y(,]-1)
y(i+1,j-1)+8(1,))
~maXi<k<j[y 1Lk +yk+1,5)]

max.

[

A A
N/

A=Y

4—

—

GG G AAA UCC

olo (o [o o

Olo [0 o |o o

Ol (o |o |o o |o

3> o [0 [0 |o [1)
> 0 o @)@)1
> 0 [0 [1 [1 |1
- o [0 [0 |o
o o [0 |o
@) 0O |0

Two optimal substructures for same subsequence

158

—

y(,]) =
y(i+1,]) GG G A AA UCC
re.-h o [0 [0 [o |o
B +1,j-1)+8G, j) @
max, [y (i, k) + 7 (k +1,j)] @|o |o |o jo o |o
') o o o |o |o |1
— > o [0 |0 [o |1 |1
A A > o |o [o |1 |1 [1
\/ > o |o [1 [1 [4
A=Y lc o |o [0 o
¢7¢ o o |0 |o
g 0 |o
O

159

GG G AAA UCC
0
0
0
0
0
0

o oO| O
o o o
GGGA AAUCC
— ,
=
—_—
=
T M
2 =% %
ERE
TEZE
= <. o>-u—
Tz ¥ | I T
o - <<O—0
I =y <

y(@,])
max:

160

GG G AAA UCC
0
0
0
0
0
0

o o | O
o o o
GGGA AAUCC
-
.\H),
—_
a7
T X4
229 =
)
ﬂﬂmw << >0
= ¥ I _..-g
v;ml \A|G|G/G
I =y <

v (@,])
max

161

j

GG G AAA UCC

(1))

y(i+1,j)

)/(1’]'1)

~— |~] =] O| O
O | OO0 |O0O|lO0O|O | O
O | OO0 |O0O|O | O

o | O

GGGAA

||
—_
—
~ —
= 4
S =
< =
o+
—~
X
)
o~
S
LT
N ~
NG Y
e <

max.

AU CC

—

162

j

GG G AAA UCC

(1))

y(i+1,j)

y(,j-1)
Y(1+19J'1)+5(19J)

max, [(5, K) + 7 (k +1,)]

AN

o

o

GGGAA

max:

AU CC

—

163

164

o | OO

GG G AAA UCC
0
0
0
0
0

] ——

o | O

GGGA AAUCC

Example and RECAP

Nussinov algorithm:

fill-stage

G UlU|C

1 819
G|1 1(2(2(2 44
G|2 1({1|1 213|3
C|3 010|011]11]|2]|2
Cl4 010|0|11]11]|2]|2
Al5 010|0f1|2]|2
G| 6 Oj0(1(1(1
Ul7 0j0(0(O
Ul8 010|0
Cl|9 00

Algorithm: Nussinov RNA folding, fill stage

Initialisation:
y(i,i—1) =0 for i=21to'L:
YA =) fori=I1"To'L"
Recursion: starting with all subsequences of length 2, to length 1.:
Y+ 1,4),
y(,j—1),

y(i,Jj) = max : i o
y(@A+1,j—1)4+48(, j),

max; k< [y (i, k) +y(k+1, j)].

Scoring system:
o(i,j) = 1 for all RNA Watson-Crick base-
pairs including G-U else o(i,j) = 0.

Blue: addition of unpaired base 3 or 7

Pink: joining of substructures 1..4 and 5..8

165

Algorithm: Nussinov RNA folding, traceback stage

Initialisation: Push (1, L) onto stack.
Recursion: Repeat until stack is empty:

Example and RECAP

- pop (@, J)-
- if i >= j continue;
elseif y(i+1,)) = y(i,j)push G +1,7);
else if y(i,j — 1) = (i, j) push G,j—1)
elseif yi+1,j—1D+6i;= Y@
- record i, j base pair.
-push (i +1,j —1). ‘
else fork=i+1to j—1: if y(i,k)+yk+1,j)= v(i,j):
- push (k+1, j).

Nussinov algorithm:
trace-back

GIGIC|C|A|G|U|U|C
1{2|3|4|5{6|7|8]|9

- push (i,k).

gl1| lolo|1 MM 2121344 ks
G|2 0|0 1112213l 3

current record stack
cl3 olo|1]1]2]2 L o
Cl4 olo|1]1]2]2 1,9 1,8
INE ololol1/ > 1,8 1,4 5,8 KN

1,4 1,4 2,3 5,8 GeCc GoU
G|6 O[Ojma 1|1 2,3 2,3 3,2 5,8 GeC AeU
ul7 ololo|o 3,2 5,8 \/ C

5,8 5,8 6,7
U 8 0 /4 14 14)

0]0 6,7 6,7 7,6 Final structure

clo9 0|0 7,6

166

Example
and
RECAP

d Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

S(i+1,j-1) S(i+1,)

S(ij-1)
S(ik) S(k+1,)

i+1

i

i i—1 | ik k+l

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

j— j— j—
GGGAAAUTCC GGGAAAUTCC GGGAAAUTCC
clo Glojofo|ofo|of1]|2|® clolo|o|lo|o|o|1|2|@@
clofo Glolo|o|o|o|o|1]|2(3 clolo|o|lo|o|o|1]|2|@3
i 6 oflo i ololo|ofo|1]|2]2 i 6 olo|lo|o|o|1|@)]2
la ofo lA olojofo|1]|1]1 la olo|ofo|@)| 1|1 A a
A olo A olofo]1|1]12 A olo|@| 1|12 \A-U,
A ofo A ofo|1|1]1 A ol@| 1|11 G.C
U ofo U olo|ofo U olo|lo]|o GeC
c ofo c ofo|o c olo|o G
c ofo c olo c ofo
Initialization; recursive fill; traceback; result.

Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (/,j pair, unpaired / or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(/,)) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

Complexity

Initialisation y(1,1-1) =0& y(1,1) =0

y(1,]) =
y(a+1,])
y(1,]-1)
yi+Lj-D+0(,))
max,_, [y (i,k)+y(k+1,j)]

max:

Complexity: there are O(n?)
terms to be computed, each
requiring calling of O(n) already
computed terms for the case of
bifurcation. Thus overall
complexity is O(n3) in time and
O(n?) in space.

Open problems

5' Antisense RNA Some noncoding RNAs, called

antisense RNAs, aim at inhibiting

their target RNA function through _
base complementary binding;

several kissing hairpin structures

(left) caused by loop-loop

3' Target RNA interaction have been reported.

5 166
&
A
G=C A
G — C120 A &
a ;
eBG=C C=
3 3
§ C=G A o
Uu—aA A
G—C A
U U—A
100 U U— A175
U U—A
cC=G

J2b/3 (loop 1)
>
=

P3 (stem 2)

Alignment-free sequence comparison

Alignment-producing programs assume that
homologous sequences comprise a series of linearly

arranged and more or less conserved sequence
stretches.

Genetic recombination events, horizontal gene
transfers, gene duplications, and gene gains/losses
often disrupt the colinearity.

Alignment-based approaches are generally memory
consuming and time consuming and the
computation of an accurate multiple-sequence
alignment is an NP-hard problem

Zielezinski, A., Vinga, S., Almeida, J. et al. Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biol 18, 186 (2017).
https://doi.org/10.1186/s13059-017-1319-7

Alignment-free sequence comparison

Alignment-free approaches to sequence
comparison can be defined as any method of
quantifying sequence similarity/dissimilarity that
does not use or produce alignment (assignment of
residue—residue correspondence) at any step of
algorithm application. They do not rely on
dynamic programming.

Alignment-free approaches can be broadly divided
into two groups: methods based on the
frequencies of subsequences of a defined length
(word-based methods) and methods that evaluate

the informational content between full-length
sequences (information-theory based methods).

Frequency-based methods

Similar sequences share similar words/k-mers (subsequences of length k), and
mathematical operations with the words’ occurrences give a good relative
measure of sequence dissimilarity. This process can be broken into three key

steps.
Query sequences X [ATGTGTG y |CATGTG
Word size: 3 W, W)
GTG
GTG
GTG

Union of two .7 y
sets P a= et GTG
Word counts ch H B

First, the sequences being compared
must be sliced up into collections of
unique words of a given length. The
second step is to transform each
sequence into an array of numbers
(vector) (e.g., by counting the
number of times each particular
word appears within the sequences).

The last step includes quantification
of the dissimilarity between
sequences through the application of
a distance function to the sequence-
representing vectors.

This difference is very commonly
computed by the Euclidean distance,

Euclidean leX-c!| J(0-1)24(1-1)24(2-1)24(2-1)2=\/3=1 24lthough any metric can be apﬁlzied.

distance

Information theory-based methods

Lempel-Ziv complexity is a popular measure that calculates the number

of different subsequences encountered when viewing the sequence

from beginning to end.

Once the complexities of the sequences are calculated, a measure of
their differences (e.g., the normalized compression distance) can be

easily computed.

Query sequences

X

ATGTGTG

y

CATGTG

Lempel-Ziv complexity

xy |[ATGTGTGCATGTG

Normalized compression distance

C(xy)-min{C(x), C(y)}
max{C(x), C(y)}

c(x)=4

c(y)=5

c(xy)=7

173

Information theory-based methods

Using Shannon entropy measure, Kullback and Leibler
introduced a relative entropy measure (Kullback—Leibler
divergence, KL) that allowed for a comparison of two sequences.

X ATGTGTG y CATGTG

c; WIHB - HidA

X 043 y R —
P - ,% Pi W

X ply|
> Piilog(—
1=1 : J(p}J

1

) 0.14 0.43 0.43
0.17 0.33 0.33

0.14-log(===)+0+ 0.43-log(===) + 0.43-log (=) = 0.24

The procedure
iInvolves the
calculation of the
frequencies of
symbols or words
In a sequence and
the summation of
their entropies in
the compared
sequences.

Reference for this section

BIOINFORMATICS ALGORITHMS

An Active Learning Approach 3 > Chapter 5 Vol 1
2nd Edition, Vol. I Bio'ogica'
sequence
analysis

12333°

CIBIEI LIRS E

Probabifistic models
of proteins and
nucieic acids

R. Durbin

S. Eddy

A Krogh

G. Mitchison

by Phillip Compeau & Pavel Pevzner

N

111111

| Camaniina |

Zielezinski, A., Vinga, S., Almeida, J. et al. Alignment-free sequence comparison:
benefits, applications, and tools. Genome Biol 18, 186 (2017).
https://doi.org/10.1186/s13059-017-1319-7 175

Section 3

Algorithms to build Trees

> Additive Phylogeny
» Using Least-Squares to Construct Distance-Based Phylogenies
» Ultrametric Evolutionary Trees
» The Neighbor-Joining Algorithm
» Character-Based Tree Reconstruction
» The Small Parsimony Problem
> The Large Parsimony Problem
> Back to the alignment: progressive alignment

Sé6 S7 S8 S9 §S10
Sequence 1 CTATAGCGCGTAT Sequence 6 - 0.9 0.5 0.4 0.3
Sequence 2 CTATACCGCGCAT Sequence 7 0.9 - 0.4 0.3 0.2
Sequence 3 CTGTGGCGCGTAA Sequence 8 0.5 0.4 - 0.9 0.8
Sequence 4 TTGTGGCGCGTAA Sequence 9 0.4 0.3 0.9 - 0.7
Sequence 5 CTCTGGCGAGTAA Sequence 10 0.3 0.2 0.8 0.7 -

Character based VsS. Distance based
* Use aligned sequences directly * Sequence data transformed into

pairwise distances

176

What it is Iin a tree

Why is important for biologists:Nothing in Biology Makes Sense Except in the
‘| Light of Evolution (Dobzhansky, 1964)

Terminal Nodes
(Living species)

® A) C

unrooted

%)
°
D
Q.
®
n
=3
®
®
o
<
)
2
=
e,
/
O\Q

Branches or
Lineages

O

N\
.
® o

/

Ancestral Node
or ROOT of Internal Nodes

\
S O
d

the Tree (fossil) roote

Time (mutations)

((A,(B,C)),(D,E)) =The above phylogeny as nested parentheses 177

bacteria / \
EUKARYOTES
archaebacteria / \
protoctists / \
PLANTS
[] () ANIMALS
/ \ green algae fungi / \

2% AN
ems cnidarian / | \

flowering flowering flatworms
d plants d plant

/ \Iphph t/ \tf
VERTEBRATES ARTHROPODS
it “/\ / \
tI g us gm nted mo Il sks che I rates
worms
TETRAPODS
/ \ yf sh crust nnnnnnnnnnn
AMNIOTES ()
/ \amphibians
/ \mammals
/ \ turtles
s

snakes crocodiles
& lizards & birds

Tree: Connected
graph containing
no cycles.

Leaves (degree = 1):

present-day species

Internal nodes
(degree > 1):
ancestral species

Why biologists need algorithms to build trees

MPB>TVOXC O =

Reconstruction of evolutive patterns:
\3‘%}& tree of life based on mitochondrial
SRR A4
*%;@Z\é};:&?“ Vi, ;g sequences
%9 > £y & Metazoa

% v ‘\;‘“\jﬁﬁ;“
AT e
& &z

SR o

ot e e aon

= =

== ==
. T2 —

& if
=
“x
F8sls

W
N\
] @§§\\
i,
|

5
2,
&
i

8,

’ Johannesburg/33/94
% A
A

Nanchang/933/95

Influenza

Sydney/5/97

tracing influenza strain variations

Based on variations in hemagglutinin
sequence

g© —Neuraminidase
& (Sialidase) Moscow/10/99

\ \Hemlgglutlnln Panama/2007/99

Why biologists need algorithms to build trees

We can use a tree to guide a multiple
sequence alignment. The sequence of genes
and proteins are conserved in nature. It

is common to observe strong sequence

similarity between a protein and its counterpart
in another species that diverged hundreds of

millions of years ago. Accordingly, the best

Pairwise Alignment Guide Tree Iterative Multiple Alignment
Y2
143 el 2
1+4 -2 2
2+3 g 4;,
2+4
3+4 — 4 :

method to identify the function of a new gene
or protein is to find its sequence- related genes
or proteins whose functions are already known.

We can reconstruct the
likely sequence of protein of

an archosaur based on the =———)

sequence of the same
protein in existant species.

We look at the changes
between chicken and
alligator

archosaur
ancestor

s

American alligator ‘ 499
domestic pigeon ,‘ 502-505
chicken W 503-507

zebra finch W 501-507

— humanﬂ 495

green anole =%) 491

crab-eating macaque 4y~ 451
dog WK
European rabbit &g 502

cow pat 500

house mouse @ 498
.—ENorway rat M 500

Chinese hamster @
E northern leopard frog & 502
common frog 3 507
E European toad &

giant toad My 50

502
2

African clawed frog ‘ 502
tiger salamander ™ 500

goldfish 2 452
4[—::0mmon carp e

zebralish - 500

Mexican characin s
| { sand goby e 507

:;0|<:|(2'f|r_;h"
—{j European eel ~~_ 482
COn

ger eel e, 487

little skate g 500
[Japanese lamprey &
e

sea lamprey = 500

Did the Florida Dentist infect his

Phylogenetic tree
of HIV sequences
from the DENTIST,
his Patients, & Local
HIV-infected People:

A =

Phylogenetic tree

——= applications
Patient C
Patient A
Patient G
— | Yes:

Patient B
Patient E

Patient A
Patient H

The HIV sequences from
these patients fall within
the clade of HIV sequences
found in the dentist.

From Ou et al. (1992) and Page & Holmes (1998)

Patient F

— Local control 2
S Local control 3

«— No

Local control 9

Local control 35

Local control 3

Patient D

«— No

Why biologists need algorithms to build trees: evolution

Lice have few opportunities for gopher-switching, and lice on gopher lineage A
don't mate with lice living on gopher lineage B. This "geographic" isolation of
the louse lineages may cause them to become reproductively isolated as well,

and hence, separate species.

GopherA LouseA GopherB LouseB Pocket gophers (hosts) Chewing lice (parasites)

T. talpoides T wardi :*

* T. minor
T. bottae

| G. thomomyus =———————
G. bursarius 1
_G actuosi

O. hispidus G. ewingi

G. chapini

O. cavator —\
G. panamensis
O. underwoodi j_
\-\ -
< G. setzeri
0. chemisl G. cherriei
G. costaricensis j

O. heterodus

Ultrametric Trees

Rooted binary tree: an edge weights: correspond
to difference in ages on the

unrooted binary tree with
33 nodes the edge connects.

a root (of degree 2) on
10\ ’a Fltrametric tree: distance
f

one of its edges.
\ rom root to any leaf is the
10 N same (i.e., age of root).
33 6\
23 <
8
2
6
2 2
Q/ \Q o

Squirrel Baboon Orangutan Gorilla Chimpanzee Bonobo Human
Monkey

Ultrametric Trees

Ultrametric tree: distance
from root to any leaf is the
same (i.e., age of root).

33

N
10N 13
33 . AN 7
.y
// 6
o o o .A k.

Baboon Orangutan Gorilla Chimpanzee Bonobo

Squirrel
Monkey

UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species, each
containing a single leaf.

—
w ~ W O
U1 K~ O W .
N O A~ N~ =
S N U1 W =~

O 0o OO0 O

UPGMA: A Clustering Heuristic

2. Find the two closest clusters C; and C, according
to the average distance

Dae(Cr, G) =2iincr,jinca Dij /|G o |G
where |C| denotes the number of elements in C.

i j ok I
i 0 3 4 3
j 3 0 4 5
k 4 4 0 2
3 5 2 0 @0 00 00 0O

UPGMA: A Clustering Heuristic

3. Merge C; and G, into a single cluster C.

{k 1}

O 0o OO0 O

—
w ~ W O
U1 » O W .
N O b~ B~ =X
S N Ul W =~

UPGMA: A Clustering Heuristic

4. Form a new node for C and connect to C, and G,
by an edge. Set age of C as D,,,(C;, G,)/2.

N O B~ DO
O N Ul W

—
8] -P o O LY

UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the
average distance between each pair of clusters.

i j {k
I 0 3 3.5

1
j 3 0 4.5 / \
(k13 35 45 0

O 0o OO0 O

{k 1}

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

{ij}
i {k

i 0 3 3.5
j 3 0 45 / \
(k13 35 45 0

® o o @ o

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

{ij}
i, 3 {k I}

Ly O 4
{k, 1} 4 0 /\

® o o @ o

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

UPGMA(D):

1.

o

Form a cluster for each present-day species, each
containing a single leaf.
Find the two closest clusters C; and C, according to the
average distance

Dae(Ci, G) =Ziin 1, jinc2 Dij/ |Gl o |G
where |C| denotes the number of elements in C
Merge C; and G, into a single cluster C.
Form a new node for C and connect to C; and G, by an
edge. Set age of C as D,,(C;, G,)/2.
Update the distance matrix by computing the average
distance between each pair of clusters.
Iterate steps 2-5 until a single cluster contains all species.

UPGMA Doesn’t “Fit” a Tree to a Matrix

2N
VAA

5
1.5
Q0o 00 OG0 O

w M~ W O

U1 AN - W
S N
S N U1 W =~

UPGMA Doesn’t “Fit” a Tree to a Matrix

2N
VAA

5
1.5
Q0o OO0 OG0 0o

w A W O

U1 AN) W0 ‘=,
N O A~ N x
O N Ul W =~

Constructing a distance matrix

D; ; = number of differing symbols between j-th and
J-th rows of a “multiple alignment”.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 / 5
Seal TCGAGAGCAC 6 7/ 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a distance matrix

D; ; = number of differing symbols between j-th and
J-th rows of a “multiple alignment”.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 / 5
Seal TCGAGAGCAC 6 7/ 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a distance matrix

D; ; = number of differing symbols between j-th and
J-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 / 5
Seal TCGAGAGCAC 6 7/ 0 2
Whale TCGAAAGCAT 4 5 2 0

How else could we form a distance matrix?

/\
AW/\W

Most Recent Ancestol

/\

\ /\

Tree: Connected graph
containing no cycles.
Leaves: (degree=1):
present day species.

Internal nodes (degree
> 1): ancestral species.

One node could be
designated as root

(most recent common
ancestor)

@V pPresent Day

Distance-Based Phylogeny Problem: Construct an

evolutionary tree from a distance matrix.

 Input: A distance matrix.
* Output: The unrooted tree fitting this distance matrix.

Fitting a tree to a matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0

Neighbor-Joining method

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D//

where TotalDistancey(i) is the sum of distances from i
to all other leaves.

(n - 2)*D,; — TotalDistancep(i) — TotalDistancepj)

i k / TotalDistancep, J k
: 1 0 -68 -60
1 0 13 21 22 56
J -68 60
j 13 0 12 13 38 .
D kK 21 12 0 13 46 D k -60 -60 O

-60
-60

-68

Neighbor-Joining method

Neighbor-Joining Theorem: If D is additive, then the
smallest element of D* corresponds to neighboring
leaves in Tree(D).

i k / TotalDistancep i 0 -68 -60 -60
i 0 13 21 22 56 j 68 0 -60 -60
j 13 0 12 13 38 k -60 -60 0 -68
D D*
k 21 12 0 13 46 I -60 -60 -68 O

22 13 13 0 48

Neighbor-Joining method

1 0
pD* j -68
-60
-60

-68

-60
-60

-60
-60

-68

-60
-60
-68

TotalDistancep,
56
38
46
48

1. Construct neighbor-joining matrix D* from D.

Neighbor-Joining method

i J k

i 0 -68 -60

pD* j -68 0 -60
-60 -60 O

-60 -60 -68

-60
-60
-68

TotalDistancep,
56
38
46
48

2. Find a minimum element D*; ; of D*.

Neighbor-Joining method

i J k

i 0 -68 -60

pD* j -68 0 -60
-60 -60 O

-60 -60 -68

-60
-60
-68

TotalDistancep,
56
38
46
48

2. Find a minimum element D*; ; of D*.

Neighbor-Joining method

-68
-60
-60

D*

— = -~

-68

-60
-60

-60
-60

-68

-60
-60
-68

TotalDistancep,
56
38
46
48

AI,/

(56 -—38)/ (4 -2)
9

3. Compute 4, ; = (TotalDistancep(i) —

TotalDistancep(j)) / (n — 2).

Neighbor-Joining method

i]k / TotalDistancey,
i 0 13 21 22 56
D j 13 0 12 13 38 4‘,/: (56 -38)/(4 - 2)
k 21 12 0 13 46 =9
48

22 13 13 0

LimblLength(i) = 2(13 +9) = 11
LimblLength(i) = /2(13 - 9) =2

4. Set LimbLength(i) equal to "2(D; ; + 4, ;) and
LimbLength(j) equal to "2(D;; — 4,).

Neighbor-Joining method

m k / TotalDistancep,
m O 10 11 21
D’ k 10 o0 13 23
I 11 13 0 24

5. Form a matrix D’ by removing i-th and j-th

row/column from D and adding an m-th row/column
such that for any k, Dy, = (D; + D; = D;) / 2.

Computation of d; ,

d)/Z

',k+D/<_)/2

(djm T dk m) (di/m T dj,m>] /2

Neighbor-Joining in Action

m k / "‘ Tree(D) 6 @
m 0 10 11 @ 4 /

D’ k 10 0 13

I 11 13 0 x

! /)
/
\\—‘

6. Apply NeighborJoining to D’ to obtain Tree(D").

Neighbor-Joining in Action

11 Tree 6
m O /
D’ k 10
I 11 / \

LimblLength(i) = 2(13 + 9)
LimblLength(i) = 2(13 — 9)

7. Reattach limbs of i and j to obtain Tree(D).

Neighbor-Joining in Action

11 Tree 6
m O /
D’ k 10
I 11 / \

7. Reattach limbs of i and j to obtain Tree(D).

Neighbor-Joining

a

NeighborJoining(D):
1.
2.
3.

Construct neighbor-joining matrix D* from D.

Find a minimum element D*;; of D*.

Compute 4;; = (TotalDistancep(i) — TotalDistancep(j)) / (n
- 2).

Set LimbLength(i) equal to 2(Dj; + 4;)) and LimbLength())
equal to 2(D;; - 4;)).

Form a matrix D’ by removing i-th and j-th row/column
from D and adding an m-th row/column such that for any
k, Dk,m = <D/</i + Dk,j — D,-/j) /2.

Apply Neighborjoining to D’ to obtain Tree(D).
Reattach limbs of i and j to obtain Tree(D).

Reference: Saitou, N.; Nei, M. (1 July 1987). "The neighbor-joining method: a new method for
reconstructing phylogenetic trees". Molecular Biology and Evolution. 4 (4): 406—425.

doi:10.1093/oxfordjournals.molbev.a040454. PMID 3447015.

https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1093%2Foxfordjournals.molbev.a040454
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/3447015

Complexity

Exercise Break, check the following: Neighbor
joining on a set of r taxa (species, leaves) requires r-
3 iterations. At each step one has to build and
search a D* matrix. Initially the D* matrix is size r?,
then the next step it is (r -1)?, etc. This leads to a
time complexity of O(r ?).

Code Challenge: Implement NeighborJoining.

Neighbor-Joining

Exercise Break: Find the tree returned by

NeighborJoining on the following non-additive
matrix. How does the result compare with the tree

produced by UPGMA!?

i j k 05
i 0 3 4 3
j 3 0 4 5 /\
D
k 4 4 0 2
I 3 5 2 0

UPGMA
tree

—A

Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.

We lost information when we converted a multiple
alignment to a distance matrix...

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 / 5
Seal TCGAGAGCAC 6 7/ 0 2
Whale TCGAAAGCAT 4 5 2 0

Example and RECAP (note different notation)

Distance matrix

Step 1

S calculations

S, = (sumall DN - 2),

where N is the # of
OTUs in the set.

Step 2

Calculate pair with
smallest (M), where
M,’l‘= D,’ - S,'— S

i

Step 3

Create a node (U) that
joins pair with lowest
M;; such that

S =Dy + (8- S\

Step 4

Join i and j according to §

above and make all
other taxa in form of

a star. Branches in black
are of unknown length.

Branches in red are of
known length.

Step 5

Calculate new distance
matrix of all other taxa
to U with
Dw= D+ D,', - D,/ ’

where iand j are those

selected from above.

A B C D E
B |5

Clas 7
D|7 10 7
E(6 9 6 5
F1l8 11 8 9 8

Sa=(5+4+7+6+8)4 = 7.5

Sz =(5+7+1049+11)/4 = 10.5
Sc=(4+7+7+6+8Y4 =8

SU =(7+1 0+7+5+9)’4 =95
5S¢ = (6+9+6+5+8)4 =85

5. = (8+11+8+9+8)/4 = 11

Smallest are
Mg=5=75-=10.5=~13
MUE =5 —9.5 —8.5 = —13

Choose one of these (AB here).

U, joins A and B:
Sauy = Dasf2 +(Sa - S)2 =1
Spur = Dasf2 + (S5~ S)2 =4

From

http://evolution-textbook.org/content/free/tables/Ch_27/T11_EVOW_Ch27.pdf

Gl

2 f] |5 P,

EllED G 3
B4 8 9 8

Suy =(B3+6+5+7W3 =7
Se=(3+7+6=8)/3 =8
Sp=(6+7+5+9)V3 =9
Sg=(5+6+5+8)3 =8

S = (7+8+9+8)3 = 10.6

Smallest is

My, =3-7-8=-12

M:JE =5—9—8=—]2

Choose one of these (DE here).

U, joins D and E:
Spu; = Dpe2 +(Sp - 82 =3
Seus = Dpef2 + (5= Sp¥2 =2

Uy €
cl3

U, | 3 4

Flz 8 6

Sy = (3+3+7)2 = 6.5
S-=(3+448)2=7.5

SLJ., = (3+4+6)2 =6.5
S = (7+8+6)2=10.5

Smallest is
My, =3-6.5-7.5==-11

U, joins C and U,:
SCU3 - DCL:1I2 + (Sc - smyz =2
Suius = Deu2 + (S =Sc2 =1

=(2+6)/1 =8

Su
Sus
Sc= (6+6)/1 =12

Smallest is

Myr=6-8-12=-14
My=6-8-12=-14
M, =2-8-8=-14

Choose one of these (M,,,, here).

U, joins U, and U;:

SL2U4 - L)uzL;]’2 + (Sya —Syav2 = 1

Us

Fls

Because N-2 =0,
we cannot do this
calculation.

For last pair, connect
U4 and F with branch

Susua = Duginy/2 + (Sy3 = Sya2 = 1. length = 5.

Comments

Note this is the same
tree we started with
{(drawn in unrooted
form here).

Four-point condition between four taxa

The additive tree condition meant that for any two leaves, the distance between
them is the sum of edge weights of the path between them. We need a method to
check if a tree is additive or not by inspecting the distance matrix.We can now state
the four-point condition between four taxa.

Definition (four-point condition) Given four taxa i, j, k, and |, the four-point
condition holds if two of the possible sums d; + dj , di + d; and d; + dy, are

equal and the third one is smaller than this sum.

As can be seen in Fig above, the possible distances between four taxa can be
specified as follows:

where T is the sum of the distances of the leaves to their
di; + djk =T 4+ 2a ancestors. This would mean that the larger sum should
appear twice in these three sums. A distance matrix D[n, n]
dix +dj; =T + 2a is additive if and only if the four-point condition holds for all
of its four elements
dij +du =T

Implementation

Vol. 18 no. 112002

APPLICATIONS NOTE .5 %0 7 5
° ° oo
o® ©°
- - -] - - o
3 QuickTree: building huge Neighbour-Joining L
: . &
o1 trees of protein sequences : .
: . . . 0 &%
1 Kevin Howe*, Alex Bateman and Richard Durbin B P
[=] o © X
‘ The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, 3 @o x oo
Hinxton CB10 1SA, UK 2 X x X
= X XX X X
Received on April 12, 2002; revised on May 20, 2002; accepted on May 24, 2002 E 51 ?)& X
g, /ﬁ ngx)Z(X <
ABSTRACT making the computation prohibitively expensive for large : x W #
Summary: We have written a fast implementation of the datasets. This is particularly apparent in some popular E % o X*
popular Neighbor-Joining tree building algorithm. implementations, where the time taken to reconstruct a - 4 X
QuickTree allows the reconstruction of phylogenies for tree from a few hundred sequences or more becomes non-
very large protein families (including the largest Pfam interactive (see Figure 1a).
alignment containing 27 000 HIV GP120 glycoprotein se- We have produced an efficient O(n?) implementation > BIONJ
quences) that would be infeasible using other popular of Neighbor-Joining in the program QuickTree. As a QuickT
methods. starting point, we implemented a re-factored version of x Quickliree
Availability: The source-code for QuickTree, written in the algorithm described in Durbin et al. (1998), which 3 i
ANSI C, is freely available via the world wide web at although having the same run-time complexity as earlier 500 1000 1500 2000 2500 3000

http://www.sanger.ac.uk/Software/analysis/quicktree.
Contact: klh@sanger.ac.uk

Phylogenetic analysis is an important step in understand-

TYERD
Wil BEE
i @

A d
\P
* CLTACG _m

W o6 e

v <

.-

.
&

.

LA

TEI W CE
2 o (B B [T

S He g D
- “ﬂm.&@éﬁ
¢ HNEwE=R

Phylogeny Programs &3
isoayicEAMIkeym
*"f
g ©c DT HHE
U EWOREEOVVE om

presentations, eliminates many unnecessary computations.
We then used standard code optimization techniques
(see, for example, Dowd and Severance, 1998) to further
improve the efficiency of each iteration.

Number of sequences

https://evolution.gs.washington.edu/phylip/software.htmI

B
!OImWII ..

| '@%%.@
8 IRE<@ *m“

220

Here we do not use a
distance matrix and we
value each column of
the alignment; each
column could output a
tree

/N

ATGTAAGACT

ACGTAGGCCT
Chimp

Chimp ACGTAGGCCT
Human ATGTAAGACT .
n species
Seal TCGAGAGCAC
Whale TCGAAAGCAT
____v____l

m characters

PRPVPPDDVVD

/ N\

TCGAGAGCAC TCGAAAGCAT

Human Seal Whale

Toward a Computational Problem

Parsimony score: sum of Hamming distances along

each edge.
CGAAAGCCT
/ \
ACGTAAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale

Toward a Computational Problem

Parsimony score: sum of Hamming distances along
each edge.

Parsimony Score: 8
CGAAAGCCT
/ \
ACGTAAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale

Toward a Computational Problem

Small Parsimony Problem: Find the most

parsimonious labeling of the internal nodes of a

rooted tree.

* Input: A rooted binary tree with each leaf labeled
by a string of length m.

* Output: A labeling of all other nodes of the tree
by strings of length m that minimises the tree’s
parsimony score.

s there any way we can simplify this problem
statement?

Small Parsimony Problem: find the most
parsimonious labeling of the internal nodes of a

rooted tree.
 Input: A rooted binary tree with each leaf labeled

by a single symbol.

* Output: A labeling of all other nodes of the tree
by single symbols that minimises the tree’s
parsimony score.

A

T/ \A
/N /N

Chimp Human Seal Whale

A Dynamic Programming Algorithm

Let /', denote the subtree of T / \

whose root is v. / \ ‘/V\TV
JANEAY

Define s, (v) as the minimum

parsimony score of /, over | ®
all labelings of 7, assuming /\
o O

that v is labeled by k.

The minimum parsimony score for the tree is equal to
the minimum value of s (root) over all symbols k.

A Dynamic Programming Algorithm

N

F bols i and j, defi
s EVANSRVAN:

* 0,;= 1 otherwise. ./\ ./\.) ’/\‘
/\

Exercise Break: Prove the following recurrence
relation:

Sk(v) — rninaIl symbols i {Si(DaUghter(V)) + &,k} + rninaII symbols i {S,-(SOI’)(V)) + @,k}

A Dynamic Programming Algorithm

/\
7N\ 7N\
AN ANVAN

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT

co () oo oo c© () oo oo) o0 oo oo o () oo oo co oo () oo co oo () oo co oo oo () co () oo oo

Sk(v) — rninalI symbols i {Si(Daughter(V)) + 5i,k} + rninaIl symbols i {5,-(50n(v)) + 6/.',k}

A Dynamic Programming Algorithm

/ \
I NN

21 2 1

B ANANYANRYAN

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
oo oo

oo () oo oo co () oo oo) oo oo oo oo () oo oo co oo () oo co oo oo () co () oo oo

Sk(v) — minall symbols i {Si(Daughter(V)) + 5i,k} + rTﬂnall symbols i {5,-(50/7(V) + 5 k}

A Dynamic Programming Algorithm

O NEZON

2 1 2 1

A CGT A CGT A CGT A CGT A G T A CGT A CGT A CGT
co () oo oo c© () oo oo) o0 oo oo c () oo oo co oo () oo co oo () oo co oo oo () co () oo oo

Sk(v) — minall symbols i {Si(Daughter(V)) + 5i,k} + rninaIl symbols i {5,-(50/7(V) + 5 k}

A Dynamic Programming Algorithm

A CGT
5 3 4 4

C
. e n / \ o
2 1 3 3 / 3 2 2 2
A CGT /Ak A CGT Ax

2 0 2 2 1T 1 2 2 2 2 0 2 21 2 1

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
co () oo oo o () oo o 0 o0 oo oo c© () oo o co oo () oo oo oo () oo co oo oo () o () oo oo

Sk(v) — minall symbols i {Si(Daughter(V)) + 5i,k} + rninaIl symbols i {5,-(50n(v)) + 6/.',k}

A Dynamic Programming Algorithm

A CGT
5 3 4 4

C
. e n / \ o
2 1 3 3 / 3 2 2 2
A CGT /Ak A CGT Ax

2 0 2 2 1T 1 2 2 2 2 0 2 21 2 1

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
co () oo oo o () oo o 0 o0 oo oo c© () oo o co oo () oo oo oo () oo co oo oo () o () oo oo

Exercise Break: “Backtrack” to fill in the remaining
nodes of the tree.

A Dynamic Programming Algorithm

A CGT
5 3 4 4

/ / |
A CGT Ak A CGT A\

2 0 2 2 T 1 2 2 2 2 0 2 2 1 2 1

VANVANVAN /\

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT

o () oo oo co () oo oo 0 o0 oo oo o () oo o co oo () oo co oo () oo co oo oo () oo () oo oo

Complexity: if we want to calculate the overall length
(cost) of a tree with m species, n characters, and k states,
the Parsimony algorithm is of complexity O(mnk?).

Small Parsimony for Unrooted Trees

r J%,-v.

David San ff' A

Small Parsimony in an Unrooted Tree Problem: Find

the most parsimonious labeling of the internal nodes

of an unrooted tree.

 Input: An unrooted binary tree with each leaf
labeled by a string of length m.

* Output: A position of the root and a labeling of
all other nodes of the tree by strings of length m
that minimises the tree’s parsimony score.

OO YO ENE LSOl ve this problem.

Finding the Most Parsimonious Tree

ACGAAAGCCT
/ \
ACG AAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale

Parsimony Score: 8

Finding the Most Parsimonious Tree

ACGTAAGCAT
/ \
ACGTAAGCAT ACGTAAGCAT
/ Y / Y
ACGTAGGCCT TCGAGAGCAC ATGTAAGACT TCGAAAGCAT
Chimp Seal Human Whale

Parsimony Score: 11

Finding the Most Parsimonious Tree

ACGTAAGCCT
/ \
ACGTAAGCCT ACGTAAGCCT
ACGTAGGCCT TCGAAAGCAT ATGTAAGACT TCGAGAGCAC
Chimp Whale Human Seal

Parsimony Score: 14

Finding the Most Parsimonious Tree

Large Parsimony Problem: Civen a set of strings,

find a tree (with leaves labeled by all these strings)

having minimum parsimony score.

» Input: A collection of strings of equal length.

* Output: A rooted binary tree T that minimises the
parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Large Parsimony Problem: Civen a set of strings,

find a tree (with leaves labeled by all these strings)

having minimum parsimony score.

» Input: A collection of strings of equal length.

* Output: A rooted binary tree T that minimises the
parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Unfortunately, this problem is NP-Complete...

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Rearranging these subtrees is called a nearest
neighbor interchange.

o T ol
N/
W w\a_b/y Y
S

A Greedy Heuristic for Large Parsimony

Nearest Neighbors of a Tree Problem: Given an
edge in a binary tree, generate the two neighbors of
this tree.

 Input: An internal edge in a binary tree.

* Output: The two nearest neighbors of this tree

(for the given internal edge).

OO O ENE LSOl ve this problem.

A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:
1. Set current tree equal to arbitrary binary rooted
tree structure.
2. Go through all internal edges and perform all
possible nearest neighbor interchanges.

. Solve Small Parsimony Problem on each tree.
4. If any tree has parsimony score improving over
optimal tree, set it equal to the current tree.

Otherwise, return current tree.

o

OO [@ EULS ELHl I mplement the nearest-neighbor

interchange heuristic.

Tree validation: the bootstrap algorithm

Consider m sequences, each with n nucleotides, a phylogenetic tree is
reconstructed using some tree building methods.

1.

From each sequence, n nucleotides are randomly chosen with
replacements, giving rise to m rows of n columns each. These
now constitute a new set of sequences.

A tree is then reconstructed with these new sequences using the
same tree building method as before.

the topology of this tree is compared to that of the original tree.
Each interior branch of the original tree that is different from the
bootstrap tree is given a score of O; all other interior branches
are given the value 1.

This procedure of resampling the sites and tree reconstruction is
repeated several hundred times, and the percentage of times
each interior branch is given a value of 1 is noted.

This is known as the bootstrap value. As a general rule, if the
bootstrap value for a given interior branch is 95% or higher,
then the topology at that branch is considered "correct".

Bootstrap trees

the bootstrap algorithm

Tree validation

b n - "
o - L) -

L o o RLCUU

o o o o S<<UUM

R L ELALC L

2U0FM DL L L

DLO0k o o ¢

200000 b AVE & & ¢

200000 A & o

200000 N EOULSUL

"00000 m.uCCACA

conecn| §|auees

LAVIVE & 4§ m LE & & 4UR 4

LEAVE £ 40 2 QL0

ccV<<U| &|<ou<<o

LR AVE & 49 ~0000«

N LU LY wQQO0O0 <«

~-Q0O0UO v LU0

-QDOLOUO LEAVE & 49

-QQUUO LR ACE & 4 &

~QO0LUO nLULCO

P L A - w !
Iy

SOV

ZCC <L

ELq4<L<q

b <LK

U0

<O K

2L«

2000<«<0

TOU<O<

W =ouLU

RO A ¢

m e <L

=Q0<UQ

~0000 <«

PR AVE & A8

wQOLO«

vOF=<40

~O00<0O

LR VR & 4¥)

~-QQUU0

(a)

Ll Rl s

Inferred tree

Pseudosample n

2L
2CACCL
BLLLL L
BACIOE QUL 4
2OUCUL
=ULUC <
=0«
=0QULL
=ULUC
=0LUC <L
oLLLU L
LR X JUE
~OQUL<L
Q000
EEAVE & 49
w000 <L
w00 <L
LAVIVIVE V)
w0000
nQUOO<0Q
NPT

(®) Subhypothesis 1

Bootstrap value

95% tis significantly positive

Subhypothesis 2

Generalising Pairwise to Multiple Alighment

* Alignment of 2 sequences is a 2-row matrix.
* Alignment of 3 sequences is a 3-row matrix

A - GCG -
A-CGT-2A
A CAC-A

* Our scoring function should score alighments with
conserved columns higher.

Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

#symbols up to a given position

o
= | =
N
H O JIDN
w
Q& O &

249

Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

(0,0,0)—(1,1,0)—>(1,2,1) —>(2,3,2) —(3,3,3) —>(4,4,4)

=N ESE R KT SR BN
w
all x>l allsllall »

| Bl [IS

2-D Alignment Cell versus 3-D Alighment Cell

(i-1,j-1,k-1) (i-1,7,k-1)

2-D
(ilj-ll k_l)

Multiple Alignment: Dynamic Programming

Sictj-1g-1 T 5(":‘ s Wi, uk)
Sic1j-1x T 5(":‘ s W; 9_)
Si—l,j,k—l + 5(Vi > uk)

S, ix =Maxys; .+ 5(—, wj,uk)
oo 300

Si -1k T 5(_9 W; ’_)

Sij k-1 T 5(_9_9 uk)

* Ax, y, z)is an entry in the 3-D scoring matrix.

Multiple Alignment: Running Time

* For 3 sequences of length n, the run time is
proportional to 7n3

* For a k-way alignment, build a k-dimensional
Manhattan graph with

— nk nodes

— most nodes have 2 — 1 incoming edges.
— Runtime: O(2nk)

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments:
AC-GCGG-C
AC-GC-GAG
GCCGC-GAG

!

ACGCGG-C AC-GCGG-C AC-GCGAG
ACGC-GAC GCCGC-GAG GCCGCGAG

254

ldea: Construct Multiple from Pairwise Alignments

Given a set of arbitrary pairwise alignments, can
we construct a multiple alignment that induces
them?

AAAATTTT---- -—---AAAATTTT TTTTGGGG-——-
-—-—-—-TTTTGGGG GGGGAAAA---- -—-—--GGGGAAAA

255

Progressive alignment

Progressive alignment methods are heuristic in nature.
They produce multiple alignments from a number of
pairwise alignments. Perhaps the most widely used
algorithm of this type is the software CLUSTAL
(https://www.ebi.ac.uk/Tools/msa/clustalo/)

Pairwise Alignment Guide Tree lterative Multiple Alignment
I+ i
1+3 — 2
1+4 = 2 3
2+3 . 18 4(__'
2+4

3+4 — 4

Progressive Alignment

Clustalw:

1. Given N sequences, align each sequence against each
other.

2. Use the score of the pairwise alighments to compute a
distance matrix.

3. Build a guide tree (tree shows the best order of

progressive alignment).

4. Progressive Alignment guided by the tree.

Progressive alignment (Clustal). Input: a set of sequences in Fasta format (also

thousands).

Output: alignment of the set of sequences: multi sequence alignment (MSA). Interest:
find conserved patterns (across sequences, i.e. columns retaining similar patterns)
may indicate functional constraints. In other words, if the same pattern is conserved in
multiple sequences from different species, the substring could have an important

functional role.

Progressive Alignment

Not all the pairwise alignments build well into a
multiple sequence alignment

TAGT TGG—-
T-GT “GEAT "\

R}

TAGT TAGT i eTe TGG—-

T-GT = -GGAT
TA_T TA-T AT) AT

T-GT GGAT
TA-T ——=AT

Phylogenetic noise

1 i 40
Sequence 1 AGGTAGCTCGATAGCTAGATCEATAGCTAGATAGCTAGAT
Sequence 2 TGGTAGGTCGTTAGGTAGATCH-TA—CT—GAT—Q-TAGTT
Sequence 3 AGCTAGCTGGATTGCTACATCGA—A——A—CTG—CTAGAT

Sequence 4 ATGTTGCTCGATAGCAAGTTCGIT————GA——ACTAGAT
Sequence 5 AGCTAGCTGGATAGCAAGATCGLCT—GTA -AG-TACAT
Sequence 6 AGGAAGGTCGACAGCTAGTTCGAC—C——GA——TAGAT

Sequence 7 AGGTAGCTCGACAGCTAGATCGCTA—C—A—AT—-{CTAAAT
Sequence 8 ACCTAGCCCGATAGCTAGGTCGG—AGC TAAATAGAT
Sequence 9 TGGTAGCTCGACAGCTAGGTCGATA—C—A—A—A—CTAGCT
Sequence 10 AAATAGCTAAATAGCTAGATAGGTAG—AGA—T—GCTAGAT
Sequence 11 AGATAGCTCAATAGCTAGTTCECTA———— —CTAGAT

S

Regions with phylogenetic signal

Progressive Alignment

The progressive alignment (see below) builds a final alignment
by merging sub-alignments (bottom to top) with a guide tree

AC--A

ACG-A

CC--A

A-GTA

A-G-A

Merging of

Subaltgnments
AC-A AGTA
ACGA AG-A
CC-A Sq‘n,\\\\
qm nce Alignment
quence 1o
/:Jhuhmme n AGTA
ACGA

Sequence
Sequence 4Hcmm i

ACA CCA

The tree allows the ordering the multi alignment

Progressive Alignment

Unaligned sequences

>HBB_HUMAN
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLST
PDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDP
ENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
>HBB_HORSE
VQLSGEEKAAVLALWDKVNEEEVGGEALGRLLVVYPWTQRFFDSFGDLSN
PGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDP
ENFRLLGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSH
GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKL
LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR

>HBA_HUMAN Pairwise
alignments

>HBA_HORSE
VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSH
GSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKL
LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR

>MYG_PHYCA
VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLK
TEAEMKASEDLKKHGVTVLTALGAILKKKGHHEAELKPLAQSHATKHKIP
IKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELG

———————— VHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFGDLST
———————— VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGDLSN
--------- VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-
--------- VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLS-
--------- VLSEGEWQLVLHVWAKVEADVAGHGQODILIRLFKSHPETLEKFDRFKHLKT
PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT
———————— GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE

PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN- - - - - LKGTFATLSELHCDKLHVDPENFRL
PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN- - - - - LKGTFAALSELHCDKLHVDPENFRL
- ---HGSAQVKGHGKKVADALTNAVAHVDD- - - - - MPNALSALSDLHAHKLRVDPVNFKL
- ---HGSAQVKAHGKKVGDALTLAVGHLDD- - - - - LPGALSNLSDLHAHKLRVDPVNFKL
EAEMKASEDLKKHGVTVLTALGAILKKKGH----- HEAELKPLAQSHATKHKIPIKYLEF
ADQLKKSADVRWHAERIINAVNDAVASMDDT - - EKMSMKLRDLSGKHAKSFQVDPQYFKV
VP--QNNPELQAHAGKVFKLVYEAATQLOVTGVVVIDATLKNLGSVHVSKGVAD-AHFPV

LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH- - ----
LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH- - --- -
LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------
LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR------
ISEAITHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
LAAVIADTVAAG---D------ AGFEKLMSMICILLRSAY-------
VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA- - -

Software: muscle, MAFFT

<€

>

Progressive
alignment

Distance matrix

17
59
59
77
81
87

60
59
77
82
86

13
75
73
86

75
74
88

80 -
93 90

Guide tree

Signals and entropy measures

Entropy of a multialignment is calculated as Define frequencies for the occurrence of each
a column score as the sum of the negative |etter in each column of multiple alignment

logarithm of this probability of each symbol
(i={A, C, T, or G}): E=-); p;logp;
This is an entropy measure directly related

to the equation for Shannon entropy in Pa = 0.50, py = 0.25, pc=0.25 p=0 (3" column)

information theory. It is a convenient Compute entropy of each column

measure of the variability observed in an AlAA

aligned column of residues. The more AlG|IC

variable the column is, the higher the An alignment with 3 columns Alcla

entropy. A completely conserved column

would score 0. AIC|T
0 0.811 2.

The user can impose a penalty value for

sites that have alignment Gaps (see figure N

below): w*P where w = Value inserted by N

the user as the cost of a gap; Pj = The

number of gaps in the site j divided by the

Pa =1, Pr=Pg=pc=0 (15t column)
Pa = 0.75, pr = 0.25, pg=pc=0 (2" column)

Phylogenetic noise

number of sequences in the alignment. :

40

Sequence 1 AGGTAGCTCGATAGCTAGATCGATAGCTAGATAGCTAGAT
Sequence 2 TGGTAGGTCGTTAGGTAGATCG-TA—CT—-GAT-G-TAGTT
Sequence 3 AGCTAGCTGGATTGCTACATCGR—A——A—CTG—{CTAGAT

This approach could identify regions of Seauonces AcmcersontA ottt mhcns
phylogenetic noise: In some areas there is Seduence? AccTAGCTCOACAGCTACATOdETA C A AT |cTARAT
very little information; a condition for the Sequenced TGGTACCTCGACGCTACOTCRTA A A A fTAGCT
alignment is to have enough information. Sequence 11 ACATACCTCAATAGCTAGTTCqTA o JoracaT

™~

/'

Regions with phylogenetic signal

What Computer Scientists could learn from Bioinformatics

For example, given an execution trace of instructions,
push ebp
mov ebp, esp
mov eax, dword ptr [ebp-0x4]
Jjmp +0x14

it is abstracted as a sequence of mnemonics, i.e.
push, mov, mov, Jmp

ignoring the operands. Each mnemonic is then mapped to a
unique alphabet-pair, e.g. mov = MO, push = PH, jmp
= JM. The resulting sequence is thus PHMOMOJM.

-y

EXAMPLE: Phylogenetic-

inspired techniques for reverse
engineering and detection of

malware families

dbg VPHPHPHLEMGMGRPMGMGAD CMHLMGADCMHLMGADCMH YMG I MG IMADMG I MCMH ZMGGRMGHMMGCMH ZMGCMH ZMGCMH YMGGRMGMGPPPPPPMGPPRE

def |[PHMGPHMGMGADCMHLMGADCMHLMGADCMHYMGIMMG IMADMG IMCMH ZMGGRMGHMMGCMH ZMGCMH ZMGCMH YMGGRMGMGMGPPRE
spd APHMGPHMGLECMHLLECMHLLECMHLMGMGIMIMMGPH IMLECMHZMGCMPPHZCMHZCMHZPPPPGRPPRE

(b)

dbg [PAMGISVPHPHPHLEMGMGRPMGMGAD[CMH]
R MGMGAD|-MH 1]
spd [PHMGl--PHMGP-————————— HMGLELMH

(c)

dbg PHMGSVPHPHPHLEMGMGRPMGMGADCMHLMGAD[® FMG IMADMG I MCFH ZMGGRMGHMMGCMH ZMG{MH ZMG"MH YMGGRMGMGPPPPPPMGPPRE
def ——-—--——-———- PHMGPHMGMGADCMHLMGAD(" I MMG IMADMG I MCMH ZMGGRMGHMMGCMH ZMGI - MHZMG RMGMGMGPPRE-—————
spd —————————————- PHMGPHMGPHMGLECMHLLH IMIMMGPH IMLECMH - ————————————~ PPHZICMHZCMHZ PPPPGRPPRE - —————

Sequence alignment (dbg: with debugging symbols, def: default settings, spd:

optimised for speed). (a) Before alignment. (b) After alignment using an identity

substitution matrix. (c) After alignment using a substitution matrix

262

What Computer Scientists could learn from Bioinformatics

nnnnnnnnnnnnnnnnnnnnnnnnn
® T fTee ke ®E s § 8 3 F T8 % R B s S

JsT.J'I:sPPSII'kMG%HMMGCQﬂSHSTH bor \ |

xnnnﬁg35#333ea5335%5’13mmm3385$$3c

%LSS;HnnZG HmRch-hSSg;HvDECALHY

nnnnnnnnnnnnnnnnnnnnnnnn
8 8 28 R N R T B & KR R ? 8 5 9§ 8 3 83 85 8 8 8 53 & 8 3 8 % ¢

N o
o
v,
jj’%‘AD?THYM@?%MG,:H?DE?%U“;HYC s
= Distance algorithm in computer science
o é\ A) A sequence logo for the FakeAV-DO function “ F1 ”. Positions
75, e i with large characters indicate invariant parts of the function;
2 positions with small characters vary due to code metamorphism

B) A neighbour joining tree of FakeAV-DO set of procedures F1.

C) Neighbor joining tree of FakeAV-DO set of procedures F2
C from

the same samples of B.

(W.M. Khoo and P. Lio’ Unity in diversity: Phylogenetic-inspired
techniques for reverse engineering and detection of malware
families)

Reference for this section

BUOINFORMATIGS ALGORITANS BIOINPORMATLGS ALGORIENS 5 Chapter 7 Vol 2

An Active Learning Approach An Active Learning Approach

2nd Edition, Vol. I 2nd Edition, Vol. IT

by Phillip Compeau & Pavel Pevzner

by Phillip Compeau & Pavel Pevzner i«

1

Biological
sequence
analysis

$333° |

Chapter 6 and 7

*
L

Probabilistic models
of proteins and
nucieic acids

iy

111

R. Durbin

S. Eddy

A Krogh

G. Mitchison

O00NNNANANG
111l

| Camario |

Reference: D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for multiple
sequence alignments. Methods in Enzymology, 266:383402, 1996.

Section 4

Clustering biological data

The Lloyd algorithm for k-means clustering
From Hard to Soft Clustering

From Coin Flipping to k-means Clustering
Expectation Maximisation

Soft k-means Clustering

Hierarchical Clustering

Markov Clustering Algorithm

VVVVYVYVYY

265

Biologists need algorithms to find similar behaving genes

24h rhythmic genes

short-day long-day

- e—— — e - the heat map shown here

1st 2nd 1st 2nd

0 4 s 121620 0 48 2 s 20 04 s 121620 048 2 s 20 represents a genome-wide
expression profile of 24-hour-
rhythmic genes in the mouse
under chronic short-day (left
two panels) and long-day
(right two panels) conditions.
(From Masumoto KM, Ukali-
Tadenuma M, Kasukawa T, et
al. Curr. Biol. 20 [2010]
2199-2206.

266

Biologists need algorithms to find similarly behaving genes

Time points

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLO28W
YKLOZ26C
YPROS55OW

0.14
0.12
-0.10
-0.43
0.11

0.03
-0.23
-0.14
-0.73

0.43

-0.06
-0.24
-0.03
-0.06

0.45

0.07
-1.16
-0.06
-0.11

1.89

-0.01
-1.40
-0.07
-0.16

2.00

-0.06
-2.67
-0.14
3.47
3.32

-0.01
-3.00
-0.04
2.64
2.56

0.09

-0.28

-0.15

-1.18

-1.59

-2.96

-3.08

-0.16
-0.28
-0.19

0.15

-0.04
-0.23
-0.15

0.15

-0.07
-0.19
0.03
0.17

-1.26
-0.19
0.27
0.09

-1.20
-0.32
0.54
0.07

-2.82
-0.18
3.64
0.09

-3.13
-0.18
2.74
0.07

Genes
(yeast
genome)

e; = expression level of
gene j at checkpoint j

gene expression
<+«—— | vector
(log[expression])

Time points

267

Genes as Points in Multidimensional Space

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00
YNRO65C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04
YGRO43C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64
YLR258wW 0.11 0.43 0.45 1.89 2.00 3.32 2.56
YPLO12wW 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08
YNL141w -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13
vyJroz28w -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18
YKLO26C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74
YPROS5wW 0.15 0.15 0.17 0.09 0.07 0.09 0.07
(8,7)
°
(1, 6) (5,6)
e °
(3,4)
°
(1, 3) (10, 3)
e °
(5,2)
°
7, 1)

nxm
gene expression
matrix

\4

n points in
m-dimensional
space

268

OUTPUT: partition all yeast genes into clusters so that: genes in the same cluster
have similar behavior; genes in different clusters have different behavior

Cluster 1 Cluster 2 Cluster 3

Cluster 4 Cluster 5 Cluster 6

Combinations of samples/genes
(different ways to do the clustering)

Genes

Samples/conditions Samples/conditions
Cluster genes with similar "
sample expression-profile. 2
O]
Cluster samples with similar
gene expression-profile. =) v

Samples

Combination model

Each color corresponds to
some “cause”.

Genes

The cause affects a
subset of genesin a
subset of the samples.

e.g. Ihmels et al. Nature genetics 2002

Clustering -> Functional Annotations of Genes

Gene list and population
background being analyzed

Functional Annotation Chart

Current Gene List: demolist1
Current Background: Homo sapiens

145 DAVID IDs
E Options

Thresholds: Count 2 e
Display: Fold Enrichment Bonferroni
Number of records 1000

Rerun Using Options

220 chart records

Minimum number of genes for
the corresponding term

Create Sublist

GOTERM_CC_DIRECT extracellular space

GOTERM_CC_DIRECT extracellular region

UP_KEYWORDS

UP_SEQ_FEATURE

UP_KEYWORDS

UP_SEQ_FEATURE

UP_KEYWORDS

Disulfide bond
signal peptide
Secreted

disulfide bond

Signal

GOTERM_BP_DIRECT defense response to fungus

UP_KEYWORDS

UP_KEYWORDS

iinal database/resource
re the terms orient

Glycoprotein

Heme

Enriched terms
associated with your
gene list

Maximum EASE

Score/P-Value

Maximum number of

record per page

Fishrer Exact LT,PH,PT

Related Term Search

Percentage, e.g. 14/171=8.2%
(involved genes/total genes)

Genes involved
in the term

22.1 4.1E-

1.3E-
2.4 6
1.6E-
6
1.7E-
6
1.9€-
6
3.8 4.5E-

5.6E-
5

Help and Manual

& Download File

2.3€-4
5.9E-4
2.364
5.9E-4
4.1E-3
5.8E-2
T 1.4E-2

1.4E-2

Modified Fisher Exact
P-Value, EASE Score
The smaller, the more
enriched

https://david.ncifcrf.gov/content.jsp?file=functio

nal annotation.html

A Typical Analysis Flow for Gene-enrichment and
Functional Annotation Analysis

Load Gene List > View Summary Page - Explore

details through Chart Report, Table Report,
Clustering Report, etc. - Export and Save
Results.

After clustering we want to
understand the biological
meaning behind each group of
genes (why they show the
same patterns?)

Gene list being
analyzed

group of terms
wing similar
ological meaning
1e to sharing similar
:ne members

The overall enrichment
score for the group based
on the EASE scores of each
term members. The higher,
the more enriched

Clustering options
and stringency

Functional Annotation Clustering Every term in the

annotation cluster Help and Manual
Current Gene List: demolist1

Current Background: Homo sapiens

145 DAVID IDs

& Options Classification Stringency Medium v

Rerun using options = Create Sublist

ALL genes involved in
this annotation cluster Genes involved in

individual term

Related Term Search ‘

i Download File

Count | P_Value | Benjamini

33 Cluster(s)

Enrichment Score: 5.37

GOTERM_CC_DIRECT extracellular space RT 32 7.1E-9 1.2E-6
GOTERM_CC_DIRECT extracellular region RY 32 4.1E-7 3.5E-5
UP_KEYWORDS Disulfide bond RT [ES—— 47 1366 2.3E-4
UP_SEQ_FEATURE signal peptide RT 46 1.6E-6 5.9E-4
UP_KEYWORDS Secreted RT —— 33 1.76-6 2.3E-4
UP_SEQ_FEATURE disulfide bond RT JE— 42 1.9E-6 5.9E-4
UP_KEYWORDS Signal RT —— 49 4.56-5 4.1E-3
UP_KEYWORDS Glycoprotein RT U 50 2.2E-4 14E-2
UP_SEQ_FEATURE glycosylation site:N-linked (GIcNAC...) RT [— 44 4.56-1
Annotation Cluster 2 Enrichment Score: 2.6 : =3 Benjamini

GOTERM_BP_DIRECT defense response to fungus RT = 5 5665 5.8E-2
GOTERM_BP_DIRECT antibacterial humoral response RT = 3964 2.0E-1
UP_KEYWORDS Antibiotic RT - 4.56-4 1.7E-2
INTERPRO RT - 3 7.8E-4 1.0E-1
INTERPRO RT 3 78644 1.0E-1
INTERPRO RT & 3 7.8E-4 1.0E-1
UP_KEYWORDS Antimicrobial AT = 6 8.1E-4 2.4E-2
INTERPRO Beta defensin/Neutrophil defensin RT = 3 1.56-3 1.4E-1
PIR_SUPERFAMILY alpha-defensin RT = 3 1763 3.1E-2
SMART DEFSN RT @ 3 2263 2.4E-1
UP_KEYWORDS RT & 3 3363 8.E-2
GOTERM_BP_DIRECT of cells of other organism RT & 3 5263 3.4E-1
GOTERM_BP_DIRECT defense response to Gram-positve R = o 2962 8i5E1
GOTERM_CC_DIRECT Golgi lumen RT - 4 3.36-2 5.1E-1
UP_KEYWORDS Defensin RT & B 4.8E-2 5.4E-1
GOTERM_BP_DIRECT innate immune response RT 1.0E0

Enrichment Score: 2.36

3.0E-1

GOTERM_BP_DIRECT positive regulation of GTPase activity

GOTERM_BP_DIRECT MAPK cascade RT = 8 A (S
GOTERM_MF_DIRECT Ras quanyl-nucleotide exchange factor RT @ s 1162 5361

activity
Enrichment Score: 2.23

1.4E-2

UP_KEYWORDS

Heme

UP_KEYWORDS Iron RT 10 3.4E4 1.6E-2
GOTERM_MF_DIRECT oxygen binding RT 5 4.1E-4 922
GOTERM_MF_DIRECT heme binding RT 7 5764 9.2E-2
GOTERM_MF_DIRECT iron ion binding RT 7 10E3 1.1E-1
UP_KEYWORDS Oxygen transport RT 3 3363 8.1E-2
GOTERM_CC_DIRECT hemoglobin complex RT 3 3.36-3 1.4E-1
UP_SEQ_FEATURE :'Ir;eat:;)lommnmng site:Iron (heme distal py 3 3363 4.561

EASE Score, the modified Fisher Exact P-Value. They are identical
to that in the Chart Report. The smaller, the more enriched

https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html
https://david.ncifcrf.gov/content.jsp?file=functional_annotation.html

Good Clustering Principle: Elements within the
same cluster are closer to each other than
elements in different clusters.

* distance between elements in the same cluster < A
e distance between elements in different clusters > A

272

Clustering Problem

Clustering Problem: Partition a set of expression

vectors into clusters.

 Input: A collection of n vectors and an integer k.

* Output: Partition of n vectors into k disjoint
clusters satisfying the Good Clustering Principle.

Any partition into
e two clusters does not
ot satisfy the Good
K Clustering Principle!

Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data.

Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data
and will minimise some notion of distance from

Centers to Data .

What is the “distance” from Centers to [Data?

@ o"\‘

U .

‘®

Distance from a Single DataPoint to Centers

The distance from DataPoint in Data to Centers is
the distance from DataPoint to the closest center:

d(DataPoint, Centers) = mMiNgy points x from centers d(DataPoint, x)

‘ 276

Distance from Data to Centers

MaxDistance(Data, Centers) =
MAX 41l points DataPoint from Data d(Data'DOint/ Centers)

" 277

k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points

Data, find k centers minimising MaxDistance(Data,

Centers).

* Input: A set of points Data and an integer k.

* Output: A set of k points Centers that minimises
MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points

Data, find k centers minimising MaxDistance(Data,

Centers).

* Input: A set of points Data and an integer k.

* Output: A set of k points Centers that minimises
MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

. .
. o*
. R
M .

. .

* .*

- ’ An even better
o O set of centers!

k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
Centers « the set consisting of a single DataPoint from Data
while Centers have fewer than k points
DataPoint «— a point in Data maximising d(DataPoint, Centers)
among all data points
add DataPoint to Centers

. 280

k-Center Clustering Heuristic

FarthestFirstTraversal(Data, k)
Centers « the set consisting of a single DataPoint from Data
while Centers have fewer than k points
DataPoint «— a point in Data maximising d(DataPoint, Centers)
among all data points
add DataPoint to Centers

‘e
.
.
G
G
Y.
e

.‘ 281

What Is Wrong with FarthestFirstTraversal?

FarthestFirstTraversal selects Centers that minimise
MaxDistance(Data, Centers).

But biologists are interested in typical rather than
maximum deviations, since maximum deviations may
represent outliers (experimental errors).

human eye

FarthestFirstTraversal

/ N
*/

Modifying the Objective Function

The maximal distance between Data

and Centers:

MaxDistance(Data, Centers)=
MaX potapoint from Data d(DataPoint, Centers)

A single data point contributes
to MaxDistance

"
o

The squared error distortion
between Data and Centers:

Distortion(Data, Centers) =

Z DataPoint from Data d(Data'DOint/ Centers)z/n

All data points contribute to
Distortion

k-Means Clustering Problem

k-Center Clustering Problem:
Input: A set of points Data and an
integer k.
Output: A set of k points Centers
that minimises

MaxDistance(DataPoints, Centers)

over all choices of Centers.

k-Means Clustering Problem:
Input: A set of points Data and an
integer k.
Output: A set of k points Centers
that minimises

Distortion(Data,Centers)

over all choices of Centers.

‘ ‘---
.
.
.
.
*'0.
g .,
g
Q
Q
..
..X‘
.
.

NP-Hard for k > 1

i S

284

k-Means Clustering for k=1

Center of Gravity Theorem: The center of gravity of

points Data is the only point solving the 1-Means
Clustering Problem.

The center of gravity of points Data is
2 all points DataPoint in Data DataPoint / #POintS In Data

5 O i-th coordinate of the center of
oravity = the average of the i-th
o O coordinates of datapoints:

((2+4+6)/3, 3+1+5)/3) = (4, 3)

The Lloyd Algorithm in Action

Select k arbitrary data points as Centers

The Lloyd Algorithm in Action

~ \\
/7 o
YA | \
[. 0!
\ I _
- ~
SRX e
~ 7z . \
/ \
/ ®
/ o .. |
/ I
I |
| /
\ /
\ /
@ o /
Ve
._,.’

assign each data point to its nearest center

The Lloyd Algorithm in Action

/ o
/1@ \
|
o o *,
\'\:‘ ® ®/ /”._\\
N 7/ o
/ \
/ ®
/ [) .. |
/ [I
I l
I /
\ /
\\. //
o 7/
o \\ =

new centers € clusters’ centers of gravity

The Lloyd Algorithm in Action

/ o
! @ \
'. o ."
\ -~
\‘ o @/ /,‘ \
\
I .’
\ @ ..l . '
/7 o
\\:—/ agaln
®
o %o
@,

assign each data point to its nearest center

The Lloyd Algorithm in Action

-’ \\
/7 o
A | \
'. o ."
\ -
\‘ o @/ /,‘ \\
I o .:
\‘f../ . '
IQ\ / °
NP again
o
o
o o ©
¢ o

new centers € clusters’ centers of gravity

The Lloyd Algorithm in Action

//0 ¢ \\
,. ® o
' o ./’ //;..\\
\\\t,/ / @ ® \
1
L0 e
/ .
RN again!
®
o o °
® o
assign each data point to its nearest center

The Lloyd Algorithm

Select k arbitrary data points as Centers and then
iteratively performs the following two steps:

» Centers to Clusters: Assign each data point to the
cluster corresponding to its nearest center (ties
are broken arbitrarily).

* Clusters to Centers: After the assignment of data
points to k clusters, compute new centers as
clusters’ center of gravity.

The Lloyd algorithm terminates when the centers
stop moving (convergence).

Must the Lloyd Algorithm Converge?

If a data point is assigned to a new center
during the Centers to Clusters step:

— the squared error distortion is reduced
because this center must be closer to

the point than the previous center was.

If a center is moved during the Clusters to
Centers step:

— the squared error distortion is reduced
since the center of gravity is the only
point minimising the distortion (the
Center of Gravity Theorem).

293

RECAP

=2

=1

08

04 0.6

0.2

0.4 0.6 08

0.2

0.4 06 08

0.2

=4

=3

04 0.6 08

0.2

08

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Soft vs. Hard Clustering

The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
» “hard” assignment of data points to clusters.

——
——— _—~~
- —~

” .. ~
g 0Q 00 0"
l %, °°
\ o ¢ X

N ®0o0 .,’

S o 0

~ -
-_— -
e o o mm m= w=

Midpoint: A point approximately
halfway between two clusters.

295

Soft vs. Hard Clustering

* The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
» “hard” assignment of data points to clusters.

— - - - ———___—--~
- -— - -—
- -~ ~

/. ~
DS ” N
” :. N/ ..‘.. .\
r 0002 o AN O
..... l.\ .: ..‘.
\ "0:0. ‘! ®e o .0
A%
0% AN 000 ®° -
~ - ~ 0%~
~ - ~

[- -~y .
" oy —-— - -
— — — — —-—
_ e o e o = == L i e

* Can we color the midpoint half-red and half-blue?
» “soft” assignment of data points to clusters.

296

Soft vs. Hard Clustering

(0.98, 0.02)
/
[° o
® .o ® 9
o ©® o0
S 8. (001,099
(0.48,052) & ®e

Hard choices: points are
colored red or blue depending
on their cluster membership.

Soft choices: points are assigned
“red” and “blue” responsibilities

Iblue and fred Wblue + Fred =1 097

Flipping One Biased Coin

» We flip a loaded coin with an unknown bias 0
(probability that the coin lands on heads).
* The coin lands on heads i out of n times.

» For each bias, we can compute the probability of the
resulting sequence of flips.

Probability of generating the given sequence of flips is

Pr(sequence|0) = 6" * (1-6)"

This expression is maximised at 8= i/n (most likely bias)

L8R Flipping Two Biased Coins
A
Data
HTTTHTTHTH 0.4
HHHHTHHHHH 0.9
HTHHHHHTHH 0.8
HTTTTTHHTT 0.3
THHHTHHHTH 0.7

Goal: estimate the probabilities 8, and 6,

If We Knew Which Coin
Was Used in Each Sequence...

Data HiddenVector

HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Goal: estimate Parameters = (6, ,0,)
when HiddenVector is given

300

HTTTHTTHTH
HHHHTHHHHH
HTHHHHHTHH
HTTTTTHHTT
THHHTHHHTH

05 = fraction of heads generated in all flips with coin B =
(9+8+7)/ (10+10+10) = (0.94+0.8+0.7) / (1+1+1) = 0.80

o O O O
W 0 Y =

0.

0, = fraction of heads generated in all flips with coin A =
(4+3)/(10+10) = (0.4+0.3) /2 = 0.35

If We Knew Which Coin
Was Used in Each Sequence...

Data

v

HiddenVector
1

0
0
1

0

301

Parameters as a Dot-Product

Data HiddenVector Parameters=(6, 0;)
HTTTHTTHTH 0.4 1

(0.35, 0.80)

* * * *

HTTTTTHHTT 0.3
*

0, = fraction of heads generated in all flips with coin A =
= (4+3)/(10+10) = (0.4+0.3) /2 = 0.35

(0.4*14+0.9*04+0.8*0+0.3*1+0.7*0)/ (1+0+0+1+0) = 0.35
2 all data points i Data;* HiddenVector; / ¥ i data points i fiddenVectori= 0.35
Data * HiddenVector / (1,1,...°1)%Hicddem\Vectior =0.35

1 refers to a vector (1,1, ... ,1) consisting of all 1¢°

Parameters as a Dot-Product

Data HiddenVector Parameters=(6, 0;)

HTTTHTTHTH 0.4 «* 1
HHHHTHHHHH 0.9 «x 0
HTHHHHHTHH 0.8 «* 0 (0.35, 0.80)
HTTTTTHHTT 0.3 «* 1
THHHTHHHTH O0.7 * 0

05 = fraction of heads generated in all flips with coin B
= (94+8+7)/(10+10+10) = (0.9+0.840.7) /(T+1+1) = 0.80

(0.5*04+0.9*14+0.8*1+0.4*0+0.7*1) / (O+1+14+0+1) = 0.80
all points i Data; * (1- HiddenVector;) / 3. 41 points i (1- HiddenVector;)=

Data * (1-HiddenVector) / 1 * (1 - HiddenVector) 303

Parameters as a Dot-Product

Data HiddenVector Parameters=(6, 0;)

HTTTHTTHTH 0.4 x 1
HHHHTHHHHH 0.9 x O
HTHHHHHTHH 0.8 * O (0.35, 0.80)
HTTTTTHHTT 0.3 * 1

THHHTHHHTH O0.7 * 0

0, = fraction of heads generated in all flips with coin A
= (0.4+0.3)/2=0.35
= Data * HiddenVector /1 * HiddenVector

05 = fraction of heads generated in all flips with coin B
= (0.9+0.8+0.7)/3=0.80
= Data * (1-HiddenVector) / 1 * (1 - HiddenVector)

Data, HiddenVector, Parameters

Data HiddenVector Parameters=(0,, 05)

0.4 1
0.9 0
0.8 0 —> (0.35, 0.80)
0.3 1
0.7 0

HiddenVector Parameters

305

Data, HiddenVector, Parameters

Data HiddenVector Parameters=(0,, 0;)
'

<«— (0.35, 0.80)

o O O OO
<N W 00 O b

.o .o .o .o []

HiddenVector - Parameters

306

From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,, 0p)

0.4 ?
0.9 ?
0.8 ? «— (0.35, 0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
15t sequence (with 4 H)?

Pr(1st sequence|0,)=0,* (1-6,)° = 0.35% @ 0.65° = 0.00113 >
Pr(15t sequence|B;)= 0854(1-05)° = 0.80* ¢ 0.20° = 0.00003

307

From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,, 0)

0.4 1
0.9 ?
0.8 ? «— (0.35, 0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
15t sequence (with 4 H)?

Pr(1st sequence|0,)=0,* (1-6,)° = 0.35% ¢ 0.65° =0.00113 >
Pr(1st sequence|0;)= 05%(1-05)°= 0.80* @ 0.20° = 0.00003

308

From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,, 0;)

0.4 1
0.9 ?
0.8 ? «— (0.35,0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
2 sequence (with 9 H)?

Pr(2"d sequence|0,)= 0,7 (1-0,)'=0.35%¢0.65" = 0.00005 <
Pr(2nd sequence|0;g)= 05° (1-05)! =0.80° ¢0.20" = 0.02684

309

From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,, 0;)

0.4 1
0.9 0
0.8 ? «— (0.35,0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
2 sequence (with 9 H)?

Pr(2nd sequence|0,)=0,° (1-0,)'=0.35%¢0.65' = 0.00005 <
Pr(2nd sequence|0;g)= 05° (1-05)!' =0.80° ¢0.20" =~ 0.02684

310

HiddenVector Reconstructed!

Data HiddenVector Parameters=(0, 0;)

1

<«— (0.35, 0.80)

o O O OO
<N W 00 O b
o OO

311

Reconstructing HiddenVector and Parameters

HiddenVector Parameters

Reconstructing HiddenVector and Parameters

HiddenVector Parameters’

Reconstructing HiddenVector and Parameters

Parameters’

Reconstructing HiddenVector and Parameters

Iterate!

HiddenVector’ Parameters’

From Coin Flipping to k-means Clustering:
Where Are Data, HiddenVector, and Parameters?

Data: data points Data = (Data;,...,Data,)
Parameters: Centers = (Center,,...,Center))

HiddenVector: assignments of data points to k centers
(n-dimensional vector with coordinates varying from 1 to k).

¢ o°
f\‘ o\:}/‘

316

Coin Flipping and Soft Clustering

Coin flipping: how would you select between coins A and B if
Pr(sequence|6,) = Pr(sequence|6;)?

k-means clustering: what cluster would you assign a data point it
to if it is a midpoint of centers C; and C,?

- o . =
- ~ oy - i .
- l

- ~ -~
o hb- S oo 00g ™
’e800® > XY
000%% \ °® oo
(900, ® (@ o0 ® |
® 0] o
o0 o
%000 y oo e /
<0 P \\ ..//

— —y - - -_—, - =
_oam mm mm m— _—em am == -

Soft assignments: assigning C; and C, “responsibility” =0.5 for
a midpoint. -

From Data & Parameters to HiddenVector

Data HiddenVector Parameters = (0,,0)
.4 ?

<« (0.60, 0.82)

o O O OO

J I I Y

9
8
.3
7

Which coin is more likely to have generated the first
sequence (with 4 H)?

Pr(15 sequence|B,)=0," (1-8,)° = 0.60* ¢ 0.40° = 0.000531 >
Pr(1st sequence|B;)= 65°(1-05)° = 0.82% @ 0.18° =~ 0.000015

318

Memory Flash:
From Data & Parameters to HiddenVector

Data HiddenVector Parameters = (0,,0)
.4 1

<« (0.60, 0.82)

o O O OO

J I I Y

9
8
.3
7

Which coin is more likely to have generated the first
sequence (with 4 H)?

Pr(15 sequence|B,)=0," (1-8,)° = 0.60* ¢ 0.40° = 0.000531 >
Pr(1st sequence|B;)= 65°(1-05)° = 0.82% @ 0.18° =~ 0.000015

319

From Data & Parameters to HiddenMatrix

Data HiddenMatrix Parameters = (0,,05)
0.97 0.03

<&« (0.60, 0.82)

J I I Y

What are the responsibilities of coins for this sequence?

Pr(1st sequence|6,) = 0.000531 >
Pr(15t sequence|Bz) = 0.000015

0.000531 /(0.000531 + 0.000015) = 0.97
0.000015 /(0.000531 + 0.000015) = 0.03 320

From Data & Parameters to HiddenMatrix

Data HiddenMatrix Parameters = (0, 0;)

0.4 0.97 0.03

0.9 0.12 0.88

0.8 ? <« (0.60,0.82)
0.3 ?

0.7 ?

What are the responsibilities of coins for the 2" sequence?

Pr(2nd sequence|8,) = 0.0040 <
Pr(2nd sequence|6;) = 0.0302

0.0040 / (0.0040 + 0.0302) = 0.12
0.0342 /(0.0040 + 0.0342) = 0.88 321

HiddenMatrix Reconstructed!

Data HiddenMatrix Parameters = (0,,0;)

0.4 0.97 0.03
0.9 0.12 0.88
0.8 0.29 0.71 <= (0.60,0.82)
0.3 0.99 0.01
0.7 0.55 0.45

322

Expectation Maximization Algorithm

HiddenMatrix Parameters

E-step

HiddenMatrix Parameters

M-step

HiddenVector Parameters’

Memory Flash: Dot Product

Data HiddenVector Parameters=(6, 0;)

HTTTHTTHTH 0.4 * 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 * 0 222
HTTTTTHHTT 0.3 * 1
THHHTHHHTH 0.7 * 0
0,=Data * HiddenVector /1 * HiddenVector

O0p,= Data * (1-HiddenVector) /1 * (1-HiddenVector)

326

From Data & HiddenMatrix to Parameters

Data HiddenVector Parameters=(0,,0;)

HTTTHTTHTH 0.4 1

HHHHTHHHHH 0.9 0

HTHHHHHTHH 0.8 0

HTTTTTHHTT 0.3 1

THHHTHHHTH 0.7 0
0,=Data * HiddenVector /1 * HiddenVector
O;= Data * (1-HiddenVector) / 1 * (1-HiddenVector)

HiddenVector= (1 0 O 1T 0)

What is HiddenMatrix corresponding to this HiddenVector?

327

From Data & HiddenMatrix to Parameters

HTTTHTTHTH
HHHHTHHHHH
HTHHHHHTHH
HTTTTTHHTT

THHHTHHHTH
0,=Data *

o O O O
W 00 Y =

0

Data

v

HiddenVector

HiddenVector Parameters=(0,,0p)

1

o OO

/1 * HiddenVector

0, = Data * 15t row of HiddenMatrix / 1*1%t row of HiddenMatrix

O;= Data * (1-HiddenVector) /1 * (1-HiddenVector)

0, = Data * 2" row of HiddenMatrix / 1*2" row of HiddenMatrix

HiddenVector =

Hidden Matrix =

(1

O 1 0)

0 1 0= HiddenVector
1 0O 1=1- HiddenVector?®

From Data & HiddenMatrix to Parameters
Data

HTTTHTTHTH
HHHHTHHHHH
HTHHHHHTHH
HTTTTTHHTT

THHHTHHHTH
0,=Data *

o O O O
<N W 00 O b

0

O O O OO

HiddenVecto

HiddenMatrix Parameters=(6,,0;)

.97 0.
.12 0.
.29 0.
.99 0.

55 0.
/

03
88
71
01

45
1 * HiddenVector

0, = Data * 15t row of HiddenMatrix / 1*1%t row of HiddenMatrix

O;= Data * (1-HiddenVector)

/1 * (1-HiddenVector)

0, = Data * 2" row of HiddenMatrix / 1*2" row of HiddenMatrix

HiddenVector =

Hidden Matrix =

(1

0

0 1

0)

97 .03 .29 .99 .55

.03 .97 .71

01

45 e

From HiddenVector to HiddenMatrix

Data: data points Data = {Data;, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center}
HiddenVector: assignments of data points to centers

A B c D E F G
HiddenVector " 2 1 3 2 1 3 3
1 0
HiddenMatrix 9 1
3

1 0
2

1

2
1
?7'/63
3

/e_\o—‘o
? IO | =

330

From HiddenVector to HiddenMatrix

Data: data points Data = {Data;, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center}
HiddenMatrix; ;: responsibility of center / for data point

A C D E F G
1 H0.7 0
HiddenMatrix o[0.2 p
3 0.1 0

2

1

/e_\o—\Om
? O |1 | -

1 3

1
2
3
3

331

From HiddenVector to HiddenMatrix

Data: data points Data = {Data,,

Parameters: Centers = {Center;,

1
HiddenMatrix 9

3

B

D

... ,Data,}
... ,Center}
HiddenMatrix; ;: responsibility of center / for data point

E

F

0.70

0.15

0.73

0.40

0.15

0.80

0.05

0.05

0.20

0.80

0.17

0.20

0.80

0.10

0.05

0.20

0.10

0.05

0.10

0.40

0.05

0.10

0.90

0.75

1

Q\

J °

1

2

2
3
3

_

Responsibilities and the Law of Gravitation

planets

0.70 | 0.15 | 0.73 | 0.40 | 0.15 | 0.80 | 0.05 | 0.05
stars 0.20 | 0.80 | 0.17 | 0.20 | 0.80 | 0.10 | 0.05 | 0.20
0.10 | 0.05 | 0.10 | 0.40 | 0.05 | 0.10 | 0.90 | 0.75

responsibility of star / for a planet j is proportional to the
pull (Newtonian law of gravitation):

Force, =1/distance(Data;, Center;)?

HiddenMatrix;: =

FOI‘CG,'//' / Zall centers | FOI’Ce,'//'

Responsibilities and Statistical Mechanics

data points
0.70 | 0.15 | 0.73 | 0.40 | 0.15 | 0.80 | 0.05 | 0.05
centers | 020 | 0.80 | 0.17 | 0.20 | 0.80 | 0.10 | 0.05 | 0.20
0.10 | 0.05 | 0.10 | 0.40 | 0.05 | 0.10 | 0.90 | 0.75

responsibility of center / for a data point j is proportional to

Force.. = e-Bdistance(Dataj, Centeri)

]

where 8 is a stiffness parameter.

Force,-//- / Zall centers | Force

HiddenMatrix;: =

IJ

334

How Does Stiffness Affect Clustering?

Hard k-means
clustering

Soft k-means
clustering
(stiffness B=1)

Soft k-means
clustering
(stiffness B= 0.3)

335

Hierarchical Clustering

Stratification of Clusters

Clusters often have subclusters, which have
subsubclusters, and so on.

336

Stratification of Clusters

Clusters often have subclusters, which have sub-
subclusters, and so on.

~ o~ TS
=~ N - TSN
’/17‘:\\ \ 7% AN
RN P\ d R
// I _/\I\ Il' ‘ N
\ \ \
\ -
/ RS @ R
/ \ Q' /
(/7 J \
/ N ¢// ~ s \
/ I : !
I |
,’ / |‘ /z"‘\\ |
- =N -
I s N / / (PN !
v, A ! ' / @ o,
@ \ d \ S==00
\ / v\ - l
o @, Ve e
A3 Y 7 \ \\\ ‘I 7
N__.27 N S==C 337
S o -~

From Data to a Tree

To capture stratification, the hierarchical clustering
algorithm organises n data points into a tree.

! |

810 _I
gz. ® %9 g1 |

84

!

o—

e 6 6 ¢ o o o o
83 85 8s 87 81 86 810 82 84 89 338

From a Tree to a Partition into 4 Clusters

To capture stratification, the hierarchical clustering
algorithm organises n data points into a tree.

1 |
87 .
%6 ® ‘ Llng
— crossing
g I DR I L
A ‘30 i A _I the tree
84 at 4 points
¢ |_ _
83 _|
. —
gs@ @83
l_-l e 6 6 o o o o o

8 85 8s 8 & 86 810 8 84 89 339

From a Tree to a Partition into 6 Clusters

To capture stratification, the hierarchical clustering
algorithm first organises n data points into a tree.

(67 .
(&) | Line
- - crossing
10\ / o
A .‘ (& \ %) _I the tree
b _at 6 points
6 Clusters [] [_‘
e 6 6 ¢ o o o o o o

83 85 8s 87 81 86 810 82 84 89

340

Constructing the Tree

Hierarchical clustering starts from a transformation of n
expression matrix into n x n similarity matrix or distance matrix.

g2

10 g,
o

A o

84

810

81

Distance Matrix

82 83 84 8s
8.1 9.2 7.7 93

12.0 09 12.0

11.2 0.7

11.2

86
2.3

9.5

87
5.1

10.1

83
10.2

12.8
1.1
12.0

1.0
12.1

9.1

89
6.1

2.0
10.5

1.6
10.6

7.7

8.3

341

810
7.0

1.0
11.5
1.1
11.6
8.5
9.3
12.4

1.1

Constructing the Tree

Identify the two closest clusters and merge them.

81 82 83 84 85 86 87

g 81 92 77 93 23 5.1
g 120 09 120 95 10.1
2 112 07 11.1 8.1
g, 112 92 95
g- 112 85
{g3, g5} g6 5.6

|_ -‘ 87
® 60000 0000 ®
93 85 8s 87 81 86 810 82 84 89

83
10.2

12.8
1.1
12.0

1.0
12.1

9.1

8 8o
6.1 7.0
20 1.0
10.5 11.5
1.6 1.1
10,6 11.6
7.7 8.5
83 93
114 12.4

1.1

342

Constructing the Tree

Recompute the distance between two clusters as
average distance between elements in the cluster.

81 82 838 84 86 87 8s 89 810

g 81 92 77 23 51 102 61 70
2 120 09 95 101 128 2.0 1.0

83 8s 112 111 81 1.0 105 11.5

g, 92 95 120 1.6 1.1

2 56 121 7.7 85

{g3, g5} g, 9.1 83 93

|’ " g 1.4 12.4

9 1.1
® 000000000 i
83 85 Bs 87 81 86 8io 8 8a1 8o

810

Constructing the Tree

Identify the two closest clusters and merge them.

81 8 8¥8 84 86 87 8s 89 810

g 81 92 77 23 51 102 61 7.0
2 120 0.9 95 101 128 2.0 1.0

23 8 112 111 81 1.0 105 11.5

{182, 84} g, 92 95 120 1.6 1.1

—O- g 56 121 7.7 85

{83, g5} g, 9.1 83 93

8s 1.4 12.4
|- -‘ g9 1.1
O 6 6 ¢ 6 6 6 ¢ ¢ O
83 85 8Bs 87 81 8¢ 8io 82 8Ha 89

344

Constructing the Tree

Recompute the distance between two clusters (as
average distance between elements in the cluster).

81 8281 8385 86 87 8s 89 810

g, 77 92 23 51 102 61 7.0
8 84 112 92 95 120 16 1.0

g5 &5 111 81 1.0 105 115

{82, 84} 8 56 121 7.7 85

Bl 87 91 83 93

183/ 851 8 1.4 12.4

|- -‘ g 1.1
810

O 6 6 ¢ 6 6 6 ¢ ¢ O
83 85 8Bs 87 81 8¢ 8io 82 8Ha 89

345

Constructing the Tree

Identify the two closest clusters and merge them.

81 828 838 86 87 8s 89 810

g 77 92 23 51 102 6.1 7.0
183/ 85/ 8s! 82 8 112 92 95 120 16 1.0
T 83 8s 111 81 1.0 105 115
{82, g4} 86 56 121 7.7 85
B 8 9.1 83 93
8s 11.4 12.4
89 1.1

|- -‘ 810

O 6 6 ¢ 6 6 6 ¢ ¢ O
83 85 8Bs 87 81 8¢ 8io 82 8Ha 89

346

Constructing the Tree

Iterate until all elements form a single cluster (root).

|
\
-

e
U T

e 6 6 o o o o o o
83 85 8s 87 81 86 810 82 84 89

347

Examples: Determining the dimensionality of the clustering

A B
“Gene” clustering “Cell line” clustering 100 %
89 cell lines 14,546 genes . 80% |
e an
= g 60 % |
@ 3 : S
“oc’o a © 40%
<o) e (%
g. / 20 0/0 —
=
T f 0% . n .
d;?gsnﬁgfﬁxo 0 500 1000 1500 2000
Dimensionality
£
™ N
O. . °
o ©
° ° ~
°
H
°
00 0 @ 00 o0 °
AN N

Representation of the mRNA clustering problem consisting of >14,000 mRNAs measured
across 89 cell lines. Data are from Lu et al, MicroRNA expression profiles classify human
cancers. Nature 435, 834-838 (2005).. When the mRNAs are clustered, the mRNAs are the
objects and each cell line represents a feature, resulting in an 89-dimensional problem (A).
When attempting to classify normal and tumor cell lines using gene expression, the cells lines
are the objects and each mRNA is a feature, resulting in a clustering problem with thousands of
dimensions (B). (C) Effect of dimensionality on sparsity. (D) Effect of dimensionality on coverage
of the data based on SD from the mean. The cell line clustering problem is even more
challenging because the relatively small number of observations (89) compared with the large
dimensionality (>14,000) could be dominated by noise in the expression data.

Constructing a Tree from a Distance Matrix D

HierarchicalClustering (D, n)

Clusters «<— n single-element clusters labeled 1 to n

I < a graph with the n isolated nodes labeled 1 to n

while there is more than one cluster
find the two closest clusters C; and C;
merge C; and C; into a new cluster C,,,, with |G| + |C;| elements
add a new node labeled by cluster C,.,, to T
connect node C,,, to C; and C; by directed edges
remove the rows and columns of D corresponding to C; and C;
remove C; and C; from Clusters
add a row and column to D for the cluster C,,,, by computing

D(C,., ,C) for each cluster C in Clusters

add C,.,, to Clusters

assign root in T as a node with no incoming edges

return |

Different Distance Functions Result in Different Trees

Average distance between elements of two clusters:

Davg<C1/ CZ) = (Z all points / and in clusters C1 and C2, respectively Di,j)/ (|C1 |>I< | CZ |)

Minimum distance between elements of two clusters:

Dmin(C1/ CZ) = Mmin 4 points i and j in clusters C1 and C2, respectively Di,j

Markov Clustering Algorithm (MCL)

MCL is unsupervised cluster algorithm for graphs derived by
Stijn van Dongen during his Ph.D. (at the link below there
is also his thesis).

Unlike most clustering algorithms, the MCL does not
require the number of expected clusters to be specified
beforehand. The basic idea underlying the algorithm is that
dense clusters correspond to regions with a larger number
of paths (” A random walk that visits a dense cluster will
ikely not leave the cluster until many of its vertices have
peen visited.”). The algorithm works well with within a
nighly connected graphs. You can find the code for many
programming languages at micans.org/mcl

Markov Clustering Algorithm

We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.

A random walk has a higher probability to stay inside the
cluster than to leave it soon. The crucial point lies in
boosting this effect by an iterative alternation of expansion
and inflation steps. An inflation parameter is responsible
for both strengthening and weakening of current, i.e.
Strengthens strong currents, and weakens already weak
currents. An expansion parameter, r, controls the extent of
this strengthening / weakening. In the end, this influences
the granularity of clusters.

354

Matrix representation

355

Markov Clustering Algorithm

@ Input is an un-directed graph, with power parameter e (usually =2), and inflation
parameter r (usually =2).

© Create the associated adjacency matrix
Mpq
Zi qu
@ Expand by taking the e-th power of the matrix; for example, if e = 2 just multiply
the matrix by itself.

© Normalize the matrix; M,, =

(Mpq)'

@ Inflate by taking inflation of the resulting matrix with parameterr : Mpq = S (Mg)"

QO Repeat steps 4 and 5 until a steady state is reached (convergence).

Markov Clustering Algorithm: example

-

?"/

. Ve

ey

< \¥\§.m o
N7 =

-
N

i

1
e
A
1%

I el
“n

Markov Clustering Algorithm

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and
mostly consist of sparse matrices after the first few
steps.

The expansion step of MCL has time complexity O(n3).
The inflation has complexity O(n?). However, the
matrices are generally very sparse, or at least the vast
majority of the entries are near zero. Pruning in MCL
involves setting near-zero matrix entries to zero, and
can allow sparse matrix operations to improve the speed

of the algorithm vastly.

Markov Clustering Algorithm

Input : A weighted undirected graph G = (V, E), expansion parameter e, inflation
parameter r

Output : A partitioning of V' into disjoint components

M — M(G)

while M is not fixpoint do

M — M¢*

forall: € V do

forall ; € V do

L Mli][j] — ML (5]

forall ; € V do

L Mi[j] « A

keVv

H « graph induced by non-zero entries of M
C « clustering induced by connected components of H

359

Girvan-Newman algorithm for community detection predates
the Lovain algorithm which predates the Leiden algorithm

~ They are based on modularity

It uses edge betweenness to find and remove central edges
that connect communities within a larger graph. The formula

erarchical
for edge betweenness is

B(e) = Z Ou.v(€)

r b G 4
uveV(iGg) “,

where oy,v is the number of shortest paths between two
distinct vertices and ou,v(e) is the corresponding number of

shortest paths containing a particular edge.

Girvan-Newman algorithm

After removing an edge, the Girvan-Newman algorithm calculates
the modularity (Q) of the graph, which is a value between the
range [-0.5,1]. A higher value suggests a more significant
community structure. Therefore, we can identify communities by
maximizing modularity. Given m = number of modules, |, = the
number of edges inside module s, L = the number of edges in the
network, d, = total degree of the nodes in module s), the formula

for modularity is
[ﬁ (& ”
L \2L

This process of removing an edge and calculating the modularity
Is iteratively repeated. The algorithm will stop when the new

modularity is no longer greater than the modularity from the
previous iteration.

Q=2

=1

Girvan-Newman algorithm

One caveat to this algorithm is that it is difficult to find smaller
communities. Due to the modularity optimization, the algorithm
fails to detect “modules smaller than a scale which depends on
the total size of the network and on the degree of
Interconnectedness of the modules. As a result, one should use
this algorithm for detecting larger community structures and then
examine the detected communities for sub communities.

Despite Girvan-Newman’s popularity and quality of community
detection, it has a high time complexity, increasing up to O(m?n)
on a sparse graph having m edges and n nodes. As a result,
Girvan-Newman is generally not used on large scale networks. Its
optimal node count is a few thousand nodes or less.

Because of this, there exist greedy algorithms for detecting
communities to reduce the time but at the same time sacrificing
the most accurate results. One such example is the Louvain
algorithm.

Louvain Algorithm: optimizing modularity

The Louvain algorithm is a fast implementation of community
detection. It is a hierarchical clustering algorithm that involves
two phases: modularity optimization and community aggregation.
Modularity Optimization: The first step is to optimize the
modularity of the entire graph. In this example, it splits the nodes
into four communities. To find these clusters, each node is
moved into its neighboring community. If the change in
modularity (AQ) is greater than 0, it is moved into the
neighboring community, Otherwise, it remains in its current
community. This process is repeated until AQ=0 for all nodes.
Community Aggregation: After modularity optimization, super
nodes are created to represent each cluster. After the initial
phase of the algorithm, there will exist many communities.
However, the two phases repeat, creating larger and larger
communities. The algorithm stops only when no improvement
can be made by any of the two operations.

Louvain Algorithm: optimizing modularity

Community finding algorithm in two phases: Modularity
Optimization (local moving of nodes) and Community
Aggregation.

In the local moving phase, individual nodes are moved to the
community that yields the largest increase in the quality
function. In the aggregation phase, an aggregate network is
created based on the partition obtained in the local moving
phase.

Each community in this partition becomes a node in the
aggregate network. After the first step is completed, the
second follows. Both will be executed until there are no
more changes in the network and maximum modularity is
achieved.

Louvain Algorithm: optimizing modularity.

The modularity of a partition is a scalar value between -1 and 1
that measures the density of links inside communities as compared

to links between Communities and is an objective function to
optimise :
kik

Q ~ 2m A [Aij ~ 2m
of the edge betweeniandj, k; = Z]- A;jis the sum of the weights

of the edges attached to vertex i, c; is the community to which
vertex i is assigned, the 6 function 6(u, v)is1ifu=vandO

] 5(Ci, Cj), where A; represents the weight

: 1
otherwise and m = - Do Al

Exact modularity optimization is a problem that is computationally
hard and so approximation algorithms are necessary when dealing
with large networks.

Vincent D Blondel et al J. Stat. Mech. (2008) P10008 /all authors from Lovain, Belgium

Louvain Algorithm: optimizing modularity.

Modularity

OptimizatV

4
7 14 4

—s] 1

Community
Aggregation

16 2

Move nodes

Qe Qe
o N ./o e, N\ .)
o/ 's' Lo o] o l;- e <]
Lo .}‘ "’\o 3 -— \.' ",\. <o
Level 1 lo} Q/? [”
(‘._‘:: Ke) (‘._‘:: o
N - S
[e]
o ©

@ P Y /
o
(2]
Aggregate
d)

C)‘ ‘
@ @

o]

o

Level 2

ST

Move nodes

2nd pass 26

—

Each pass is made of two phases: one where modularity
is optimized by allowing only local changes of
communities; one where the communities found are
aggregated in order to build a new network of
communities. The passes are repeated iteratively until
no increase of modularity is possible

(from https://iopscience.iop.org/article/10.1088/1742-
5468/2008/10/P10008/pdf).

Q3 o

The Louvain algorithm starts from a singleton
partition in which each node is in its own
community (a). The algorithm moves individual
nodes from one community to another to find a
partition (b). Based on this partition, an aggregate
network is created (c). The algorithm then moves
individual nodes in the aggregate network (d).
These steps are repeated until the quality cannot
be increased further.

Louvain Algorithm: optimizing modularity.

The gain in modularity AQ obtained by moving an isolated node i into a community
C can easily be computed by

AQ = lzm +2k”n_<zwt +k] [ztzo;l)_(%)]

Where }.;,, is the sum of the weights of the links inside C, >.;,; is the sum of
the weights of the links incident to nodes in C, k; is the sum of the weights of the
links incident to node i, k; ;, is the sum of the weights of the links from i to nodes in
C and m is the sum of the weights of all the links in the network.

A similar expression is used in order to evaluate the change of modularity wheni is
removed from its community. In practice, one therefore evaluates the change of
modularity by removing i from its community and then by moving it into a
neighbouring community.

Louvain Algorithm: optimizing modularity.

First, its steps are intuitive and easy to implement, and the outcome is unsupervised. The
algorithm is extremely fast, i.e. computer simulations on large ad hoc modular networks
suggest that its complexity is linear on typical and sparse data.

This is due to the fact that the possible gains in modularity are easy to compute with the
above formula and that the number of communities decreases drastically after just a few
passes so that most of the running time is concentrated on the first iterations.

By construction, the number of meta-communities decreases at each pass, and as a
consequence most of the computing time is used in the first pass. The passes are iterated
until there are no more changes and a maximum of modularity is attained. The algorithm
is reminiscent of the self-similar nature of complex networks.

Louvain Algorithm: optimizing modularity.

Louvain community detection in a sequence similarity network. The network is
assembled from the results of an all-versus-all alignment, as previously described. Edges
can be weighted by E-value, percentage of identity, or bitscore.

For the purpose of simplification, we consider strong or weak weights rather than actual
values. (a) A giant connected component at relaxed threshold. (b) Three connected
components at a more stringent threshold. (c) Three communities with Louvain
clustering algorithm, taking into account edge weights.

From Watson et al, The Methodology Behind Network Thinking: Graphs to Analyze
Microbial Complexity and Evolution

A) One giant connected component at low threshold

All against all alignment ¢.> < T>
l o o

B) Three connected components at hlgh threshold

Filtering significant hits
(E-value, coverage,
percentage of identity)

C) Three communltles with welghted Louvain

Weighted edges:
high sore
lower score

» Building network & analysis

369

Girwan-Newman vs Louvain Algorithm

Girvan-Newman & Louvain Timings for 5 Datasets
30
25
20

15

Time (s)

10

0 ® &
331 537 728 1152 1589

Total number of edges & nodes

e=f==Girvan-Newman ==@==|ouvain

[y
o

Clusters Detected Comparison
https://medium.com/smucs/girvan-
newman-and-louvain-algorithms-

for-community-detection- I I . I I | I I

f3feb7C31 908 Les Miserables Word adjacencies Football Conference Computer
(3.30) (3.79) 2000 Dataset (5.33) Generated

Number of Clusters
O P N W B U1 O N 00O

m Girvan-Newman ® Louvain

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

24

25:
26:
27:
28:

29

30:
31:

Lovain algorithm

: function LOUVAIN(Graph G, Partition P)
do
P + MovENODES(G, P)
done «+ |P| = |V(G)|
if not done then
G < AGGREGATEGRAPH(G, P)
P < SINGLETONPARTITION(G)
end if
while not done
return flat*(P)
: end function

: function MOVENODES(Graph G, Partition P)
do
Hoa = H(P)
for v € V(G) do
C' + argmaxccpug AHp(v— C)
if AHp(v— C') >0 then
v C'
end if
end for
while H(P) > Houa
return P
end function

: function AGGREGATEGRAPH(Graph G, Partition P)
VP
E+{(C,D) | (u,v) € E(G),u€ C€P,veDeP}
return GRAPH(V, E)

end function

: function SINGLETONPARTITION(Graph G)
return {{v} | v € V(G)}

end function

> Move nodes between communities
> Terminate when each community consists of only one node

> Create aggregate graph based on partition P
> Assign each node in aggregate graph to its own community

> Visit nodes (in random order)

> Determine best community for node v

> Perform only strictly positive node movements
> Move node v to community C’

> Continue until no more nodes can be moved

> Communities become nodes in aggregate graph
> E is a multiset

> Assign each node to its own community

From Louvain to Leiden clustering

3 @ © b) 7@ ©
®- @ ®- @
® ® ©) ®
N/ N/
Rest of network Rest of network

Disconnected community. Consider the partition shown in (a).
When node 0 is moved to a different community, the red
community becomes internally disconnected, as shown in (b).
However, nodes 1-6 are still locally optimally assigned, and
therefore these nodes will stay in the red community.

From Louvain to Leiden clustering

Move nodes Refine

/\

b) e c)
e e\

Level 1

o

Aggregate /

® - ®

Refine

—_—

d) ¢)
\. . Move nodes P
Level 2 ‘ — ‘
‘: .i“ —

! 4
y
\

"7
y 4
Y 4
4
\
\

Leiden algorithm

The Leiden algorithm
starts from a
singleton partition
(a). The algorithm
moves individual
nodes from one
community to
another to find a
partition (b), which is
then refined (c).

An aggregate network (d) is created based on the refined partition, using the non-
refined partition to create an initial partition for the aggregate network. For
example, the red community in (b) is refined into two subcommunities in (c), which
after aggregation become two separate nodes in (d), both belonging to the same
community. The algorithm then moves individual nodes in the aggregate network
(e). In this case, refinement does not change the partition (f). These steps are

repeated until no further improvements can be made.

373

11:
12:

13

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:

38:

39:
40:
41:
42:
43:

44:
45:
46:
47:
48:

49:
50:
51:

: function LEIDEN(Graph G, Partition P)

P + MovENODESFAsT(G, P)
done + |P| = |V (G)|

> Move nodes between communities
> Terminate when each community consists of only one node

L B R o v

if not done then
Prefined — REFINEPARTITION(G, P)
G < AGGREGATEGRAPH(G, Prefined)
P+—{{v|vCCwveV(G)}|CeP}
end if
while not done
return flat*(P)
end function

> Refine partition P
> Create aggregate graph based on refined partition Prefined
> But maintain partition P

function MOVENODESFAST(Graph G, Partition P)
Q < QUEUE(V(G))
do
v + Q.remove()
C' «+ argmaxgcpug AHp (v — C)
if AHp(v— C’) >0 then

> Make sure that all nodes will be visited (in random order)

> Determine next node to visit
> Determine best community for node v
> Perform only strictly positive node movements

v C' > Move node v to community C’
N+ {u| (u,v) € E(G),u ¢ C'} > Identify neighbours of node v that are not in community C’
Q.add(N — Q) > Make sure that these neighbours will be visited
end if
while Q # 0 > Continue until there are no more nodes to visit
return P

end function

function REFINEPARTITION(Graph G, Partition P)

Prefinea < SINGLETONPARTITION(G) > Assign each node to its own community

for C € P do > Visit communities
Prefined < MERGENODESSUBSET(G, Prefinea; C) > Refine community C
end for

return Prefined
end function

function MERGENODESSUBSET(Graph G, Partition P, Subset S)
R={v|veS EwS—uv)>9|v|-(S]—Ivl)} > Consider only nodes that are well connected within subset S
for v € R do > Visit nodes (in random order)

if v in singleton community then > Consider only nodes that have not yet been merged
T+ {C|CeP,CCSECS-C)=~lC|-USIl-=1Ccl)} > Consider only well-connected communities
Pr(C’' =C) ~ {SXP(%AHP(U'_’C)) if A#p(v C) 20 forCeT

. > Choose random community C’
otherwise

v C
end if
end for
return P
end function

> Move node v to community C’

function AGGREGATEGRAPH(Graph G, Partition P)
VP
E + {(C,D) | (u,v) € E(G),ue CeP,veDeP}
return GRAPH(V, E)

end function

> Communities become nodes in aggregate graph
> E is a multiset

function SINGLETONPARTITION(Graph G)
return {{v} | v € V(G)}
end function

> Assign each node to its own community

From numerical
experiments, both seem
to run in near-linear time
in the number of edges.
However, the constant
factor of the Louvain
algorithm is larger than
the constant factor of the
Leiden algorithm, i.e. it is
slower overall.
Implementation:
https://github.com/vtraag
/leidenalg

The student could make
experiments to test the
complexity

374

https://github.com/vtraag/leidenalg
https://github.com/vtraag/leidenalg

Section 5

Genome Sequencing

Biologists need algorithms for personal genome sequencing

e 2010: Nicholas Volker became the first human
being to be saved by genome sequencing.

— Doctors could not diagnose his condition; he went
through dozens of surgeries.

— Sequencing revealed a rare mutation in a X/AP gene
linked to a defect in his immune system.

— This led doctors to use immunotherapy, which saved the
child.

* Different people have slightly different genomes:
on average, roughly 1 mutation in 1000
nucleotides.

What Makes Genome Sequencing Difficult?

* Modern sequencing machines cannot read an
entire genome one nucleotide at a time from
beginning to end (like we read a book)

* They can only shred the genome and generate
short reads.
* The genome assembly is not the same as a jigsaw

puzzle: we must use overlapping reads to
reconstruct the genome, a giant overlap puzzle!

Genome Sequencing Problem. Reconstruct a genome from reads.
Input. A collection of strings Reads.
Output. A string Genome reconstructed from Reads.

From Experimental to Computational Challenges

Multiple (unsequenced) genome copies

h
h
h

1 1 Read generation

__ll ln enome assembly

Assembled genome

...GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC...

378

Computational topics in this lecture

 What Is Genome Sequencing: Exploding Newspapers
analogy

* The String Reconstruction Problem

e String Reconstruction as a Hamiltonian Path Problem

e String Reconstruction as an Eulerian Path Problem

* De Bruijn Graphs

e Euler’s Theorem

* Assembling Read-Pairs

e De Bruijn Graphs Face Harsh Realities of Assembly

379

The Newspaper Problem

e

N ’C;—i \? 2\ N\ TR
N R e
===
N =

W/
1\ (o
\\\)i
|
i
Il
|

(
|
t
|
I
t

stack of NY Times, June 27, 2000

§’—,:—_.\F:‘—‘\\‘- =9
§\2.—i ST NN
N =
\%\?fmigt_“_—%

stack of NY Times, June 27, 2000
on a pile of dynamite

]

e
§\22§?§\:‘-—5
NN A e
NN ;%,T’??-’?
N =
oy =)\ = T=>V= oo
= == — = S —>
715\ = S ===

]
i

this is just hypothetical

- - e =
- o~ i,
= - 2T ™ e
- = - .
PR 3
- o <

so, what did the June 27, 2000 NY
Times say?

380

1100(
_e have not
- matio

vet named

2
1y suspects, alt
~e ce

381

The Newspaper Problem as an Overlapping Puzzle

i bl)c cw uork Cimes : e
Genetzc Code of Human %q'e Is Cmdeed by Sctentwts

JUSTICES REAFFIRM = ==~ e A SHNED SI03S
”'\.\ Za 1 Pty emoumcemnt
M Srw Mad

== | Sharansiy in Eyes of Isrelis: |2
"% A Hero or Betrayer of Peace? =

2
~3pects, alt
~ece

IIOOdie, app' - :"..'.._..,.'.‘_ 5
_e have not yet name.
" ~ation is welr

fe—————

- - ——

il

HIUH

i

li

=5 s 382

i

|
il
il

Multiple Copies of a Genome (Millions of them)

oty 7|

stack of NY Times, June 27, 2000

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Breaking the Genomes at Random Positions

CTGATG*GGACT CGC*CTACTGC*GCTGTATI'A*ATCAGCTACC*ATCGTAGCTA*ATGCATI’AG(.*«GCTATCG*TCAGCTAC*CAT GTAGC
CTGA TGGAC GCTACTAC1*TAGCTGTA CGATCAG CCACATCG CTACGATGC AGCAAGC*TCGGATCA ACCACATIRGTAGC
CTGATG GGACTAC ACTACTGCTA TGTATTACRATCAGCTARCACATCGTAGCJRACGATGCATT. CAAGCTA‘I*GATCAGC CACATCGTAGC

CTGATGATG CTACGCTA CTGCTAGCTRI ATTACGATGRGCTACCACANCGTAGCTACGA GCATTAGC CTATCGG*CAGCTACCA CGTAGC

383

Generating “Reads”

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC
CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC
CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

“Burning” Some Reads

(‘\\
2 \> L
% - '~.:lg"’; -\, ?
LR~
CTGATGA TACTGCTAG CTGTATTACG TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA ATCAGCTACC ACATCGTAGCT GCAAGCTATC GGATCAGCTAC CACATCGTAGC
CTGATGATGG TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A CATCGTAGC

CTGATGATGGACT ACGCTACTACT TACGATCAGC TACCACATCGT AGCTACGATGCA ATCGGATCA GCTACCACATC GTAGC

No Idea What Position Every Read Comes From

4 4 5
%
74 CTGATGATGGACT s &
¢ 76 e Yo)
4 Qq s (O C):q .{)
2
< C 4 G C C
'(P‘C' P\GC(s P~ ¢ o pC 2 N cGY pG
NG 6 épe C
TG < GCTGTATTACG Cr K
764 e e >
C‘ s C’)V C(>
<G A &
< ¢ <
ATG GC
A 774GC4 K(C KT pce TACCACAT GCTATCGGA
<t atcilae ATGCATTAGCAA
c® R4\ o>
R AC P o
G 4 TA CGer % (,P“GC 4CG,4 ” 4 &
¢ e Q o Ge. Tce
A " ¥ g T4g
C
ety R ACTACTGCTA &
pCe KTCee e TACCACATCGT
AC <
ATCeTage, Goq re < s NS CTGATGATGG
AGCTA e a e pC
6 G A A TCG
é G AQ
> d < ¢
Ac P A
G, & %
G4
77~
CT, A
ACCTGTAT “re

What Is k-mer Composition?

Composition; (TAATGCCATGGGATGTT) =
TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGG
GGA
GAT
ATG
TGT
GTT

386

k-mer Composition

Composition; (TAATGCCATGGGATGTT) =
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g., lexicographic order (like in a dictionary)

387

Reconstructing a String from its Composition

String Reconstruction Problem. Reconstruct a string from
its k-mer composition.

* Input. A collection of k-mers.

e Qutput. A Genome such that Composition,(Genome) is
equal to the collection of k-mers.

A Naive String Reconstruction Approach

(ATG)ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT
TAA
AAT
ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG
TAA
AAT
ATG
TGT

GTT 389

Representing a Genome as a Path

Compositions; (TAATGCCATGGGATGTT) =

O S S CR CA A CaCATA AT

Can we construct this genome path without knowing the genome TAATGCCATGGGATGTT, only
from its composition?

Yes. We simply need to connect k-mer; with k-mer, if suffix(k-mer,)=prefix(k-mer,).
E.g. TAA - AAT

A Path Turns into a Graph

@ @(@ BV ASravore WV

Yes. We simply need to connect k-mer; with k-mer, if suffix(k-mer,)=prefix(k-mer,).
E.g. TAA - AAT

A Path Turns into a Graph

TAATGCCATGGGATGTT

® @(@ X -6

SaS

Can we still find the genome path in this graph?

392

Where Is the Genomic Path?

A Hamiltonian path: a path that visits each node in a graph
exactly once.

TAATGCCATGGGATGTT

What are we trying to find in this graph?

Does This Graph Have a Hamiltonian Path?

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
Input. A graph.
Output. A path visiting every node in the graph exactly once.

William
Hamilton

17 @
Undirected graph

lcosian game (1857)
394

TAATGGGATGCCATGTT

HEWEIATATOORPPE

B

TAATGCCATGGGATGTT

A Slightly Different Path

TAATGCCATGGGATGTT

O S A S A SR A A CACATA AT

3-mers as nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG _GGA GAT ATG _TGT GTT

O~CrO-0~0~ O~ OO0~ O~0~0~0O~0~0

3-mers as edges

How do we label the starting and ending nodes of an edge?

TAA

prefixof TaA (TA—@A) suffix of TAA

396

Labeling Nodes in the New Path

TAATGCCATGGGATGTT

O S A S A SR A A CACATA AT

3-mers as nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG _GGA GAT ATG _TGT GTT

B-0-B-B-E~O-O-B-B—E— OO B-B-6-@

3-mers as edges and 2-mers as nodes

397

Labeling Nodes in the New Path

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG _GGA GAT ATG _TGT GTT

B-0-B-B-E~O-O-B-B—E— OO B-B-6-@

3-mers as edges and 2-mers as nodes

398

Gluing Identically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

B-0-B-B-E~O-O-B-B—E—0—0-B-B-6-@

TAA AAT TGG GGG _GGA GAT ATG _TGT GITT

B-E-0-0-B-5-0-@

399

Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

400

Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

401

Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

402

Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

403

De Bruijn Graph of TAATGCCATGGGATGTT

Where is the Genome
G\ GT,
o @O hiding in this graph?

404

It Was Always There!

TAATGCCATGGGATGTT

An Eulerian path in a

—E——@ g.ra.ph is a path that
visits each edge exactly
once.

Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

 Input. A graph.

 Qutput. A path visiting every edge in the graph exactly once.

406

Eulerian Versus Hamiltonian Paths

Eulerian Path Problem. Find an Eulerian path in a graph.
* |nput. A graph.

 Qutput. A path visiting every edge in the graph exactly once.

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
 |nput. A graph.

 OQOutput. A path visiting every node in the graph exactly once.

What Problem Would You Prefer to Solve?

ccA/ ¢

« C G
/ - <X, ———— CAT Tec
3 — Y —— — ATG
"".p'—'" ‘ S TAA AAT | -
FIR GO Q00 00O BN GO0

s = 1
e — =

TGGY
G G
GGG

GGA

Hamiltonian Path Problem Eulerian Path Problem
While Euler solved the Eulerian Path Problem
(even for a city with a million bridges), nobody

Q)
:
has developed a fast algorithm for the

Hamiltonian Path Problem yet. ¢

G

>

)

q

408

NP-Complete Problems

 The Hamiltonian Path Problem belongs to a
collection containing thousands of

computational problems for which no fast
algorithms are known.

That would be an excellent argument, but the
qguestion of whether or not NP-Complete
problems can be solved efficiently is one of
seven Millennium Problems in mathematics.

NP-Complete problems are all equivalent: find an
efficient solution to one, and you have an
efficient solution to them all.

Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

 Input. A graph.

 Qutput. A path visiting every edge in the graph exactly once.

We constructed the de Bruijn
graph from Genome, but in
reality, Genome is unknown!

410

What We Have Done: From Genome to de Bruijn Graph

TAATGCCATGGGATGTT

CAT|
TAA AAT

B~ do—@

TGT

411

What We Want: From Reads (k-mers) to Genome

TAATGCCATGGGATGTT

f

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

412

What We will Show: From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

413

Constructing de Bruijn Graph when Genome Is Known

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GIT

O0-B-B~E~O- OB~ B-B-6-®

414

Constructing de Bruijn when Genome Is Unknown

TAA ATG GCC CAT TGG GGA ATG GTT

AAT TGC CCA ATG GGG GAT TGT

Composition;(TAATGCCATGGGATGTT)

415

Representing Composition as a Graph Consisting of Isolated Edges

TAA ATG GCC CAT TGG GGA ATG GTT

AAT TGC CCA ATG GGG GAT TGT

Composition;(TAATGCCATGGGATGTT)

416

Constructing de Bruijn Graph from k-mer Composition

BB G- @O B0 -0 G- 60
ET® B &~ TES

Composition;(TAATGCCATGGGATGTT)

417

Gluing Identically Labeled Nodes

@ &% &0 ¥ ¢0 ¢% &% 6
90 % B 90 B @96

418

@T AQ @ AAl ATG z TG CCG CC CC : CA T TE(@CE‘.%@G GA @ GAl A—T;@
TGT @

419

We Are Not Done with Gluing Yet

@T AQ @ AAl ATG 3 TG CCG CC .CC% CA‘ T(".TG GG GGA @ GA. ATG . TGT .Cﬂj@

420

Gluing Identically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

B-0-B-B-E~O-O-B-B—E—0—0-B-B-6-@

TAA AAT TGG GGG _GGA GAT ATG _TGT GITT

B-E-0-0-B-5-0-@

421

Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

422

TAATGCCATGGGATGTT

423

Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT

424

The Same de Bruijn Graph:
DeBruin(Genome)=DeBruin(Genome Composition)

425

Constructing de Bruijn Graph

De Bruijn graph of a collection of k-mers:

— Represent every k-mer as an edge between its prefix
and suffix

— Glue ALL nodes with identical labels.

DeBruijn(k-mers)
form a node for each (k-1)-mer from k-mers
for each k-mer in k-mers
connect its prefix node with its suffix node by an edge

From Hamilton to Euler B M to de Bruijn "=}

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly

once.

000 001 010 O11 100 101 110 111

427

From Hamilton to Euler

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly

once.

000 001 100 101 110 111

110

O -0 0O OO OO -0 -© O

428

to Euler

From Hamilton

429

De Bruijn Graph for 4-Universal String

0011

1001 0110

1100
Does it have an Eulerian cycle? If yes, how can we find it?

Eulerian CYCLE Problem

Eulerian CYCLE Problem. Find an Eulerian cycle in a graph.
 Input. A graph.

 Qutput. A cycle visiting every edge in the graph exactly once.

431

A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?

A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?

1in, 2 out

A graph is balanced if indegree = outdegree for each node

Euler’s Theorem

* Every Eulerian graph is balanced

* Every balanced™ graph is Eulerian
0011

1001 0110

1100

(*) and strongly connected, of course! 434

Euler’s Theorem

1001

The de Bruijn graph for k = 4
and a 2-character alphabet
composed of the digits 0 and
1.

This graph has an Eulerian
cycle since each node has
indegree and outdegree
equal to 2.

Following the blue numbered
edges inorder 1, 2, ..., 16
gives an Eulerian cycle

0110 o000, 0001, 0011, 0110,

1100, 1001, 0010, 0101,
1011, 0111, 1111, 1110,
1101, 1010, 0100, 1000,
which spells the cyclic

superstring
0000110010111101

Eulerian versus Hamiltonian cycles

a |/ b Y
A ATGGCGT
> 7 NRER
GGCGTGC
& (A} IRIEIRI
........ 5 ATGGCGT TGCA/
9] Short-read TGCAATG
£ 5 @ sequencing 2 CAATGGC
CAATGGC L
| CAATGGC] 1L
Genome: ATGGCGTGCAATGGCGT
Vertices are k-mers = “*~.. Vertices are (k-1)-mers

-~
-~

Edges are pairwise alignments _ .-~ ' *.. Edges are k-mers

Y s Sk

\/
ATG
11
TGG
[
GGC
(|
GCG
11
CGT
.............. > 11 e e s aeisieie o eaie
k-mers from vertices GT? k-mers from edges
TGC
11
GCA
1
CAA
11
AAT
11
ATG
Genome: ATGGCGTGCAATG
Hamiltonian cycle Eulerian cycle
Visit each vertex once Visit each edge once

(harder to solve) (easier to solve)

Recruiting an Ant to Prove Euler’s Theorem

Let an ant randomly walk through the graph.
The ant cannot use the same edge twice!

If Ant Was a Genius...

“Yay! Now
canlgo
h

— ome
please?”

=

438

A Less Intelligent Ant Would Randomly Choose a
Node and Start Walking...

Can it get stuck? In what node?

The Ant Has Completed a Cycle BUT has not
Proven Euler’s theorem vyet...

The constructed cycle is not Eulerian. Can we enlarge it?

Let’s Start at a Different Node in the Green Cycle

Let’s start at a node with still unexplored edges.

“Why should | start at a different node?

‘k /
Backtracking? I’'m not evolved to walk

backwards! And what difference does it v
make???”

~

An Ant Traversing Previously Constructed Cycle

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

=
“Why do | have to walk along the
same cycle again??? Can | see 3 A4
something new?” 1

| Returned Back BUT... | Can Continue Walking!

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

After completing the cycle, start random exploration of still
untraversed edges in the graph.

Stuck Again!

No Eulerian cycle yet... can we enlarge the green-blue cycle?

The ant should walk along the constructed cycle starting at
yet another node. Which one?

| Returned Back BUT... | Can Continue Walking!

“Hmm, maybe these
instructions were not
that stupid...”

445

| Proved Euler’s Theorem!

EulerianCycle(BalancedGraph)
form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
while Cycle is not Eulerian
select a node newStart in Cycle with still unexplored outgoing edges
form a Cycle’ by traversing Cycle from newStart and randomly walking afterwards
Cycle < Cycle’
return Cycle

0011

0010 1011

1001 0110

0101
1010

0100 1101

1100

446

From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

447

Multiple Eulerian Paths

TAATGCCATGGGATGTT TAATGGGATGCCATGTT

CAT CAT
@I‘AA AAT TAA AAT

GTT

448

Breaking Genome into Contigs

TAATGCCATGGGATGTT
TGCCAT
ATG
B oG
AYA A T
- 00T
TAAT ATG TGTT
TGG
GGGAT
GGG

GGG

449

DNA Sequencing with Read-pairs

Multiple identical copies of genome

Randomly cut genomes into large equally
sized fragments of size InsertLength

Generate read-pairs:
two reads from the
ends of each fragment

— = (separated by a fixed
200 bp 200bp - gistance)

InsertLe ngth 450

From k-mers to Paired k-mers

Read 1 Read 2
q q
Genome . ATCAGATTACGTTCCGAG..
e Distance d=11 --------- >

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.
E.g. TCA and TCC are at distance d=11 apart.

Disclaimers:

1. In reality, Read1 and Read2 are typically sampled from different strands:
(— < ratherthan — —)

2. In reality, the distance d between reads is measured with errors.

What is PairedComposition(TAATGCCATGGGATGTT)?

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

. . . . TAA
Representing a paired 3-mer TAA GCC as a 2-line expression: GCC

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

452

TAA
GCC

AAT
CCA

AAT
CCA

ATG
CAT

ATG
CAT

ATG
GAT

PairedComposition(TAATGCCATGGGATGTT)

TGC
ATG

CAT
GGA

GCC
TGG

CCA
GGG

CCA
GGG

GCC
TGG

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

CAT ATG
GGA GAT

GGA GGG
GTT TGT

TGG
ATG

TAA
GCC

GGG
TGT

TGC
ATG

Representing PairedComposition in lexicographic order

GGA
GTT

TGG
ATG

453

String Reconstruction from Read-Pairs Problem

String Reconstruction from Read-Pairs Problem. Reconstruct
a string from its paired k-mers.

* Input. A collection of paired k-mers.
 Output. A string Text such that PairedComposition(Text) is
equal to the collection of paired k-mers.

How Would de Bruijn Assemble Paired k-mers?

Representing Genome TAATGCCATGGGATGTT as a Path

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC__CCA__CAT _ATGTGGC GGCG__GGA__GAT ~ATGTGT ~GTT

OO~ OAOOAO~C~O

CCA
GGG

paired prefix of —> ggé — p@a?@ of 88%

455

Labeling Nodes by Paired Prefixes and Suffixes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC__CCA__CAT _ATGTGGC GGCG__GGA__GAT _ATGTGT ~GTT

@-O-6-B-B-0~-0-B-B-B-6-@

CCA
GGG

paired prefix of —> ggé — p@a?@ of 88%

456

Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA_CAT ATG__TGG GGG GGA GAT__ATG__ TGT _ GTT

B-B-0-G-O-C-0-B-0-C--@

GCC CCA CAT
TGG_GGG _ GGA

OO

TAA AAT ATG
GCC__CCAa__CAT

TGG GGG GGA
ATG TGT GTT

457

Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA_CAT ATG__TGG GGG GGA GAT__ATG__ TGT _ GTT

B-B-0-G-O-C-0-B-0-C--@

GCC CCA CAT
TGG_GGG _ GGA

- 0-0-0

ATG

@ @ GAT

TGG ~ GGG GGA
ATG TGT GTT

Paired de Bruijn Graph from the Genome

458

Constructing Paired de Bruijn Graph

ATG GCC TGG GGA

Q@@Q“f@@@f‘

TGC ATG GGG

B B -0 B g

CCA
GGG

paired prefix of — 88% — p@d”@ 88%

459

Constructing Paired de Bruijn Graph

& & & o oo T

TGC ATG GGG

B B -0 B g

e Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.

Constructing Paired de Bruijn Graph

O G0 -0 Gn o -®

TGC CCA ATG GGG

CCA _@ @_’ .GAT‘ . TGT ‘

We Are Not Done with Gluing Yet

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA_CAT ATG__TGG GGG _GGA GAT__ATG__ TGT _ GTT

B-B-0-G-O-C-0-B-0-C-0-@

461

Constructing Paired de Bruijn Graph

GCC CCA CAT
TGG_ GGG _ GGA

TGG ~ GGG =~ GGA
ATG TGT GTT

Paired de Bruijn Graph from read-pairs

* Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.

Which Graph Represents a Better Assembly?

Unique genome reconstruction Multiple genome reconstructions
TAATGCCATGGGATGTT TAATGCCATGGGATGTT
TAATGGGATGCCATGTT

GCC CCA CAT
TGG_GGG _ GGA

B~E~0-B

GCC__CCAa__CAT ATG

B-B-G-G-0-®

TGG ~ GGG GGA
ATG TGT GTT

Paired de Bruijn Graph De Bruijn Graph

463

Some Ridiculously Unrealistic Assumptions

Perfect coverage of genome by reads (every k-mer
from the genome is represented by a read)

Reads are error-free.
Multiplicities of k-mers are known

Distances between reads within read-pairs are exact.

Some Ridiculously Unrealistic Assumptions

Imperfect coverage of genome by reads (every k-
mer from the genome is represented by a read)

Reads are error-prone.
Multiplicities of k-mers are unknown.

Distances between reads within read-pairs are
inexact.

Etc., etc., etc.

465

15t Unrealistic Assumption: Perfect Coverage

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

250-nucleotide reads generated by lllumina
technology capture only a small fraction of 250-
mers from the genome, thus violating the key
assumption of the de Bruijn graphs.

Breaking Reads into Shorter k-mers

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac

cgact

467

2"d Unrealistic Assumption: Error-free Reads

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact
cgtaCggaca

Erroneous read
(change of t into C)

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac
cgact
cgtalC
gtaCg
taCgg
aCgga
Cggac

468

De Bruijn Graph of ATGGCGTGCAATG...
Constructed from Error-Free Reads

ATGCC TGCCG GCCGT _ CCGTA CGTAT GTATG TATGG _ ATGGA TGGAC GGACA

Errors in Reads Lead to Bubbles in the
De Bruijn Graph

ATGCC TGCCG GCCGT _ CCGTA CGTAT GTATG TATGG _ ATGGA TGGAC GGACA

GCCGC ”Bubbe! CATG

CCGCA CGCAT GCATG

Bubble Explosion

A’A A:‘ ‘
v y =

A single error in a read results in a bubble of length k in a de Bruijn graph constructed from

k-mers. Multiple errors in various reads may form longer bubbles, but since the error rate in

reads is rather small (less than 1% per nucleotide in Illumina reads), most bubbles are
small.

470

Example Results: De Bruin Graph of N. meningitidis
Genome AFTER Removing Bubbles

g

g

Red edges represent repeats

Example and RECAP
(note we call prefix = left 2-mer and suffix=right-2 mer)

AAABBBA
take all 3-mers: AAA, AAB, ABB, BBB, BBA

7 /1 NN

form L/R 2-mers: AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
L R L R L R L R L R

Let 2-mers be nodes in a new graph. Draw a directed edge from each left
2-mer to corresponding right 2-mer:

AB
Each edge in this graph
&N / BA corresponds to a length-3

input string
BB

Example and RECAP

An edge corresponds to an overlap (of length k-2) between two k-1 mers.
More precisely, it corresponds to a k-mer from the input.

BBB

If we add one more B to our input string: AAABBBBA, and rebuild the
. . . 473
De Bruijn graph accordingly, we get a multiedge.

Example and RECAP

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1
Graph is connected if each node can be reached by some other node
Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won't distinguish Eulerian from semi-Eulerian.)

AB
e AAA, AAB, ABB, BBB, BBA

&Y BA 7 /1 TN\

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
L R L R LR L R L R

Is it Eulerian? Yes

Argument 1: AA—- AA - AB - BB - BB - BA

474
Argument 2: AA and BA are semi-balanced, AB and BB are balanced

Example and RECAP

A procedure for making a De Bruijn graph
fora genome

Assume perfect sequencing where each length-k
substring is sequenced exactly once with no errors

Pick a substring length k: 5

Start with each read: a_long_long_long_time
Take each k mer and split ‘l/org\g‘_
into left and right k-1 mers long ong

Add k-1 mers as nodes to De Bruijn graph
(if not already there), add edge from left k-1
mer to right k-1 mer

Example and RECAP

IS S AN EEE

First 8 k-mer additions, k=5
a_long long long time

Example and RECAP

Last 5 k-mer additions, k=5

a_long long long time /ﬁ
Finished graph ~ (ime)

Example and RECAP

With perfect sequencing, this procedure always
yields an Eulerian graph. Why?

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced
with one more incoming than outgoing *

Other nodes are balanced since # times k-1-mer occurs
as a left k-1-mer = # times it occurs as a right k-1-mer

* Unless genome is circular

Example and RECAP

Assuming perfect sequencing, procedure yields
graph with Eulerian walk that can be found
efficiently.

We saw cases where Eulerian walk corresponds to
the original superstring. Is this always the case?

479

Example and RECAP

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is O(1) expected work

Assume hash map encodes nodes & edges

Assume k-1-mers fit in O(1) machine words,
and hashing O(1) machine words is O(1) work

Querying / adding a key is O(1) expected work

O(1) expected work for 1 k-mer, O(N) overall

480

Example and RECAP

In typical assembly projects, average coverage is ~ 30 - 50

Same edge might appear in
dozens of copies; let’s use
edge weights instead

ESSSSSNN

Weight = # times ’
k-mer occurs SN vl

20

Using weights, there’s
one weighted edge for
each distinct k-mer

After: one weighted
edge per distinct k-mer

Before: one
edge per k-mer

References: https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-
biology-spring-2014/lecture-slides/MIT7_91JS14 Lecture6.pdf
http://nbviewer.jupyter.org/github/BenLangmead/comp-genomics-
class/blob/master/notebooks/CG_deBruijn.ipynb 481

Reference for this section

BIOINFORMATICS ALGORITHMS BIOINFORMATICS ALGORITHMS
An Active Learning Approach An Active Learning Approach
2nd Edition, Vol. T 2nd Edition, Vol. IT F

» Chapter 8 Vol 2

by Phillip Compeau & Pavel Pevzner by Phillip Compeau & Pavel Pevzner

Reference for the Markov Clustering algorithm:
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of

protein families. Nucleic Acids Res. 2002 30:1575-84.

Note: an interesting algorithm for community detection, frequently used in Bioinformatics is
the Leiden algorithm which corrects the Louvain algorithm. See V. A. Traag, L. Waltman & N.
J. van Eck: From Louvain to Leiden: guaranteeing well-connected communities. Scientific
Reports volume 9, Article number: 5233 (2019) https://www.nature.com/articles/s41598-019-

41695-z/
482

Section 6

Assembling Genomes

» Suffix tree
» Algorithm: Burrow-Wheeler Transform

* WANTED *

20 Volunteers .
i to parucipate in the l
i Human Genome Project 1
| L . i

a very large international scientific research effort.

" The goal is to decode the human hereditary information (human blueprins) that deter
* | mines all individual waits inherited from parents. The outcome of the project will ' |
L' | have remendous impact on future progress of medical science end fead to improved |°-

» | diagnosis and reatment of hereditary diseases. t

Volunteers will receive information about the project from the Clinical Genetics lt

Service at Roswell Park. and sign a consent form before participating i

‘ ' No personal information will be maintained or transferred.

;| Volunteers will provide a one-time donation of a small blood specimen. A smalt
¢ monetary reimbursement will be provided to the participants for their tme and effort. 1

: Individuals must be at least 18 years of age.
1 Persons who have undergone chemotherapy are not eligibie.

RS SWE Far more informaton please conwact the i
: Clinical Genetics Service i

£l W $45-5720(9.00 am - 3:00 prm) I, 483
1 CANCIR INSTITVTL March 24 - 26. 1997 oM

B0 0 0 Pt | M i Mk e by - T LR A e R e L A
R L EE T . . aasem raseveneris o . . e MOt 1

Biologists need algorithms for genome assemble

* Reference genome: database genome used
for comparison (GRCh38).

* https://www.ncbi.nlm.nih.gov/genome/guide/human/

* Question: How can we assemble individual
genomes efficiently using the reference

genome?

T C A Individual

G A T Reference

Why Not Use Assembly?

Multiple copies of

a genome
[|\ Lo \/\\ / ’/// —
Shatter the AT NN\ N AT N
genome into |/~ \/\/ \\ I\ / \l —
reads | <— /// ~_— \/\ |
Sequence the AGAATATCA| |TGAGAATAT| |GAGAATATC

Assemble the
genome with
overlapping reads

. . . TGAGAATATCA. ..

485

Why Not Use Assembly?

* Constructing a de Bruijn graph :
takes a lot of memory. @

-

AT TGC]

ATG

T

'
@I‘A ﬁT(?:T.-T{G: TGT. GTT:

* Hope: a machine in a clinic

that would collect and Joar_Toe)
map reads in 10 minutes. < oA %)GGG

ATG

* |dea: use existing structure of reference
genome to help us sequence a patient’s

genome.

486

Read Mapping

* Read mapping: determine where each read
has high similarity to the reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference
GAGGA CCACG TGA-A Reads

487

Why Not Use Alignment?

* Fitting alignment: align each read Pattern to
the best substring of Genome.

* Has runtime O(|Pattern| * |Genome|) for
each Pattern.

* Has runtime O(|Patterns| * |Genome|) for a
collection of Patterns.

488

Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Single Pattern Matching Problem:
— Input: A string Pattern and a string Genome.

— Output: All positions in Genome where Pattern
appears as a substring.

489

Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positions in Genome where a string
from Patterns appears as a substring.

490

A Brute Force Approach

 We can simply iterate a brute force approach
method, sliding each Pattern down Genome.

panamabananas Genome
nana Pattern

* Note: we use words instead of DNA strings for
convenience.

491

Brute Force Is Too Slow

* The runtime of the brute force approach is too
high!
— Single Pattern: O(|Genome| * |Pattern|)
— Multiple Patterns: O(| Genome| * | Patterns|)
— | Patterns| = combined length of Patterns

492

Processing Patterns into a Trie

* |dea: combine reads into a graph. Each
substring of the genome can match at most

one read. So each read will correspond to a
unique path through this graph.

* The resulting graph is called a trie.

493

[
AN
\

Patterns

banana
pan

and

nab
antenna
bandana
ananas
nana

494

Using the Trie for Pattern Matching

* TrieMatching: Slide the trie down the
genome.

* At each position, walk down the trie and see if
we can reach a leaf by matching symbols.

495

496

* Runtime of Brute Force:
— Total: O(| Genome | * | Patterns|)

* Runtime of Trie Matching:
— Trie Construction: O(|Patterns|)
— Pattern Matching: O(| Genome| * |LongestPattern|)

Memory Analysis of Trie Matching

et
. a b n D
Our trie: 30 edges, A A
| Patterns| = 39 n ; ; °
O O
ad | n b | , n
Worst case: # edges n - e a ; - a -
= O(| Patterns|) O C O C
O O O
S O O O
O O 08

Preprocessing the Genome

What if instead we create a data structure
from the genome itself?

S

plit Genome into all its suffixes. (Show

matching “banana” by finding the suffix

(o

I_

nananas’.

oW canh we combine these suffixes into a

C

ata structure?

Let’s use a trie!

499

0

s O ®©®© < © < «©o v &
c
O—(O OO OO O0O0O00
o ©O© @®©® <c©c @© < @ un &5
E_O0-O0 000000
@ £ ®©®© c © O &
0
o OC

o
O—0-0-0O-0
S‘a T o &
c E O OO OO0 O0O0O00O0

®c O ©®© c©c @© C©c © @ ou £
e O OO OO0 O0OO00O0
®c O ©oO© cCc @©C Cc ®©® v &=

O—O0O0000O0
c < © < © »n &

The Suffix Trie and Pattern Matching

* For each Pattern, see if Pattern can be spelled
out from the root downward in the suffix trie.

501

AN
o
Tp)

e O OO OO0 0O0O0O0O0O0O0O~
®c O ©o© cC©c @© C©c © v &=

O—O0O00O0O00O0w
@ S ® £ ® »

0

Memory Trouble Once Again

: i Suffixes
 Worst case: the suffix trie
panamabananas$

holds O(|Suffixes|) nodes. anamabananas$
namabananas$

amabananas$

mabananas$

abananas$

* For a Genome of length n, bgzgz:zi

| Suffixes| = n(n—1)/2 = O(n?) nanas$
anas$

nas$

as$

s$

$

503

Compressing the Trie

 This doesn’t mean that our idea was bad!

* To reduce memory, we can compress each
“nonbranching path” of the tree into an edge.

504

0

s O ®©®© < © < «©o v &
c
O—(O OO OO O0O0O00
o ©O© @®©® <c©c @© < @ un &5
E_O0-O0 000000
@ £ ®©®© c © O &
0
o OC

o
O—0-0-0O-0
S‘a T o &
c E O OO OO0 O0O0O00O0

®c O ©®© c©c @© C©c © @ ou £
e O OO OO0 O0OO00O0
®c O ©oO© cCc @©C Cc ®©® v &=

O—O0O0000O0
c < © < © »n &

12

 This data structure is called a suffix tree.

* For any Genome, # nodes < 2|Genome].

— # leaves = |Genome|;
— # internal nodes < |Genome| —1

506

Complexity

* Runtime:
— O(| Genome|?) to construct the suffix tree.
— O(|Genome| + | Patterns|) to find pattern matches.

* Memory:
— O(|Genome|?) to construct the suffix tree.
— O(|Genome|) to store the suffix tree.

507

Complexity

* Runtime:
— O(|Genome|) to construct the suffix tree directly.
— O(|Genome| + | Patterns|) to find pattern matches.
— Total: O(| Genome| + | Patterns|)

* Memory:
— O(|Genome|) to construct the suffix tree directly.
— O(|Genome|) to store the suffix tree.
— Total: O(| Genome| + | Patterns|)

508

We are Not Finished Yet

* | am happy with the suffix tree, but | am not
completely satisfied.
* Runtime: O(| Genome| + |Patterns|)
* Memory: O(| Genome|)

* However, big-O notation ignores constants!

* The best known suffix tree implementations
require ~ 20 times the length of |Genome|.

e Can we reduce this constant factor?

Genome Compression

* |dea: decrease the amount of memory
required to hold Genome.

* This indicates that we need methods of
compressing a large genome, which is
seemingly a separate problem.

510

ldea #1: Run-Length Encoding

* Run-length encoding: compresses a run of n
identical symbols.

Genome
GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

|

10G11C7A15T5C1G
Run-length encoding

* Problem: Genomes don’t have lots of runs...

511

Converting Repeats to Runs

e ..but they do have lots of repeats!
Genome
How do we do this step? l Convert repeats to runs

Genome*

l Run-length encoding

CompressedGenome™

512

The Burrows — Wheeler Transform

Michael Burrows (left), David Wheeler (right)
both at the Computer Laboratory

TIE Bowtie

An ultrafast memory-efficient short read aligner

Home

Introduction BWA:

SF project page

BWA is a software package for mapping low-divergent sequences against a large
SF download page

reference genome, such as the human genome. It consists of three algorithms:

BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is designed for Mailing list
Illumina sequence reads up to 100bp, while the rest two for longer sequences BWA rr.1aual age
ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW share similar features such as Repository

long-read support and split alignment, but BWA-MEM, which is the latest, is
generally recommended for high-quality queries as it is faster and more accurate. X
BWA-MEM also has better performance than BWA-backtrack for 70-100bp lllumina Links:

reads. SAMtools

The Burrows Wheeler Transform

Three steps: 1) Given a string T in input, we form a N*N matrix by
cyclically rotating (left) the given text to form the rows of the matrix.
Here we use 'S’ as a sentinel (lexicographically the greatest character
in the alphabet and occurs exactly once in the text); 2) We sort the
matrix according to the alphabetic order. Note that the cycle and the
sort procedures of the Burrows-Wheeler induce a partial clustering
of similar characters providing the means for compression; 3) The
last column of the matrix is BWT(T) (we need also the row number
where the original string ends up).

$acaacg $acaacg
aacg$ac aacg$ac
acaacg$ acaacg?$
acaacg$ —>acgSaca —*> acg$aca —>gcSaaac
5 caacg$a caacg$a BWT(T)
cg$acaa cg$acaa

g$acaac g$acaac

BWT

Property that makes BWT(T) reversible is LF Mapping:
the i-th occurrence of a character in Last column is
same text occurrence as the i-th occurrence in the
First column (i.e. the sorting strategy preserves the
relative order in both last column and first column).

$acaacg)

Rank:Z\‘aacg$ac
acaacgs

E}caacg$ acg$aca » swim
T caacg$a

cg$acaa | Rank>2
g$acaac)

515

BWT

To recreate T from BWT(T), repeatedly apply the rule;] T = BWT[LF(i)] + T; i = LF(i)
where LF(i) maps row i to row whose first character corresponds to i’s last per LF
Mapping. First step: S=2; T = $. Second step: s = LF[2] =6; T = g$. Third step: s =
LF[6] = 5; T = cg$.

Q@ 00D DL
Q00NN X »

516

Burrows-Wheeler Transform (BWT)

l_ BWT

Sacaac
aacgsa
acaacg
acaacgs = acg$ag ;>gc$aaac
caacqg
cg$aca
gsSacaa

Burrows-Wheeler Matrix (BWM)

Burrows-Wheeler Matrix

Sacaac
aacgsa
acaacg
acgsac
caacgs
cgsaca
gsacaa

O O N W P W

Burrows-Wheeler Matrix

S

aacgs

acaacgs

aCg S See the suffix array?
caacgs

olefs

g9

Key observation

a1C1a2a3C291$1 1$

“last first (LF) mapping” 1 a

The i-th occurrence of character X in the 3 a
last column corresponds to

the same text character as the /-th 1
occurrence of X in the first column. C

Burrow Wheeler Transform

DOLH © © ®© O

aac

DOLNH C© @ ®© O

aacC

00D

DONH © © © O

aac

fHCOCOC O oD

B N

$acaacg

aacg$ac

acaacgs$
acaacg$—>acg$aca—+>gc$aaac

caacg$a

cg$Sacaa

g$acaac

(a)

CoCOoO0D

caacg acaacg

aacg

(o)

o OO

(b)

g
c
$

$
a

g

$

9
c

(o) S IR

N ©

&N ©

agcogomC

a

$

a

$

©

©

©

]

o

o

o

521

The Burrows-Wheeler Transform

panamabananas$ S IS a
Spanamabananas
s$panamabanana s n
a a
n m
Form all cyclic rotations of 3 3
“panamabananas$”
n b
a

Burrows, Michael and Wheeler, David J. (1994), A block sorting lossless data compression
algorithm, Technical Report 124, Digital Equipment Corporation

Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheelet,,
transform. Bioinformatics 25:1754-60.

The Burrows-Wheeler Transform

panamabananass$ S IS a
Spanamabananas

sSpanamabanana g n
asSpanamabanan

nas$Spanamabana

anas$panamaban a

nanasS$panamaba

ananasSpanamab

bananas$panama

abananasS$Spanam n m
mabananas$pana

amabananasSpan

namabananasSpa a a
anamabananassp

Form all cyclic rotations of
“panamabananas$”

523

The Burrows-Wheeler Transform

Form all cyclic rotations of
“panamabananas$”

Spanamabananas
abananasSpanam
amabananas$pan
anamabananas$p
ananasS$panamab
anasSpanamaban
asSpanamabanan
bananasSpanama
mabananas$pana
namabananassSpa
nanasSpanamaba
nasSpanamabana
panamabananass$S
SsSpanamabanana

Sort the strings
lexicographically
($ comes first)

524

The Burrows-Wheeler Transform

panamabananass$
Spanamabananas
s$Spanamabanana
asS$Spanamabanan
nas$Spanamabana
anas$panamaban
nanass$panamaba
ananasSpanamab
bananas$panama
abananas$panam
mabananas$pana
amabananasSpan
namabananas$pa
anamabananassp

Form all cyclic rotations of

“panamabananas$”

Spanamabananas
abananas$panam
amabananasSpan
anamabananass$p
ananasSpanamab
anas$panamaban
asSpanamabanan
bananas$panama
mabananasS$Spana
namabananasS$Spa
nanas$panamaba
nas$Spanamabana
panamabananass$
s$panamabanana

Burrows-Wheeler
Transform:
Last column =
smnpbnnaaaaa$a

525

BWT: Converting Repeats to Runs

Genome

Burrows-Wheeler Transforni! Convert repeats to runs

BWT(Genome)

l Run-length encoding

Compression(BWT(Genome))

526

How Can We Decompress?

Genome

IS IT POSSIBLE? I l Burrows-Wheeler Transform

BWT(Genome)

EASYI l Run-length encoding

Compression(BWT(Genome))

527

$b

an
an
ba
na
na

 We now know 2-mer composition of the
circular string banana$

* Sorting gives us the first 2 columns of the

matrix.

P P LD B B W

Reconstructing banana

2-mers

as
na
na
ba
Sb
an
an

Sort

S$b

an
an

na
na

528

Sba
as$h
ana
ana
ban
na$
nan

 We now know 3-mer composition of the

P P LD B B W

Reconstructing banana

3-mers

asb
nas
nan
ban
Sba
ana
ana

circular string banana$

* Sorting gives us the first 3 columns of the

matrix.

Sort

Sba
as$h
ana
ana
ban
na$
nan

529

Reconstructing banana

Sban a asba Sban
aS$Sbanan nasSb a$Sbb
anas$ n nana anaa
anan b — 5 bana — anaa
bananz$ 4-mers Sban Sort bann
naS$Shb a anas naS$Sb
nanasba anan nana

 We now know 4-mer composition of the
circular string banana$

* Sorting gives us the first 4 columns of the
matrix.

530

Reconstructing banana

Sbanana aSban Sbana
aSbanan nasSba a$Sbbn
ana$ban nanas anaab
ananashb -5 banan _— anaaa
banan:=$ 5-mers $bana Sort bannn
naSbana anas$hb naSba
nanaShba anana nana$

 We now know 5-mer composition of the
circular string banana$

* Sorting gives us the first 5 columns of the
matrix.

531

Sbana
aS$Sban
ana$hb
anana
banan
naS$Sba
nanas$

P P LD B B W

Reconstructing banana

6-mers

asbana
nasban
nanasSb
banana
Sbanan
anas$ba
ananas

—

Sort

Sbanan
asbbna
anaaba
anaaas
bannna
nasban
nanasSb

 We now know 6-mer composition of the
circular string banana$

* Sorting gives us the first 6 columns of the

matrix.

932

Reconstructing banana

Sbanana aSbana Sbanan
aS$Sbanan naSban a$Sbbna
ana$ban nanashb anaaba
anana$hb _— banana 5 anaaas$
banana$ 6-mers S$banan Sort bannna
naSbana anasSba na$ban
nanaSba ananas nana$b

 We now know 6-mer composition of the
circular string banana$

* Sorting gives us the first 6 columns of the
matrix.

533

Reconstructing banana

Sbanana

e We now know the entire matrix!

e Taking all elements in the first row (after $)
produces banana.

534

More Memory Issues

e Reconstructing Genome from BWT(Genome)
required us to store |Genome| copies of

| Genome|.
Sbanana
aSbanan
anaS$Sban
ananashb
bananas$
nasbana
nanasba

 Can we invert BWT with less space?

535

A Strange Observation

Spanamabananas
abananasSpanam
amabananas$pan
anamabananass$p
ananas$panamab
anassSpanamaban
asSpanamabanan
bananas$panama
mabananas$pana
namabananas$pa
nanass$panamaba
nas$panamabana
panamabananass$
s$Spanamabanana

536

A Strange Observation

Spanamabananas
abananasS$panam
amabananasSpan
anamabananass$p
ananasSpanamab
anas$panamaban
asSpanamabanan
bananas$panama
mabananas$pana
namabananassSpa
nanasSpanamaba
nassSpanamabana
panamabananass$
s$Spanamabanana

537

Is It True in General?

$ s
abananasSpanam
amabananas$pan
anamabananas$p
ananas$panamab
anasS$panamaban
asSpanamabanan
b a

o Ot dWNDK

w'o B B D8
O »rY O Y W

These strings are sorted

_

Chop off a

bananas$panam
mabananasSpan
namabananas$p
nanasS$panamab
nassSpanamaban
s$Spanamabanan

538

Is It True in General?

$ s
abananasSpanam
amabananas$pan
anamabananas$p
ananas$panamab
anasS$panamaban
asSpanamabanan
b a

o Ot dWNDK

w'o B B D8
O »rY O Y W

These strings are sorted

_

Chop off a

bananas$panam
mabananasSpan
namabananas$p
nanasS$panamab
nassSpanamaban
s$Spanamabanan

Still
sorted

539

o Ot dWNDK

Is It True in General?

p o W»

S5 O B 8 W®

a n
bananas$panama
mabananasS$pana
namabananas$pa
nanass$panamaba
nas$panamabana

P $
s$Spanamabanana

These strings are sorted

/’

Chop off a

Ordering
doesn’t
change!

Add a
to end

v

bananas$panama
mabananasS$Spana
namabananas$pa
nanasS$panamaba
nas$panamabana
s$Spanamabanana

Still
sorted

Still
sorted

540

Is It True in General?

* First-Last Property: The k-th

. aj

occurrence of symbol in a,
FirstColumn and the k-th :3
occurrence of symbol in a
LastColumn correspond to ;e
the same position of symbol "
In Genome. n,
np

nj

More Efficient BWT Decompression

$ipanamabananas;
a;bananasSpanam;
a,mabananas$pan;
asnamabananass$p;
a,nanas$panamab;
asnassSpanamaban,
dgSsSSpanamabanans
b;ananasS$Spanamaj;
m;abananass$panas,
namabananasS$Spas;
n,anasSpanamaba,
nyassSpanamabanas
pianamabananass$;
s;Spanamabananag

542

More Efficient BWT Decompression

S,panamabananas;
a;bananasSpanam;
a,mabananas$pan;
asnamabananass$p;
a,nanas$panamab;
asnassSpanamaban,
dgSsSSpanamabanans
b;ananasS$Spanamaj;
m;abananass$panas,
namabananasS$Spas;
n,anasSpanamaba,
nyassSpanamabanas
pi.anamabananas$;
s;Spanamabananag

543

More Efficient BWT Decompression

$ S 1 p
a m, $ a
ao n;,
n
a3 P S
d g b,
ds ns,
dg ns a a
b, a
ml a2
ns a4
ns; ds
P $ 1
s . a. a a
n b
a

* Memory: 2|Genome| = O(|Genome]|).

544

Recalling Our Goal

e Suffix Tree Pattern Matching:
— Runtime: O(|Genome| + | Patterns|)
— Memory: O(|Genome|)
— Problem: suffix tree takes 20 x | Genome| space

e Can we use BWT(Genome) as our data
structure instead?

545

Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S,panamabananas;
a;bananasSpanam;
a,mabananas$pan;
asnamabananasSp;
a,nanassSpanamab;
asnassSpanamaban,
dgSsSSpanamabanans
b;ananasS$Spanamaj;
m;abananass$panas,
niamabananass$Spas
n,anasSpanamaba,
niassSpanamabanas
pianamabananass$;
Ss;Spanamabananag

546

Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S,panamabananas;
abananasSpanam;
a,mabananasS$pan;
aznamabananasSp;
ananassSpanamab;
asnas$Spanamaban,
agsSpanamabanansy
b;ananasS$Spanamaj;
m;abananass$panas,
niamabananass$Spas
n,anasSpanamaba,
niassSpanamabanas
pianamabananass$;
Ss;Spanamabananag

547

Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S,panamabananas;
abananasSpanam;,
a,mabananas$pan;
asnamabananasSp;
a,nanasSpanamab,
asnas$Spanamaban,
agsSpanamabanansy
b;ananasS$Spanamaj;
m;abananass$panas,
niamabananass$Spas
n,anasSpanamaba,
niassSpanamabanas
pianamabananass$;
Ss;Spanamabananag

548

Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S,panamabananas;
a;bananasSpanam;
a,mabananas$pan;
asnamabananasSp;
a,nanassSpanamab;
asnassSpanamaban,
dgSsSSpanamabanans
b;ananasS$Spanamaj;
m;abananass$panas,
niamabananass$Spas
n,anasSpanamaba,
niassSpanamabanas
pianamabananass$;
Ss;Spanamabananag

549

Where Are the Matches?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positions in Genome where one of
Patterns appears as a substring.

* Where are the positions? BWT has not
revealed them.

550

Where Are the Matches?

 Example: We know that 31
ana occurs 3 times, but 3,

where? asna

551

Using the Suffix Array to Find Matches

e Suffix array: holds 51
starting position of a,
each suffix beginning 23
a row. a.

Using the Suffix Array to Find Matches

 Suffix array: holds
starting position of
each suffix beginning
a row.

13

553

Using the Suffix Array to Find Matches

 Suffix array: holds 13| $.
. _ 5| a;bananass$
starting position of a,
each suffix beginning 2

a row. a.

abananass$

554

Using the Suffix Array to Find Matches

 Suffix array: holds 13| $.

. _ 5| a;bananass$
starting position of 5| a,mabananass
each suffix beginning o

4

a row. a.
d g

b,

Iy

i

amabananas$ 22

P1

S

555

Using the Suffix Array to Find Matches

 Suffix array: holds
starting position of
each suffix beginning
a row.

anamabananas$

w O

$1
a;bananass$
a,mabananass$

as;namabananass$

556

Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

ananas$

<~ W O W

$1

a;bananass$
a,mabananass$
as;namabananass$
a,nanas$

557

Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

anas$

O J = W O W

S1

a;bananass$
a,mabananass$
as;namabananass$
a,nanas$

558

Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

as$

R O JFF W o W

$1

a;bananass$
a,mabananass$
as;namabananass$
a,nanas$
asnas$

559

Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

bananasS$

|_\
O P W JdJ B WU W

|_\

$1

a;bananass$
a,mabananass$
as;namabananass$
a,nanas$
asnas$

acs$

b,ananas$

560

Using the Suffix Array to Find Matches

|_\

O oo N MO O JdJBFE WO W

$1

a;bananass$
a,mabananass$
as;namabananass$
a,nanas$
asnas$

acs$
b,ananas$
m.abananas$
n;amabananass$
n,anass$

n;ass$

P

S

 Suffix array: holds
starting position of
each suffix beginning
a row.

|_\

nas$

|_\

561

Using the Suffix Array to Find Matches

|_\

1

a;bananass$
a,mabananass$
as;namabananass$
a,nanas$
asnass$

acs$

b,ananas$
m.abananas$
n;amabananass$
n,anass$

n;ass$
p;anamabananas$;
S 1

e Suffix array: holds
starting position of
each suffix beginning
a row.

panamabananas$

= =
O O WNDdOHF O JF WU W

562

Using the Suffix Array to Find Matches

|_\

$1

a;bananass$
a,mabananass$
as;namabananass$
a,nanas$
asnas$

acs$

b,ananas$
m.abananas$
n;amabananass$
n,anass$

n;ass$
p;anamabananas$;

s.$

e Suffix array: holds
starting position of
each suffix beginning
a row.

/)]
202
-

= =
N O O wwN O O -JF WU W

563

Using the Suffix Array to Find Matches

|_\

e Suffix array: holds
starting position of
each suffix beginning
a row.

panamabananass

= =
N O O wwN O O -JF WU W
Q
()

|_\

Using the Suffix Array to Find Matches

e Suffix array: holds 51
. o . o a
starting position of .
each suffix beginning 1 asna
a,na
d ITOW. 9 azna
a6
b,
m
* Thus, ana occurs at .
positions 1, 7, 9 of %
3
panamabananass. D,

T)

The Suffix Array: Memory Once Again

e Memory: ~ 4 x |Genome|.

M3 5 3 1 7 9 11 6 4 2 8 10 0 12]

566

The Suffix Array: Memory Once Again

e Memory: ~ 4 x |Genome|.

M3 5 3 1 7 9 1M1 6 4 2 8 10 0 12]

567

The Suffix Array: Memory Once Again

e Memory: ~ 4 x |Genome|.

M3 5 3 1 7 9 1 6 4 2 8 10 0 12]

568

Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Approx. Pattern Matching Problem:

— Input: A string Pattern, a string Genome, and an
integer d.

— Output: All positions in Genome where Pattern
appears as a substring with at most d mismatches.

569

Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Multiple Approx. Pattern Matching Problem:

— Input: A collection of strings Patterns, a string
Genome, and an integer d.

— Output: All positions in Genome where a string
from Patterns appears as a substring with at most
d mismatches.

570

Method 1: Seeding

e Say that Pattern appears in Genome with 1
mismatch:

Pattern acttlggct

Genome actalggct

571

Method 1: Seeding

e Say that Pattern appears in Genome with 1
mismatch:

Pattern acttlggct

Genome actalggct

* One of the substrings must match!

572

Method 1: Seeding

* Theorem: If Pattern occurs in Genome with d
mismatches, then we can divide Pattern into

d + 1 “equal” pieces and find at least one exact
match.

X X X X XXXXXXIXX
X X X X XXXXXXIXX

573

Method 1: Seeding

Say we are looking for at most d mismatches.

Divide each of our strings into d + 1 smaller
pieces, called seeds.

Check if each Pattern has a seed that matches
Genome exactly.

If so, check the entire Pattern against Genome.,

Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Mismatches

$ 1 S 1

a; m, 1

a, n, 0

Now we extend o b 1
4 1

all strings with at as n, 8
. as n;
most 1 mismatch. b.a o
m;a a o
n;a a 3
n,a a 4
nsa a s
pi.a S

575

Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Mismatches

S1 S

a m,

ao n;

. a3 P

One string . b

produces a as n,
second mismatch [°, . 1
(the $), so we m;a a, 1
. . n;a asjs 0
discard it. n,a - 0
nisa dg 0
Pi1a $1 2

576

Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Mismatches

$1 S
alba ml 1
a,ma n, 1
0
In the end, we :zﬁ: ii 0
have five 3-mers asna n, 0
with at most 1 . .
. 1 1
mismatch. m a,
n;, as
n, a,
n3 a5
P $1

S77

Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$1 Sl

aiq m

a, n;y

In the end, we . P

) a,na b 7

have five 3-mers as n,
with at most 1 . o
. 1 1
mismatch. m, a,
ni a3

n, a4

nsj; ds

P $ 1

578

Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$1 S
ai m
a, n;
In the end, we o .
. 4 1

have five 3-mers asna n, 9
with at most 1 . .
. 1 1
mismatch. m a,
n- a3
n, agy
P $ 1

579

Reference for this section

BIOINFORMATICS ALGORITHMS BIOINFORMATICS ALGORITHMS
An Active Learning Approach An Active Learning Approach
2nd Edition, Vol. T | 2ndEdition,voLum

» Chapter 9 Vol 2

by Phillip Compeaun & Pavel Pevzner | by Phillip Compeau & Pavel Pevzner

Computing BWT:
http://www.allisons.org/Il/AlgDS/Strings/BWT/

580

Section 7

Algorithms to find parts

» Algorithm: Viterbi
» Algorithm: Forward
» Algorithm: Backward

581

Biologists need algorithms to identify genes and gene parts

The gene information starts with the promoter, which
is followed by a transcribed (i.e. RNA) but non-coding
(i.e. not translated) region called 5" untranslated
region (5 UTR). The initial exon contains the start
codon which is usually ATG. There is an alternating
series of introns and exons, followed by the
terminating exon, which contains the stop codon. It is
followed by another non-coding region called the 3’
UTR; at the end there is a polyadenylation (polyA)
signal, i.e. a repetition of the amino acid adenine. The
intron/exon and exon/intron boundaries are conserved
short

sequences and called the acceptor and donor sites.
For all these different parts we need to know their
probability of occurrence in a large database.

a I Intron 1

=y

Exon 1 GuU A (V)AG Exon 2

GC GCrA c
% qn) |
A BU2SucCuulUy

5 splice site Branch site 3’ splice site

>0
>0
>0
>0
>0
0>
»
»
0]
>

Startcodon codons ponor site

CGCO N[eLef i (o) (o[-YXS XGTGAGTGA
Transcription
start\

Exon
N N
5'UTR

Promoter

CCTCCCA$CCTGCGCAG\
Acceptor site

Intron

Poly-A site
7

Stop codon GGCAGAAACAATAAA! ool o

GATCCCCATGCCTGAGGGCCCCTC

Using alignments

Set of signal sequences:

Position Frequency Matrix -
PFM

Position Weight Matrix - PWM

PWM :W,, =log, 22
p(d)

Score for New
Sequence

Sequence Logo & Information
content

—4oN> coNOUTPAWNER
WNWe mnon—-H—-A—-oor
PWeOHd Ao >>>N
SOPPL O>TA>IAOAAW
©E®® NN NONnNn D
Teoow —A——">r—"—">>un
RPeOO®ON —AX>>>I>>>>O0
POOP >AHAAD>AA>>

-1.93 .79 .79 -1.93 .45 1.50 .79
1.68 -1.93 -1.93 -1.93
.0 .45 -1.93 -1.93 -1.93 -1.93 -1.93

Haoa»

-
w
'

-
w
w
S
e

.15 .66 -1.93 -1.93 1.07 .66 .19 .

1 2 3 4 5 6 7

TTGCATA
.15 -.66

-1.93 1,66 .45 -.66 .79

NOWW MmN X>r>——0

=

NRPROUl >PA—-HAO>>>>©
POODL A—-H—A—-H>>P>>O

1.07 .19

-1.93 -1.93

.66 =-1.93
.79 -1.93
9 10

[

S OSON oo TTrrook-

.0 -1.93
-1.93 -1.93
1.3 1.68
-1.93 -1.93

11

[N

(SNBSS B AN AN AN NA NN NN

12

[T

PUSeSe oooo—-Hoonnnmw
=

SO PL~hdh NOONOIZI>IT>h

-1.93 .79
.0 .19
1.07 -1.93
.66 -1.93
13 14

583

Biologists need algorithms to identify protein parts

Membrane proteins that are important for cell
import/export. We would like to predict the
position in the amino acids with respect to the
membrane. The prediction of protein topology
(i.e. which parts are outside, inside and buried in
the membrane) will require to train the model
with a dataset of experimentally determined
genes / transmembrane helices and to validate
the model with another dataset. The figure on
right describes a 7 helix membrane protein
forming a sort of a cylinder (porus) across the cell
membrane

The dishonest casino model

0.05
0.95 0.95

P(1|F) = 1/6 P(1]L) = 1/10
P(2|F) = 1/6 P(2IL) = 1/10
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) = 1/6 P(4]L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6|F) = 1/6 P(6IL) = 1/2

HMM

Definition: A hidden Markov model (HMM)

e Alphabet >={by, by, .. by}

Set of states Q={1, ..., K}

Transition probabilities between any two states

a;; = transition prob from state i to state |

aj +..+ayx=1, forallstatesi=1..K

Start probabilities ag;

301+ +aOK= 1

Emission probabilities within each state
ei(b) =P(x;=b | m =k

el(b,) + ... + e(by) =1, forallstatesi=1...K

A Hidden Markov Model is memory-less

At each time step t,
the only thing that affects future states
is the current state m,

P(Teaq = < | “whatever happened so far”) =
D(T0q = K| Ty, Ty ey Ty Xgp Xoy ooy X)) =
D(TCt+1 = \ TCt)

A parse of a sequence

Given a sequence X = Xq......Xy,
A parse of x is a sequence of states © = 1y,, TN

Likelihood of a parse

Given a sequence X = Xq......Xy o)
and a parse T =T, , TOn

To find how likely is the parse:
(given our HMM) | | l l

P(X; TC) = P(Xll coey XNy TCpp eeeene ’ TCN) =

P(Xn, 7oy | 7ona) POXncs o | Tone) e PXy, 05 | 709)
P(Xll Tcl) =

Py | 7tn) Pty | Ton-) oo P(xy | 75) P(my | 7tq) P(x |
1) P(my) =

Example: the dishonest casino

Let the sequence of rolls be:

x=1,2,1,5,6,2,1,6,2,4

Then, what is the likelihood of

nt = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs age.ir = 72, ag10aded = 72)

¥ x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

% x (1/6)1° x (0.95)° =.00000000521158647211 = 0.5 x 107

Example: the dishonest casino
So, the likelihood the die is fair in all this run

is just 0.521 x 107

OK, but what is the likelihood of

= Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

% x P(1 | Loaded) P(Loaded, Loaded) ... P(4 | Loaded) =

% x (1/10)% x (1/2)?% (0.95)° =.00000000078781176215=7.9
x 10710

Therefore, it is after all 6.59 times more likely that the die is
fair all the way, than that it is loaded all the way.

Example: the dishonest casino

Let the sequence of rolls be:

x=1,6,6,56,2,6,6,3,6

Now, what is the likelihood t=F F, ..., F?

¥ x (1/6)1° x (0.95)° = 0.5 x 10, same as before

What is the likelihood

T =L1L..L?

% x (1/10)* x (1/2)°® (0.95)° =.00000049238235134735 = 0.5 x 10/

So, it is 100 times more likely the die is loaded

The three main questions on HMMs
1. Evaluation
GIVEN a HMM M, and a sequence x,
FIND Prob[x | M]

2. Decoding
GIVEN a HMM M, and a sequence x,

FIND the sequence 7 of states that maximizes P[x, t | M]

3. Learning

GIVEN a HMM M, with unspecified transition/emission
probs., and a sequence X,

FIND parameters 0 = (e(.), a;) that maximize P[x | O]

Let’s not be confused by notation

P[x| M]: The probability that sequence x was generated by
the model

The model is: architecture (#states, etc)
+ parameters 0 = a;;, g(.)

So,P[x | ©],and P[x] are the same, when the architecture, and
the entire model, respectively, are implied

Similarly, P[x, t | M] and P[x, =] are the same

In the LEARNING problem we always write P[x | O] to emphasize
that we are seeking the 0 that maximizes P[x | O]

Decoding

n = argmax_ P[x, 7] | | | |
We can use dynamic programming!

Let Vk(l) - max{nl,...,i—l} P[lexi—ll Ty vy Ty X5y TG = k]
= Probability of most likely sequence of
states ending at state w; =k

Decoding — main idea
Given that for all states k, and for a fixed position i,
Vi(i) = maXe, iy PlXXiq, T, s Tig, X5 7 = K]
What is V,(i+1)?
From definition,

.....
’’’’’

= max P(Xi1, Tig = 1| 5= K) maxgy, i)PIXgeXig, 0,0, T,
XiTi=K] = €/(Xip1) maxy ay Vi(i)

The Viterbi Algorithm

Input: X = Xj......XyN Andrew
Initialization: Viterb

Vp(0) =1 (O is the imaginary first position)

Vi(0) =0, for all k >0

, Qualcomn

Iteration:

V(i) = €;(x;) x maxy ay; Vi (i-1)

Ptry(i) = argmaxy ay; V(i-1)
Termination:

P(x, m*) = max, Vi (N)

Traceback:
= argmax, V,(N)
T * = Ptry (i)

The Viterbi Algorithm: complexity

R S T e . Xy
State 1 x
2 '\\
¥
7
/
K

left: Similar to “aligning” a set of states to a sequence,

Time: O(K2N); Space: O(KN); bottom right : comparison of
valid directions in the alignment and decoding problem.

N

Viterbi Algorithm — a practical detalil

Underflows are a significant problem

P[Xll"“l Xil T, «ee) TT] — aonl an-ln-z am em(Xl) em(xi)

These numbers become extremely small — underflow

Solution: Take the logs of all values

V(i) = log e, (x;) + max, [V,(i-1) + log a]

Examples

Let x be a sequence with a portion of ~ 1/6 6’s, followed by a
portion of ~ %2 6's...

x =123456123456...12345 6626364656...1626364656
Then, it is not hard to show that optimal parse is (exercise):

6 nucleotides “123456"” parsed as F, contribute .95°x(1/6)°
=1.6x10°
parsed as L, contribute .95°%x(1/2)1x(1/10)°> = 0.4x10>

“162636” parsed as F, contribute .95°x(1/6)° =1.6x10°
parsed as L, contribute .95%x(1/2)3x(1/10)3 = 9.0x107

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n
as follows:

Start at state 7, according to prob ag,,

1. Emit letter x, according to prob e, (x;)
2. Go to state m, according to prob An,m,
3. ... until emitting x,

X
K
)
Xn

A couple of questions

Given a sequence X,

 What is the probability that x was generated by the
model?

* Given a position i, what is the most likely state that
emitted x.?

Example: the dishonest casino

Say x=12341623162616364616234161221341

Most likely path: = FF......F

However: marked letters more likely to be L than unmarked
letters

Evaluation

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(xi...x;) Probability of a substring of x given the model
P(mt, =k | x) Probability that the ith state is k, given x

A more refined measure of which states x may be in

The Forward Algorithm

We want to calculate
P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

P(x) = Zn P(x,) = Zn P(x |) P(m)

To avoid summing over an exponential number of paths T,
define

fe(i) = P(X{...x;, T = k) (the forward probability)

The Forward Algorithm - derivation

Define the forward probability:

(i) = P(Xg...x, T =)

= an...ni-l P(X1... X1, Tqpeees Tiq, T = 1) €1(X)

= Zk an...ni-z P(X1...Xi.1) TCy,eres Tigy Tig = K) @ €1(X;)

= e/(x;) 2y filli-1) ag

The Forward Algorithm

We can compute f,(i) for all k, i, using dynamic programming!
Initialization:

fo(0) =1

f(0)=0, forallk>0
Iteration:

fi(i) = e(x;) 2 fili-1) ag
Termination:
P(x) = 2 f(N) a,

Where, a, is the probability that the terminating state is k
(usually = ag,)

Relation between Forward and Viterbi

VITERBI
Initialization:
Vo(0) =1
Vi (0)=0, forallk>0

Iteration:

Vi(i) = g(x)) max V,(i-1) ay

Termination:

P(X, TC*) = maxXy Vk(N)

FORWARD
Initialization:
fs(0) =1
f(0) =0, forallk>0

Iteration:

(i) = e/(x;) 2y fili-1) ag

Termination:

P(x) = 2y fi(N) ay

Motivation for the Backward Algorithm

We want to compute
P(Tci = k | X))
the probability distribution on the ith position, given x

We start by computing
P(TCi - k, X) - P(Xl...Xi, T = k, Xi+1"'XN)

= P(Xl"'xil TCi = k) P(Xi+1"'XN Xl"'Xil TCi = k)

— P(Xl...Xi, T = k) P(Xi+1"'XN T = k)
Forward, fi(i) Backward, b,(i)

The Backward Algorithm — derivation

Define the backward probability:

by (i) = P(Xjsq-- Xy | ;= k)
= Zm+1 NP1 Xz, oo Xny Ty ooy Ty | 1T = K)
= Z| Zni+1...ﬂ:N P(Xix1:Xis2s s Xy T = |, Ty ooy T | 705 = K)
= Z| e (Xiv1) Ay 2
= 2 €(Xi41) @ by(i+1)

mi+1...tN P(Xi+2; ey XNy Ty veey TON | Ty =)

The Backward Algorithm

We can compute b (i) for all k, i, using dynamic
programming

Initialization:
b.(N) = a,,, for all k

Iteration:
bi(i) = 2 e((Xi1) ay by(i+1)

Termination:

P(x) = 2, 3y €,(x;) b,(1)

Computational Complexity

What is the running time, and space required, for
Forward, and Backward?

Time: O(K2N)
Space: O(KN)
Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each position by
multiplying by a constant

GenScan

No. of Introns

No. of Exons

Length distributions of human introns and initial, internal and terminal exons

350

300

250

200

150

100

50

250

150

100

50+t

{a) Introns

{c) Internal exons

Geometric distribution —--

Histogram —

1000 2000 3000 4000 5000 6000 7000 3000 2000

Length (bp)
Histogram ——
Smoothed density ——-
400 600 300 1000

Length (bp)

No. of Exons

No. of Exons

70

60

50

(b) Initial exons

T IR S — PR e B e
400 600 300

Histogram
Smoothed density ---

1000

Length (bp)

{d) Terminal exons

Histogram —
Smoothed density ---

1000

|
/”

LS 548555088 |

e e

acceptor

3 .~ exon

)iF

612

GenScan

Ey* E* E,*

N - intergenic region w="(‘

P - promoter &‘ r\
F - 5" untranslated region ‘
Eqnq — single exon (intronless) (translation ’ ‘
start -> stop codon) _ ',v

E..i — initial exon (translation start ->

donor splice site) @ @

E, — phase k internal exon (acceptor
splice site -> donor splice site) F+

Esngl+

(single-exon

Eiermy — terminal exon (acceptor splice\git€Tr)
-> stop codon)

gene)

P+
|, — phase k intron: 0 — between codons; (pro-
1 — after the first base of a codon; 2 — 0der)
after the second base of a c%’d‘éﬁ?{d(+)5t‘a“d N

——————————— (intergenic e

region) 613
Reverse (-) strand Reverse (-) strand

GenScan

N\
(o

Forward (+) strand @ Forward (+) strand

A

e

Reverse (-) strand W Reverse (-) strand

Q
\

N Q\

6201
6261
6321
6381
6441
6501
6561
6621
6681
6741
6801
6861
6921
6981
7041
7101
7601
7661
7721
7781
7841
7901
7961
8021
8081
8141
8201
8261
8321
8381
8441
8901
8961
9021
9081
9141
9201
9261

614

Genscan model

* Duration of states — length distributions of
— Exons (coding)
— Introns (non coding)
e Signals at state transitions
— ATG
— Stop Codon TAG/TGA/TAA
— Exon/Intron and Intron/Exon Splice Sites
* Emissions
— Coding potential and frame at exons
— Intron emissions

Performance
> 80% correct exon predictions, and > 90% correct coding/non coding predictions by bp.
BUT - the ability to predict the whole gene correctly is much lower

Example result: exons, introns prediction

Base Position 7790000 |

RefSeq Genes

NT_010718.226 NT_010718.227 ==

Human p53 tumor suppressor gene -chromosome

GenomeScan %ﬁ"

webserver at MIT
L 0 0,59 0, 0, 9 0 90 9 9, 0 9,/

This server provides access to the program GenomeScan for predicting the locations and exon-intron structures of genes in genomic sequences from a variety of organisms.
GenomeScan incorporates protein homology information when predicting genes. This server allows you to input proteins suspected to be similar to regions of your DNA
sequence. You can find such proteins by doing a BLASTX comparison of your sequence to all known proteins, or by running GENSCAN and then comparing the results to
known proteins using BLASTP. Please input the proteins in FastA format; the file may contain multiple proteins so long as each is separated by a header on its own line.
Files should contain less than one million bases.

If you would like to test the program, feel free to use this DNA testfile and the corresponding protein file.

More information on GenomeScan: GenomeScan homepage

You may also wish to use or read about the GENSCAN server, GenomeScan's predecessor.

Run GenomeScan:
Organism: Vertebrate
Sequence name (optional):

Print options: Predicted peptides only

TMHMM: Prediction of transmembrane topology of protein sequence
Model consists of submodels for:
* helix core and cap regions (cytoplasmic and extracellular)
 cytoplasmic and extracellular loop regions
* globular domain regions
Trained form 160 proteins with experimentally determined transmembrane

outside loop
Prediction method:
Posterior decoding, the
i = program computes for each
il residue of the sequence
the probability of being part
if a transmembrane helix,
an intracellular loop or

membrane

tail \ % } ail \ | Insiee : :
Q W globular domain region, or
an extracellular loop or
inside loop domain region.

amino acid sequence MGDVCDTEFGILVA. . -SVALRPRKHGRWIV...FWVDNGTEQ. . «PEHMTKLHMM .. .
state sequence cooooocooohhhhh...hhhhiiiiiiihhh...hhhoooo00O. . .0000000hhh...

tail tail - tail tail loo i
- - tail
topology helix s helix p -

out short loop long loop

Model architecture of TMHMM

(a)

cytoplasmic
side

glob-
ular

loop
cyL

non-cytoplasmic side

>

short loop 3 glob-

non-cyt,

- ular

helix core

hehix core

long loop
non-cyt.

—| glob-
- ular

TMHMM: uses cyclic model with 7 states for
- TM helix core
- TM helix caps on the N- and C-terminal side

- non-membrane region on the cytoplasmic side
- 2 non-membrane regions on the non-cytoplasmic side (for short and long loops
to account for different membrane insertion mechanism)

- a globular domain state in the middle of each non-membrane region

helix core

618

Example result: TMHMM-Output

Sequence Length: 274
Sequence Nuber of predicted TMHs: 7
Sequence Exp nuwber of Axs in TMHs: 153.74681
Sequence Exp nwdber, first 60 Ads: 22.08833
3 Total b of N-in: 0.04171 . i
Sequence Total prob of N-in http://www.cbs.dtu.dk/services/ TMHMM-2.0/
Sequence POSSIBLE N-term signal secuence
Sequence TMHMMZ . O outside 1 26
Sequence TMHMMZ . O TMhelix 27 49
Sequence TMHMMZ . O inside 50 61
Sequence TMHMMZ . O TMhelix 62 84
Sequence TMHMMZ . O outside 85 103
Sequence TMHMMZ . O TMhelix 104 126 OBSERVATION
Sequence TMHMMZ . O inside 127 130 Thzserilzaie || tioesdlzime
Sequence TMHMMZ . O TMhelix 131 153 positive negative
Sequence TMHMMZ . O outside 154 157
Sequence TMHMMZ . O TMhelix 158 180 = Predicted T . Eal .
Sequence TMEMMZ . O inside 181 200 o e |ct<?t_ state rue pgsmve se Fp|;)$|t|ve
Secquence TMHMMZ . O TMhelix 201 223 5 positive (TP) (FP)
Sequence TMHMME . O outside 224 227 =
Sequence TMHMMZ . 0 TMhe lix 228 250 w Predicted_ state | False negative True negative
Sequence TMHMMZ . O inside 251 274 E negative (FN) (TN)
TMHMM posterior probabilities for Sequence
1.2 T T T T T
B N s N b N
a A “

08 r j | ‘ ‘ 1
z |
= p |
® 06| ’ f ‘ | -
° | | '| \
a

04 |]

0 lllllIIlIIIIIIlIIlII.._..l (LT -.._h"'l .|‘ |||||~uu.J|. IJI .!L _J....“L. h' 1! _...l||-|._||| i .J...l
50 100 150 250
transmembrane inside outside 619

Validation for exons, introns, genes, protein parts etc

TP FP |TN
Actual |

FN (TP FN TN

—

Sensitivity Sn=TP/(TP + FN)
Specificity Sp =TN/(TN + FP)
Name

Formula

Sensitivity (Sn)
Recall
True positive rate (TPR)

Specificity (Sp)
True negative rate (TNR)

Precision
Positive predictive value (PPV)

False positive rate (FPR)

False discovery rate (FDR)
Negative predictive value (NPV)
Accuracy (ACQ), Q,

F1 score
F score
F measure

Matthews correlation
coefficient (MCCQ)

_TP
TP +FN

N
TN + FP

TP
TP +FP

FP

FP+ TN
FP

FP+TP
N

TN + FN
TP+ TN

TP +FP+TN+FN
2TP

(2TP + FP +FN)

TP x TN — FP X FN

/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Sensitivity (Sn, recall, or TPR) measures the
proportion of actual positives that are correctly
identified as such, while specificity (Sp or TNR)
measures the proportion of actual negatives
that are correctly identified as such. Precision
(PPV) is the proportion of positive results that
are true positive results, while NPV is the
proportion of negative results that are true
negative results. FDR is the binary (not the
multiple testing) measure of false positives
divided by all positive predictions. Accuracy or
ACC (for binary classification) is defined as the
number of correct predictions made divided by
the total number of predictions made. ACC is
one of the best ways of assessing binary test or
predictor accuracy. The F1 score is another
measure of test accuracy and is defined as the
harmonic average of precision (PPV) and recall
(Sn). MCC is a popular measure of test or
predictor accuracy. It is essentially a chi-
squared statistic for a standard 2 x 2
contingency table. In effect, MCC is the
correlation coefficient between the observed
and predicted binary classifications. 620

Reference for this section

BIOINTORMATICS ALGORITHMS BIOINFORMATICS ALGORITHMS

An Active Learning Approach An Active Learning Approach

2nd Edition, Vol. I 2nd Edition, Vol. II

» Chapter 10 Vol 2

by Phillip Compeaun & Pavel Pevzner . by Phillip Compeau & Pavel Pevzner %

&
¥

°2233¢e

‘. s
i1 riiri111

Biological
sequence
analysis

Probabilistic models
of proteins and
nucieic acids

» Chapter 3

R. Durbin

S. Eddy

A Krogh

G. Mitchison

| Camarionn |

621

Section 8

Algorithms for DNA computing and storage

» Algorithm: Adleman DNA Computing
» Algorithm: Random access in large-scale DNA data storage

622

DNA for computing

Adleman's DNA computation approach (1994) solved a Hamilton problem
seven cities. He used DNA techniques to assemble itineraries at random,;
Select itineraries from initial city to final city. The correct number of cities
must be visited. No city can be left out.

Each city is represented by a unique sequence of bases. Connections
between two cities are created from a combination of the complement of the
first half of the sequence of one city, and the complement of the second half
of the sequence of a connected city. In this way DNA representing the trip will
be created with one strand representing a sequence of cities and the
complementing strand representing a series of connections.

The next step is filtering out trips that start and end in the correct cities, then
filtering trips with the correct number of cities, and finally filtering out trips
that contain each city only once.

623

DNA for computing

Represent Each City By A DNA Strand of 20 Bases Cityl ATGCTCAGCTACTATAGCGA

City?2 TGCGATGTACTAGCATATAT
‘”;;; City3 GCATATGGTACACTGTACAA
® City4 TTATTAGCGTGCGGCCTATG
City5 CCGCGATAGTCTAGATTTCC
y Etc.
®
/ \\ Represent Each Air Route By Mixed Complementary Strands
® City 1->2 TGATATCGCTACGCTACATG
N e— City 2->3 ATCGTATATACGTATACCAT
®5'3,' |
@@ AR » City 3->4 GTGACATGTTAATAATCGCA

ONOECTTAAAGCTAGGCTAGGTACKS

DNA representation of the path from city 2 —> city 3 —> city 4

- -

City 4->5 CGCCGGATACGGCGCTATCA

GCTATTCGAGCTTAAAGCTAGGCTAGGTACK]
KICGATAAGCTCGAATTTCGATH

© complement of @

based on Adleman, 1994, Science

City 5->6 GATCTAAAGG

L. Adelman, Scientific American, pp. 54-61 (Aug
1998); Etc.

Hamiltonian problem: list of steps

The challenge is finding a route between various cities,
passing through each only once.

Adleman first generated all the possible itineraries and then
selected the correct itinerary.

Specifically, the method based on Adleman’s experiment
would be as follows:

* 1 Generate all possible routes.

e 2 Select itineraries that start with the proper city and end
with the final city.

e 3 Select itineraries with the correct number of cities.
e 4 Select itineraries that contain each city only once.

e All of the above steps can be accomplished with standard
molecular biology techniques.

625

Step 1: Generate all possible routes

cities

/@ @
Vertex 1 Vertex 2 Vertex 3
Vertex 4 Vertex 5 Vertex 6

Vertex 7

(a)

routes

_

V1to V2

7

V2 to V3

V3to V2

R =

.

V1 to V4 V1to V7

V2 to V4

V3to V4

(b)

Step 1: Technique for Generating Routes Strategy

Encode city names in short DNA sequences. Encode itineraries by connecting the city
sequences for which routes exist.

Synthesizing short single stranded DNA is now a routine process, so encoding the city
strings is straightforward. Itineraries can then be produced from the city encodings by
linking them together in proper order.

To accomplish this you can take advantage of the fact that DNA hybridizes (=binds) with its
complimentary sequence (complementary strands of DNA bind each other).

For example, you can encode the routes between cities by encoding the complement of the
second half (last n letters) of the departure city and the first half (first n letters) of the
arrival city.

For example the route between Miami (CTACGG) and NY (ATGCCG) can be made by taking
the second half of the coding for Miami (CGG) and the first half of the coding for NY (ATG).
This gives CGGATG.

By taking the complement of this you get, GCCTAC, which not only uniquely represents the
route from Miami to NY, but will connect the DNA representing Miami and NY by
hybridizing itself to the second half of the code representing Miami (...CGG) and the first
half of the code representing NY (ATG...).

Random itineraries can be made by mixing city encodings with the route encodings. Finally,
the DNA strands can be connected together by an enzyme called ligase (ligases are
enzymes, i.e. proteins connecting strings). What we are left with are strands of DNA
representing itineraries with a random number of cities and random set of routes.

Step 2,3: Sort the DNA by length and select the DNA
whose length corresponds to 7 cities

selection for length and initial/end points

A test tube is now filled with DNA encoded itineraries
that start with LA and end with NY, where the number of
cities in between LA and NY varies.

We now want to select those itineraries that are seven
cities long. To accomplish this we can use a technique
called Gel Electrophoresis, which is a common procedure
used to resolve the size of DNA.

Step 2,3: Sort the DNA by length and select the DNA
whose length corresponds to 7 cities (tech details)

DNA is a negatively charged molecule, so if placed in an - voltage
electric field it will be attracted to the positive potential. (G startahere)
The basic principle behind Gel Electrophoresis is to force I
DNA through a gel matrix by using an electric field.

The gel is made up of a polymer that forms a meshwork of
linked strands. The DNA now is forced to thread its way
through the tiny spaces, which slows down the DNA at
different rates depending on its length.

+ voltage

M 1

What we typically end up with after running a gel is a serie:

of DNA bands, with each band corresponding to a certain so

length. 400

We can then simply cut out the band of interest to isolate 20
DNA of a specific length. We know that each city is encode o
with a certain number of base pairs of DNA, knowing the

length of the itinerary gives us the number of cities. 629
UV shows DNA position

305 bp

193 bp

Step 4: itineraries Selection:
Start and End with Correct Cities (using PCR)

Strategy: Selectively copy and amplify only the section of the DNA that starts with LA and ends
with NY by using the Polymerase Chain Reaction (PCR). See next slide.

After generating the routes, we now have a test tube full of various lengths of DNA that encode
possible routes between cities.

What we want are routes that start with LA and end with NY. To accomplish this we can use a
technique called Polymerase Chain Reaction (PCR), which allows you to produce many copies of
a specific sequence of DNA.

After many iterations of PCR, the DNA you're working on is amplified exponentially.

So to selectively amplify the itineraries that start and stop with our cities of interest, we use
primers that are complimentary to LA and NY.

What we end up with after PCR is a test tube full of double stranded DNA of various lengths,
encoding itineraries that start with LA and end with NY.

Polymerase chain reaction - PCR

original DNA
10 be replicated

DNA primer

nudeoctide

€} Denaturation 2t 94-96'C
0 Annealing at ~68°C
£) Elongation atca.72°C

5 ¥ 5 3
e : rrrrrrm
Ly '

- 3 5
(2] 3

o | 1 H HH

3 5 ¥ 5

%
0
0
e o W
S

Figure from wikipedia

rnm /
2 BN

\nm}/
e
2

)

v

\.
.
\.

(2)=)r

PCR is an iterative process that cycle through a series of copying events using an enzyme
called polymerase. Polymerase will copy a section of single stranded DNA starting at the
position of a primer, a short piece of DNA complimentary to one end of a section of the DNA

that you're interested in.

By selecting primers that flank the section of DNA you want to amplify, the polymerase

preferentially amplifies the DNA between these primers, doubling the amount of DNA

containing this sequence.

631

Step 5: Itineraries Selection: have a Complete Set of
Cities
DNA containing a specific sequence can be purified from a sample of mixed DNA by a technique called
affinity purification, as shown below. This is accomplished by attaching the compliment of the sequence
in question to a substrate like a magnetic bead. The beads are then mixed with the DNA. DNA, which

contains the sequence you're after then hybridizes with the complement sequence on the beads. These
beads can then be retrieved and the DNA isolated.

Ccomplimem)

\

| New York’
[Los Angeles|| Chicago || Dallas |[New York |
| LAtoCh || ChtoDa || DatoNY |)

(hybridized DNA) (Magnetic bead)

Select itineraries that have a complete set of cities. Sequentially affinity-purify n times, using a
different city complement for each run. We are left with itineraries that start in LA, visit each
city once, and end in NY.

632

Adleman’s approach pros & cons

1 gram of DNA can hold about 1x10'* MB of data. A test tube
of DNA can contain trillions of strands. 5 grams of DNA contain
10 %1 bases (Zetta Bytes) Each operation on a test tube of DNA
is carried out on all strands in the tube in parallel (Speed: 500-
5000 base pairs a second); Adleman estimated 2 x 10%°
operations per joule.

Adleman's experiment solved a seven city problem, but there
are two major shortcomings preventing a large scaling up of
his computation.

The complexity of the Hamiltonian problem simply doesn’t
disappear when applying a different method of solution - it
still increases exponentially. Adleman’s process to solve the
Hamiltonian problem for 200 cities would require an amount
of DNA that weighed more than the Earth.

Random access in large-scale DNA data storage

STORAGE LIMITS

H . Estimates based on bacterial genetics suggest that digital DNA

DNA |S nOt Only B I G data could one day rival or exceed today’s storage technology.

It is also a way to store information 4

] ©
and computing. More at the end! Hard Flash = Bacterial
disk memory DNA
Read-write speed ~3,000- ”
(us per bit) > 5,000 = L
Data retention
PPt > >10 >10 >100
Power usage - -

Owalis en e > 0.04 0.01-0.04 <101
Data density S ~10% ~1016 ~10%

(bits per cm?)

The data longevity and information density of current DNA data storage systems already surpass those of
traditional storage systems, but the cost and the read and write speeds do not.

Storing one megabyte of data in DNA with existing technology costs hundreds of dollars, compared with less
than $0.0001 per year using tape, the standard for archival data storage.

The price of DNA storage will undoubtedly drop substantially as the costs of DNA synthesis and
sequencing fall.

The more pressing challenge is that DNA synthesis and sequencing are inherently slow.

DNA synthesis and sequencing DNA can be extensively parallelized, their slow speeds limit the amount of data
that can be written and read in a given time interval. The bottleneck for both cost and speed is
synthesis.

A fully automated DNA drive would include synthesis and sequencing technology, components to store and
handle the DNA, as well as a supply of chemicals.

Random access in large-scale DNA data storage

DNA strands that store 96 bits are synthesized, with each of the bases (TGAC) representing a
binary value (Tand G =1, Aand C =0).

To read the data stored in DNA, you simply sequence it — just as if you were sequencing the
human genome — and convert each of the TGAC bases back into binary. To aid with
sequencing, each strand of DNA has a 19-bit address block at the start (the red bits in the
image below) — so a whole vat of DNA can be sequenced out of order, and then sorted into
usable data using the addresses.

1000110111000110100 [barcode/address] @
& 1100110 [f] 01100101 [e] 01110010 [r] 1,
OO ([e] 0110111 [n] 01110100 [t] &,
((/Q 1101001 [i] 01100001 [a] 01101100 [I] OO
00100000 [] 01000100 [D] 01001110 [N]

Q &
: . T TaacGTecTTGeeeGGaGaa
— * . ' lca | ‘ (

$

06\ Qg,
T &
Q& 0

636

Random access in large-scale DNA data storage

Synthetic DNA is durable and can encode digital data with high density,
making it an attractive medium for data storage.

However, recovering stored data on a large-scale currently requires all the
DNA in a pool to be sequenced, even if only a subset of the information needs
to be extracted.

Here, they encode and store 35 distinct files (over 200 MB of data), in more
than 13 million DNA oligonucleotides, and show that they can recover each
file individually and with no errors, using a random access approach.

Organik et al design and validate a large library of primers that enable
individual recovery of all files stored within the DNA. These advances
demonstrate a viable, large-scale system for DNA data storage and retrieval.

Random access in large-scale DNA data storage

Organick et al. stored and retrieved more than 200 megabytes of
data.

Specifically, they attach distinct primers to each set of DNA
molecules carrying information about a file. This allows them to
retrieve a given file by selectively amplifying and sequencing only
the molecules with the primer marking the desired file.

To test their scheme, they designed a primer library that allowed
them to uniquely tag data stored in DNA. They encoded 35 digital
files into 13,448,372 DNA sequences, each 150-nucleotides long.
Redundant information using error detection codes is also included
to increase robustness to missing sequences and errors.

To improve recovery of the information, Organick et al. develop
a clustering and consensus algorithm that aligns and filters
reads before error correction.

This algorithm also takes into account reads that differ from the
correct length.

Random access in large-scale DNA data storage

a File 1 1
0101001 Encode and add ACTGAT Append primer AC ACACTGAT
1100010 redundancy ATTGCA unique to file 2 ACATTGCA Synthesize
1110100 » TGAGAC » ACTGAGAC DNA |
1101011 CCGACT ACCCGACT i i
1110000 CTGCTA ACCTGCTA
File 2
1011101 Encode and add CTCGAAT Append primer GT GTCTCGAAT
1100000 redundancy TCATTG unique to file 2 GTTCATTG Synthesize ~
1101111 » AGGAGT » GTAGGAGT
0001101 TAGGAA GTTAGGAA
1011001 GTCGAGT GTGTGAGT
b DNA pool ACTGAT
ePCR to select ATTGCA Cluster reads 0101001
molecules of file 1 Sequence TCGAGAC and decode 1100010
> » CCGACT »1110100
CTGCTA 1101011
ACTGAT 1110000
CCGACT

The principle of DNA information storage in Organick et al. (a) Two files are stored by
encoding each file in a set of different DNA sequences. Redundant information is added to
enable error recovery at retrieval, and a distinct primer is appended to each set of sequences
corresponding to a file. The resulting strings are synthesized and stored as a pool of different
DNA molecules. (b) A specific file is retrieved by amplifying the molecules corresponding to the

file by ePCR, sequencing the PCR products, and algorithmically reconstructing the data fromg
the reads.

Random access in large-scale DNA data storage

011011 oding

Reed-Solomon code
15% redundancy

20 bp xbp 110-xbp 20 bp

DD
poess | 0]
D | Addr| Payload | ID

! gi.ii‘:; [

Storage

9 synthesis
pools

Primer library design
PCR random access

DNA pool

File-1

Fil

()

-N

011011

(O bit error)

lllumina and Oxford
Nanopore Technologies

Clustering

Trace reconstruction

Error correction

This work describes large-scale random access, low redundancy, and robust
encoding and decoding of information stored in DNA, as well as a notable increase
in the volume of data stored (200 MB, the largest synthetic DNA pool available to

date).Overview of the DNA data storage workflow and stored data.

(a) The encoding process maps digital files into a large set of 150-nucleotide DNA
sequences, including Reed—Solomon code redundancy to overcome errors in
synthesis and sequencing. The resulting collection of sequences is
synthesized. The random access process starts with amplifying a subset of the
seqguences corresponding to one of the files using PCR. The amplified pools

are sequenced. Finally, sequencing reads are decoded using clustering,
consensus and error correction algorithms.

640

Random access in large-scale DNA data storage

Primer library design
i. Design workflow

p
Generate random
20-mer based on

GC-content,

seq complementarity,

long homopolymers,
Hamming distance

Filter
secondary
structure,
and Tm

'

Filter
similarity

19,480
sequences

\\

9,869
sequences

/

\,

5,625
sequences

7

ii. Validation

3,240 48
files files

log,(avg reads)

Q Multiplex -
PCR

Design of random access primers and coding algorithm.

(i) They designed a primer library. The primer sequence set is then filtered that has
low similarity between the sequences. (a, ii) The resulting set of candidate primers is
then validated experimentally by synthesizing a pool of about 100,000 strands
containing sets of size 1 to 200 DNA sequences each, surrounded by one of the

candidate primer pairs, and then randomly selecting 48 of those pairs for

0

12

24 36 48
File ID

amplification. The product is sequenced, and sequences with each of the 48 primer
pairs appear among sequencing reads, albeit at different relative proportions when
normalized to the number of sequences in each set.

Random access in large-scale DNA data storage

Encoding Binary DNA sequences
Binary data (110101..) (ATCTGC..)
0110011011... E
N
1101010001... *

Randormize Payload I S ‘“ T n

Apply Apply Select primers
outer code inner code

Aouepunpay

The encoding process starts by randomizing data to reduce chances of secondary
structures, primer—payload non-specific binding, and improved properties during
decoding. It then breaks the data into fixed-size payloads, adds addressing information
(Addr), and applies outer coding, which adds redundant sequences using a Reed-
Solomon code to increase robustness to missing sequences and errors. The level of
redundancy is determined by expected errors in sequencing and synthesis, as well as DNA
degradation. Next, it applies inner coding, which ultimately converts the bits to DNA
sequences. The resulting set of sequences is surrounded by a primer pair chosen from the
library based on (low) level of overlap with payloads.

642

Random access in large-scale DNA data storage

outer coae inner coae
C
Decoding
° A.TAfTA“ Foe o) ,;’“'\,z;"“'.‘”‘*; 11001100.. 11001100..
* o% * x8\°\o, ’ x\\ J ’ 10010100 s 10010100..
° AN N~
. (B [> Pom W o1010111..
@ .o_ © “ @
o, &]] g : 01100011 . 01100011 »
® Tacacr. R oaes
Sequenced Cluster Reconstruct Reverse Reverse
reads similar reads strands inner code outer code

The decoding process starts by clustering reads based on similarity, and
finding a consensus between the sequences in each cluster to reconstruct
the original sequences, which are then decoded back to digital data.

643

Reference for this section

Reference: Adleman, L. M. (1994). “Molecular computation of solutions to combinatorial
problems”. Science 266 (5187): 1021-1024. doi:10.1126/science.7973651. PMID 7973651

M. Amos chapter

- Martyn Amos

Theoretical and
:| Experimental
| DNA Computation

Published: 19 February 2018
Random access in large-scale DNA data storage

Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin, Konstantin
Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen, Christopher N
Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian, Kendall Stewart, Gagan Gupta,
Robert Carlson, John Mulligan, Douglas Carmean, Georg Seelig, Luis Ceze &J & Karin Strauss

Nature Biotechnology 36, 242-248(2018) \ Cite this article
https://www.nature.com/articles/nbt.4079 645

Section 9

Simulation of biological reactions (also epidemics, social
dynamics etc)

» Algorithm: Doob-Gillespie

646

Simulation of DNA and protein reactions

Problem statement: if we start with N types of molecules that can interact
through one of M reactions at a given time, what will be the population levels of
species after a given period of time?

One approach is to use ODE (obtaining a deterministic solution); another is to use
an exact Stochastic Simulation that allows to: avoid averaging assumptions; it has a
probabilistic formulation of the type:

— When does next reaction occur?
— Which reaction occurs next?

Advantages: continuous time, discrete population changes;
captures effects of noise; simple implementation; small memory requirements.

Disadvantages: CPU intensive; typically must simulate many runs; must use good
random number generator

647

Doob-Gillespie algorithm to simulate reactions

In a common chemical reaction system, two particles collide to form one
or more products (see figure at the bottom).

Biochemical reaction systems with a low to moderate number of
molecules are often simulated (in well-stirred conditions) with methods
that produce statistically exact sample paths such as the Doob-Gillespie

algorithm

The Doob-Gillespie algorithm uses two random numbers per step. The
first is used to find when the next reaction occurs and the second is used
to determine which reaction occurs at that time.

It was developed by Joseph L. Doob and others (about 1945), used for
chemical reactions by Dan Gillespie in 1976. The figures below show the

set of reactions that involve 3 species; the system is updated after the
interval .

System State:

t t+t
R, C>A+B| [A]1]2
B |1 2
C |8 7

How to simulate reactions

The idea of the Doob-Gillespie algorithm is that one first determines
when something happens next.

Suppose the current time is t. Within a time t + T a reaction could
happen; we draw an exponentially distributed random number scaled
by the sum of all process rates.

Then, the Doob-Gillespie algorithm determines what happens next.
This is done by drawing a process randomly from all possible
processes according to their respective probabilities (propensity
functions).

When we have determined which process happens, we can update
the variables (the so-called state of the system). Then we iterate this
process as long as we want.

In practice the propensity function can be thought as a stochastic
reaction rate; more formally in chemistry it describes the probability
while reaction rate describes the changing rate. Propensity functions
are defined based on population of species while the reaction rates
are defined based on the concentration of species.

How to simulate molecules
such as DNA and proteins

A propensity function a; is associated to each reaction step. These
probabilites are related to the kinetics constants.

Initial number of molecules of each species are specified.

The time interval is computed stochastically according the reaction
rates.

Generate r; and r, and calculate the reaction that occurs as well as the
time till this reaction occurs.

At each time interval, the reaction that occurs is chosen randomly
according to the probabilities a; and both the number of molecules and
the reaction rates are updated.

(1)
(2)
(3)
(4)
(5)

(6)

(7)
(8)

Dobb-Gillespie Algorithm

Initialize. Set the initial number of molecules of each
species and set t=0.

Calculate the propensity function, a;, for each reaction.
Set ay=2" 4.

Generate two independent uniform(0,1) random num-
bers r; and r,.

Set t=1/ayIn(1/r;) (equivalent to drawing an expo-
nential random variable with parameter a,).

Find ue[1,...,M] such that

p—1 Iz
2 A < rap < Zak,
k:l k=1

which 1s equivalent to choosing from reactions
[1,...,M] with the kth reaction having probability
ai/ ay.

Set t=t+ a%ld update the number of each molecular
species according to reaction L.

Return to step 2 or quit.

pu-1
u is the integer for which Zi:l a; <

Details on step 6

U
r,a, < zizl a,

Examples

In a given reaction system with v reactions, we know that the hazard for a type i reaction is
hi(x, ¢;), so the hazard for a reaction of some type occurring is

It is clear that the time to the next reaction is Exp(hy(X, ¢)), and also that this reaction will be a
random type, picked with probabilities proportional to the hi(x, c;), independent of the time to the
next event. That is, the reaction type will be i with probability h;(x, ¢;)/ho(x, c). Using the time to the
next event and the event type, the state of the system can be updated, and simulation can
continue.

1. Initialise the system at ¢ = 0 with rate constants c;, co, . . ., ¢, and initial numbers
of molecules for each species, =, zo, ..., z,.

Foreachi =1,2,...,v, calculate h;(x, c;) based on the current state, .
Calculate ho(z,c) = >";_; hi(z, ¢;), the combined reaction hazard.
Simulate time to next event, t’, as an Exp(hgo(z, ¢)) random quantity.
Putt:=t+1t.

Simulate the reaction index, j, as a discrete random quantity with probabilities
Rz e f holz.c)is=1,2,....0.

7. Update z according to reaction j. That is, put z : = = + S, where S\/) denotes
the jth column of the stoichiometry matrix S.

8. Output z and ¢.
9. If t < T'naq, return to step 2. 652

AN G o

Complexity

Memory (N + 2M + 1)
N species populations

(Compute a, values for each of M reactions,
compute a,. compute random numbers)

Total time scales with number of reactions
that occur

Operation per reaction: generate two random
numbers, u, T, calculate a; and a; values.

Genetic network simulation: Example of Doob-
Gillespie application and output

Differences between a population of
isolated cells and a tissue of cells. a)
A population of isolated cells: each
cell contains an identical genetic
network (three species, two inhibiting
and one activating functions).

b) A tissue of cells: each cell contains
an identical genetic network and
some molecules can be transported
between neighbouring cells (dotted
lines).

c) Typical single-cell protein
trajectories of system (1) in isolated
cells.

d) Typical single-cell protein
trajectories of system (1) in a tissue
of connected cells: noise is clearly
reduced compared to c.

a

(2]

Proteins/cell

80

60

40

0

Independent cells

M

20t

2~

Proteins/cell

Tissue-bound cells

f SN
P) 7) ? 5 ?)
'> ? “ <? opW?
EAEE IR ERVEE S
'> ? - N “
£yt gnTenten

80

60

20 ¢

40 “V’JII W r "'” h\!ﬂl

i

Beyond Dobb-Gillespie Algorithm

The original Gillespie algorithm is physically accurate only
for systems that are both dilute and well-mixed in the
reactant (solute) molecules.

An extension of the SSA for systems that are not well-mixed
is the reaction—diffusion SSA (RD-SSA). It divides the system
volume into subvolumes or “voxels” , which are small
enough that each can be considered to be well-mixed.

Chemical reactions are then considered to occur inside
individual voxels and are modeled using the SSA, while

diffusion is modeled via jumps from a subvolume to one of
its neighbors.

In this way, the Gillespie algorithm has been extended to
the challenging field of spatial stochastic modeling.

Reference for this section

Gillespie D.T., (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of
Coupled Chemical Reactions. J. Comp. Phys., 22: 403-434.

GillesPy2 Library in python

GillesPy2 is a Python 3 package for stochastic simulation of biochemical systems.

Examples

—A. Arkin, J. Ross, H. McAdams. Stochastic Kinetic Analysis of Developmental Pathway
Bifurcation in A Phage-Infected Escherichia coliCells. 1998. Genetics 149:1633-1648

— J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn. Dynamical resonance can account for
seasonality of influenza epidemics. 2004 PNAS.

— S. Hooshangi, S. Thiberge, R. Weiss. Ultrasensitivity and noise propagation in a synthetic
transcriptional cascade. 2005. PNAS 102:3581-3586

- Stephen Smith& Ramon Grima 2018 Single-cell variability in multicellular organisms. Nature

Communications

656

657

Guidelines

Algorithm (method, problem)

Name

Type of algorithm

Brief description (what it does?), input, output

Motivation (the problem it is trying to solve and why is it important?)
Assumptions

Main steps

Time and space complexity

Speed-up solutions, if applicable

When comparing: caveats and advantages (and when it is appropriate to use)

Tip: make sure you know how to demonstrate with a small example
Software, technique

Name

Brief description (what it does?)

Motivation (the problem it is trying to solve and why is it important?)
Assumptions

Input

Main steps

Output

When comparing: caveats and advantages (and when it is appropriate to use)

Examples

Simple as possible

Terms

Give a concise and complete definition

Exam questions
1 Bioinformatics (PL)

(@) What are the usage and the limitations of the Bootstrap technique in phylogeny?
6 marks|

Answer: This ie a procedure of resampling of the sites in an alignment and tree reconst ructiones
of all the pseudo alignments; it depends on the size of the alignment (length of the sequences
and their number), The percentage of times each interior branch s given a wloe of 1 s
noted. This ks known as the bootstrap wlue, As o geneml rule, if the bootstrap value for
a given imterior branch is 8% or higher, then the topology at that branch s considered
correct, The presence of several repeated columns decreases the amount of information in each
peeudoalignment.

(¢) How can you evaluate the results obtained (number of clusters and their relative
position) using the K means algorithm for clustering? |5 marks|

Answer: The quality of cluster could be assessed by ratio of distance to nearest cluster and
cluster diameter. A cluster can be formed even when there is no similarity between clustered
patterns. This occurs because the algorithm forces k clusters to be created. Linear relationship
with the number of data points; Complexity is O(nKI) where n = number of points, K =
number of clusters, | = number of iterations.

659

Exam questions

Bioinformatics

(a) Discuss the space-time complexity of dyvnamic programming algorithms in
sequence alignment. |7 marks|

(b) Discuss with one example how to score a multiple sequence alignment.
15 marks|

660

Exam questions

1. Give the alignment matrix of the sequences 'AATCGCGCGGT' and
"ATGCGCCGT!" assuming the following costs: Cost(a,a)=0; Cost(a,b)=3
when a # b, Cost(a,-)=Cost(-,a)=2.

2. How would you set the function Cost in order to compute the longest
subsequence common to X and y?

3. Describe the differences between the algorithms for global and local
alignments

4. Which of the following reasons would lead you to use the Smith-Waterman
local alignment algorithm instead of the Needleman-Wunsch global
alignment algorithm?

Select all appropriate answers.

(a) Computer memory is too limited to compute the optimal global alignment.

(b) One wants to identify common protein domains in the two sequences.

(c) The sequences have very different lengths.

(d) Smith-Waterman 1s faster than Needleman-Wunsch on long sequences.

5. Describe the notion of a parsimonious phylogeny for a finite set of
sequences and the hypothesis assumed on them

COMPUTER SCIENCE TRIPOS Part II — 2013 — Paper 7

3 Bioinformatics (PL)

Given the two DN A sequences: GCACTT and CCCAAT

(@)

Compute the alignment (using the edit graph) and the final score with the

following rules: match score = +1, mismatch = —1, gap penalty = —1.
[4 marks]

Discuss how the alignment score and the quality of the result depend on the
match score, mismatch, and gap penalty. [6 marks]

Generate four, short DNA sequences (a,b,c,d) such that their relations as a tree
are approximately the following: ((a,b),(c,d)). (£ marks]

How is the score matrix used in phylogenetic tree building techniques?
(£ marks]

COMPUTER SCIENCE TRIPOS Part IT — 20132 — Paper 9
I Bioinformatics (PL)

(@) What are the usage and the limitations of the Bootstrap technique in phylogeny?
[6 marks|

(b) We often use Hidden Markov Models (HMM) to predict a pattern (for instance
the exons). How can you compute the number of Ttue Pogitives, True Negatives,
False Positives and False Negatives and use them to evaluate your HIMIM?Y

[6 marks]

(¢) How can you evaluate the results obtained (number of clusters and their relative
position) using the K means algorithm for clustering? [5 marks|

HMM

(b) We often use Hidden Markov Models (HMM) to predict a pattern (for instance
the exons). How can you compute the number of True Positives, True Negatives,
False Positives and False Negatives and use them to evaluate your HMM?

[6 marks]
Answer
(i) be predicted to occur: Predicted Positive (PP)
(ii) be predicted not to occur: Predicted Negative (PN)
(éi2) actually occur: Actual Positive (AP)
(iv) actually not occur: Actual Negative (AN)
(v) True Positive TP = PP AP
(vi) True Negative TN = PN (AN
(vit) False Negative FN = PN () AP
(viii) False Positive FP = PP AN
(iz) Sensitivity: probability of correctly predicting a positive example Sn = TP/(TP + FN)
(z) Specificity: probability of correctly predicting a negative example Sp = TN/(TN + FP)

or

probability that positive prediction is correct Sp = TP /(TP + FP)

