Non-example of a ccc

The category Mon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:
P(X) = Set(X,Zy)
=~ Mon(List X, Z,)
~ Mon(1 X List X, 7Z,)

[ X=1xX

by universal property of
the free monoid List X
on the set X

88



Non-example of a ccc

The category Mon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:
P(X) = Set(X,Zy)
=~ Mon(List X, Z,)
~ Mon(1 X List X, 7Z,)

Since the one-element monoid is initial in Mon, for any M € Mon, we have
Mon(1, M) = 1 and hence

List X = 7Z, exists in Mon iff 2(X) = 1iff X =0

Btw, a ccc has a zero object if, and only if, it is trivial (check).

88



Cartesian closed pre-order

Recall that each preorder P = (P, C) gives a category Cp.
It is a biccc iff P has

>
>
>

a greatest element T: Vp e P, pCE T
a least element L: Vp e P, LC p
binary meets p A g:

VreP, rCpAq © rEpATrCyq
binary joins p V q:

VreP, pVqEr © pErAqLCr
Heyting implications p — ¢:
VreP,rCp—-q © rApCyq

89



Examples:

> Any Boolean algebra (with p — g = —p V g).
> ([0,1],<) with T=1,1L=0,p A q=min{p, g},
1 ifp<gq

= d — =
pVq=max{p,q},and p - q ¢ ifg<p

90



Intuitionistic Propositional Logic (IPL)

We present it in “natural deduction” style and only consider the fragment with

conjunction and implication, with the following syntax:

Formulas of IPL: ¢, 9,0, ... ==
p,q,7,... propositional identifiers
true truth
&Y conjunction
o> implication
Sequents of IPL: & == o empty
®,9» non-empty

(so sequents are finite lists of formulas)



IPL entailment ® + ¢

The intended meaning of @ + ¢ is “the conjunction of the formulas in ® implies
the formula ¢”. The relation _ + _is inductively generated by the following rules:

NN NN ORI/
@,(pl—(p(AX) q),l/”_(p(WK) Sy (cuT)
—— (TRUE) 2re (I)l—lﬁ(&l) M(=>l)
® I true dro&y dro=>Y
Orop&y Orop&y Pro=>y Pro
(D—l_(P(&El) W(&EZ) ory (=)

92



For example, if @ =<, 0 = ¢,y = 0, then® + ¢ =0 is
provable in IPL, because:

ey re=>Y EAX)

o=y WK)
Srysg W Soresy Y Tore (’:‘)
Do+ yY=>0 (Wi D0y ()
O,00 ()

Orp=>0 1)

93



Semantics of IPL
in a cartesian closed pre-order (P, )

Given a function M assigning a meaning to each propositional
identifier p as an element M(p) € P, we can assign meanings to IPL
formula ¢ and sequents @ as elements M[¢], M[®] € P by recursion
on their structure:

Mp] = M(p)
M[true] =T greatest element
Mo & ] = Mo] A M[¢]  binary meet
Mo = ¢] = M[e] - M[y] Heyting implication
Mlo] =T greatest element
M[®, ¢] = M[®] A M[@]  binary meet

94



Semantics of IPL
in a cartesian closed pre-order (P, )

Soundness Theorem. If ® + ¢ is provable from the
rules of IPL, then M[®] C M[¢] holds in any cartesian
closed pre-order.

Proof. exercise (show that {(®, ¢) | M[®] C M[¢]} is closed under the rules
defining IPL entailment and hence contains {(®,¢) | ® + ¢})

94



Example

Peirce’s Law o+ ((p=>¢) = @) = ¢
is not provable in IPL.

(whereas the formula ((¢ = /) = @) = ¢ is a classical tautology)

95



Example

Peirce’s Law o+ ((p=>¢) = @) = ¢

is not provable in IPL.

(whereas the formula ((¢ = /) = @) = ¢ is a classical tautology)

Forif o + ((¢ = /) = ¢) = ¢ were provable in IPL, then by the
Soundness Theorem we would have

T =M[o] € M[((¢ > ¢) = ¢) = ¢].

But in the cartesian closed poset ([0, 1], <), taking M(p) = 1/2 and
M(q) =0, we get

M[((p=>q) =>p)=>p]=((/2—-0) = 1/2) = /2
= (011 > 2
=1-1/2
=1/,

z1

95



Semantics of IPL
in a cartesian closed preorder (P, C)

Completeness Theorem. Given ®, ¢, if for all cartesian
closed preorders (P,C) and all interpretations M of the
propositional identifiers as elements of P, it is the case
that M[®] C M[¢] holds in P, then ® ¢ is provable in
[PL.

96



Semantics of IPL
in a cartesian closed preorder (P, C)

Completeness Theorem. Given ®, ¢, if for all cartesian
closed preorders (P,C) and all interpretations M of the
propositional identifiers as elements of P, it is the case
that M[®] C M[¢] holds in P, then ® ¢ is provable in
[PL.

Proof. Define

P
Ty

{formulas of IPL}
o,¢ + 1 is provable in IPL

> 1

Then one can show that (P,C) is a cartesian closed preorder.
For this preorder, taking M to be M(p) = p, one can show that M[®] € M[¢]

holds in P iff @ I ¢ is provable in IPL. m]

96



Proof theory

Two IPL proofs of 0,0 = 4,y 2> 0+ ¢ = 0

EAX)

. WR) wi) (AX)
T(AX) (WK) @,(/JF(P—>¢ DQoro (=>E)
Dory=>0 LA Y
Qo0
Tres0 OV where @ £ 0,0 = 1, > 0
_ EAx) EAX)
— (WK —— (WK)
Vrg>y b Vg Ez‘)) yry=0 " Wy E::Z)
Yry i vyro (cuT)
Y6

o py=0rp=0

where ¥ £ 0,0 => 1, = 0,¢

97



Proof theory

Two IPL proofs of 0,0 = 4,y 2> 0+ ¢ = 0

EAX)

—_— (AX) , ¢j=>“l;K)(WK) ) ore (AX)
Qory=>0 (Wi DQo+y (=€) =9
Qo0
m =9 where @ £ 0,0 2> ¢,y = 0
(R )
ooy ™ wrg®) Fyryeo ™ wyrg ™
Y (=€) A o (=€)
Yo (=1)

Qo> y=>0re=>0

where ¥ £ 0,0 => 1, = 0,¢

Why is the first proof simpler than the second one?

97



Proof theory

dro ONCN) ONONRA
CD,(pl—(p(AX) <I>,lﬁl—(p(WK) ory (cuT)
—— (TRUE) ore (I)Hﬁ(&l) M(=>l)
O+ true OPro&y Oro=>9y
Oro&y Oro&y Pro=>y Do
(D—w(&El) ‘D—W(&EZ) ory (=F)

FACT: if an IPL sequent ® + ¢ is provable from the rules, it is
provable without using the (cuT) rule.



Proof theory

dro ONCN) ONONRA
CD,(pl—(p(AX) <I>,lﬁl—(p(WK) ory (cuT)
—— (TRUE) ore (I)Hﬁ(&l) M(=>l)
O+ true OPro&y Oro=>9y
Oro&y Oro&y Pro=>y Do
q)—}_(p(&El) ‘D—W(&EZ) ory (=F)

FACT: if an IPL sequent ® + ¢ is provable from the rules, it is
provable without using the (cuT) rule.

Simply-Typed Lambda Calculus provides a language for describing
proofs in IPL and their properties.

98



Simply-Typed Lambda Calculus (STLC)

Types: A, B,C, ... =
G,G,G”... “ground” types
unit unit type
AXB product type

A—-B function type

99



Simply-Typed Lambda Calculus (STLC)

Types: A, B,C, ... =
G,G,G"” ... “ground” types
unit unit type
AXB product type
A—-B function type
Terms: s, t,r,... =
cA constants (of given type A)
x variable (countably many)
0 unit value
(s,t) pair
fstt sndt projections
Ax At function abstraction

st function application



STLC

Some examples of terms:

» 1z: (A—-B) X (A—-0C).Ax: A. ((fstz)x, (snd z) x))
(has type ((A = B) x (A = C)) = (A~ (Bx()))

> lz:A—- (BXC).(Ax: A. fst(zx), Ay : A. snd(zy))
(has type (A — (BXC)) - ((A- B) X (A - (C)))

> Az:A—- (BXC). Ax: A. ((fstz) x, (snd z) x)
(has no type)

100



STLC typing relation, ' -t : A
I' ranges over typing environments
Fe=o|Ix:A

(so typing environments are comma-separated lists of (variable,type)-pairs — in

fact only the lists whose variables are mutually distinct get used)

The typing relation I' ¢ : A is inductively defined by the
following rules, which make use of the notation below

means: no variable occurs more than once in T’

= finite set of variables occurring in T’

101



STLC typing relation, ' -t : A

Typing rules for variables

I' ok x ¢ dom I’

(VAR)
I'x:Arx:A
F'rx:A x’ ¢ domT
p p (VAR’)
IN'x A Fx:A

Typing rules for constants and unit value

I' ok
(cons)
Tt A
I' ok
(UNIT)

I'F():unit

102



STLC typing relation, T ¢ : A

Typing rules for pairs and projections

I'kFs:A I'+t:B
' (s,t):AXB

I'rt:AXB
IF'rfstt: A

(PAIR)

(FsT)

I''rt:AXB
I'sndt:B

(sND)

103



STLC typing relation, ' -t : A

Typing rules for function abstraction & application

I'x:Art:B
'rAx:A.t:A— B

(FUN)

I'rs:A— B 'rt:A
I'tst:B

(ApPP)

104



STLC typing relation, ' -t : A

Example typing derivation:

(VAR)

:A— B :A—- B
o f - Brf - (VAR))

Trf:A—B

Trg Boc ™ TixiArfiASB VAR F,x:Av—x:AEX’:FP{;
TxiArg:BoC (M%) Lx:ArfxiB
Ix:Arg(fx):C (FUN)
FrFAx:Ag(fx):A-C (FuN)

o,f:A-BrAg:B—-C.Ax:A.g(fx):(B-C)— (A-C)
orAf:A—-BAg:B-C.Ax:Ag(fx):(A-B)-(B—-C) > (A-C

) (FUN)

whereT 20, f:A—B,g:B—C

NB: The STLC typing rules are “syntax-directed”, by the structure of terms ¢ and
then in the case of variables x, by the structure of typing environments I'.

105



Semantics of STLC types in a ccc

Given a cartesian closed category C, any function M mapping
ground types G to objects M(G) € C extends to a function
A+ M[A] € Cand T — M[I'] € C from STLC types and typing
environments to C-objects, by recursion on their structure:
M[G] = M(G) an object in C
M[unit] =1 terminal object in C
M[A X B] = M[A] x M[B]  product in C
M[A - B] = M[A] = M[B] exponential in C

Mo] =1 terminal object in C
M|T,x : A] = M[T] x M[A]  product in C

106



Semantics of STLC terms in a ccc
Given a cartesian closed category C, and
given any function M mapping
> ground types G to C-objects M(G)

(which extends to a function mapping all types to objects, A — M[A], as
we have seen)

107



Semantics of STLC terms in a ccc

Given a cartesian closed category C, and

given any function M mapping

> ground types G to C-objects M(G)
> constants ¢ to C-morphisms M(c?) : 1 — M[A]

(In a category with a terminal object 1, given an object X € C, morphisms
1 — X are typically called global elements of X.)

107



Semantics of STLC terms in a ccc
Given a cartesian closed category C, and
given any function M mapping

> ground types G to C-objects M(G)
> constants ¢ to C-morphisms M(c?) : 1 — M[A]

we get a function mapping provable instances of the
typing relation I' + ¢ : A to C-morphisms

M[T rt: A] : M[T] - M[A]

defined by recursing over the proof of I' - ¢ : A from the
typing rules (which follows the structure of t):

107



Semantics of STLC terms in a ccc

Variables:
M[T,x: A+ x: A] = M[T] x M[A] = M[A]
M[T,x": A"+ x : A]
= M[r] x A 2 e 24 A

Constants:
M A
M[TF c?: A] = M[I] 0, M) M[A]
Unit value:

M+ () : unit] = M[I] 5 1

108



Semantics of STLC terms in a ccc

Pairing:

M[T + (s, t) : AXB]

_ M[[r]] (M[Trs:A],M[T+¢:B])

> M[A] x M[B]
Projections:

M[T + fstt: A]

= mpr] 2L rA] x MB] 2 M[A]

109



Semantics of STLC terms in a ccc

Pairing:

M[T + (s, t) : AXB]

_ M[T] (M[[I‘l—s:A]],M[[I‘I—t:B]]), MIA] x M[B]

GiventhatT' + fstt : A holds,
there is a unique type B
g such that T + ¢ : A X B already

Projections:

M[[I‘ Ffstt A]] holds.

Yy M[T+t:AxB] m
= M[I] ——— M[A] x M[B] — M[A]

Lemma. IfT'Ft: Aand T ¢ : B are provable, then A = B.

109



Semantics of STLC terms in a ccc
Pairing:
M[T + (s, t) : AXB]

_ M[T] (M[[I‘l—s:A]],M[[I‘I—t:B]]), MIA] x M[B]

Projections:

M[T + sndt : B] =
M[T'+t:AXB] i
M[T] 25, MAT x M[B] 2 MBI

(As for the case of fst, if ' + sndt : B, then T + ¢ : A X B already holds for a
unique type A.)

109



Semantics of STLC terms in a ccc

Function abstraction:

M[T+Ax : At : A — B]
= cur f : M[T] - (M[A] = M[B])

where

f=M[I,x:A¥rt:B]: M[T] x M[A] — M[B]



Semantics of STLC terms in a ccc

Function application:

M[T st : B]
= Mr] L2 (M[A] = M[B]) x MJA] 25 M[B]
where
A = uniquetypesuchthatT'Fs:A—-BandI'+t:A
already holds (exists because I' + s ¢ : B holds)
f = M[l'rs:A- B]: M[I'] - (M[A] = M[B])
g = M[I'rt:A]: M[T] — M[A]

111



Example

Consider |t = Ax : A.g(fx) |sothatT' -t : A — C for
<o, f:A—-Bg:B—C.
Suppose M[[A] = X, M[B] =Y and M[C] = Z in C. Then

M[I] = (1 xY*) x z¥
M[I,x: Al = (1 xY¥)xZ¥)x X
MD,x:Arx: Al =m

M, x:Arg:B—=C]=mem
M[L,x :Ar f:A->B]l=momem

M[T,x: A+ fx:B] =appe{m om o m, 1)
M[T,x: AF g(fx):C] =appe{mem,appe{m e m e mr, m))

ML+t :A— C] = cur(app(m ° m , app o7z © 711 © 71 , 72)))

112



