
STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?
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STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?

Ans: (U)V[-equivalence — to define this, first have to
define alpha-equivalence, substitution and its
semantics.
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Alpha equivalence of STLC terms

The names of _-bound variables should not affect
meaning.

E.g. _5 : � � �. _G : �. 5 G should have the same
meaning as _G : � � �. _5 : �. G 5 .
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Alpha equivalence of STLC terms

The names of _-bound variables should not affect
meaning.

E.g. _5 : � � �. _G : �. 5 G should have the same
meaning as _G : � � �. _5 : �. G 5 .

This issue is best dealt with at the level of syntax rather
than semantics: from now on we re-define “STLC term”
to mean not an abstract syntax tree (generated as
described before), but rather an equivalence class of
such trees with respect to alpha-equivalence B =U C ,
defined as follows . . .

(Alternatively, one can use a “nameless” (de Bruijn) representation of terms.)
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Alpha equivalence of STLC terms

2� =U 2
� G =U G () =U ()

B =U B
′ C =U C

′

(B , C) =U (B
′ , C ′)

C =U C
′

fst C =U fst C ′

C =U C
′

snd C =U snd C ′
B =U B

′ C =U C
′

B C =U B
′C ′

(~ G) · C =U (~ G
′) · C ′ ~ does not occur in {G, G′, C, C ′}

_G : �. C =U _G
′ : �. C ′

result of replacing all
occurrences of G with ~ in C
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Alpha equivalence of STLC terms

2� =U 2
� G =U G () =U ()

B =U B
′ C =U C

′

(B , C) =U (B
′ , C ′)

C =U C
′

fst C =U fst C ′

C =U C
′

snd C =U snd C ′
B =U B

′ C =U C
′

B C =U B
′C ′

(~ G) · C =U (~ G
′) · C ′ ~ does not occur in {G, G′, C, C ′}

_G : �. C =U _G
′ : �. C ′

E.g.

_G : �. G G =U _~ : �.~ ~ 6=U _G : �. G ~

(_~ : �.~) G =U (_G : �. G) G 6=U (_G : �. G) ~
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Substitution

C [B/G]

= result of replacing all free occurrences of variable G
in term C (i.e. those not occurring within the scope
of a _G : �. binder) by the term B, alpha-converting
_-bound variables in C to avoid them “capturing”
any free variables of C .

E.g. (_~ : �. (~ , G)) [~/G] is _I : �. (I , ~) and is not _~ : �. (~ , ~)
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Substitution

C [B/G]

= result of replacing all free occurrences of variable G
in term C (i.e. those not occurring within the scope
of a _G : �. binder) by the term B, alpha-converting
_-bound variables in C to avoid them “capturing”
any free variables of C .

E.g. (_~ : �. (~ , G)) [~/G] is _I : �. (I , ~) and is not _~ : �. (~ , ~)

The relation C [B/G] = C ′ can be inductively defined by
the following rules . . .
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Substitution

2� [B/G] = 2� G [B/G] = B

~ ≠ G

~ [B/G] = ~ () [B/G] = ()

C1[B/G] = C
′
1 C2 [B/G] = C

′
2

(C1 , C2) [B/G] = (C
′
1 , C
′
2)

C [B/G] = C ′

(fst C) [B/G] = fst C ′

C [B/G] = C ′

(snd C) [B/G] = snd C ′
C1 [B/G] = C

′
1 C2[B/G] = C

′
2

(C1 C2) [B/G] = C
′
1C
′
2

C [B/G] = C ′ ~ ≠ G and ~ does not occur in B

(_~ : �. C) [B/G] = _~ : �. C ′
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Semantics of substitution in a ccc
Substitution Lemma If Γ ⊢ B : � and Γ, G : � ⊢ C : � are
provable, then so is Γ ⊢ C [B/G] : �.

Substitution Theorem If Γ ⊢ B : � and Γ, G : � ⊢ C : �

are provable, then in any ccc the following diagram
commutes:

"JΓK
〈id,"JΓ⊢B :�K〉

"JΓ⊢C [B/G]:�K

"JΓK ×"J�K

"JΓ,G :�⊢C :�K

"J�K
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STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?

Ans: V[-equivalence. . .
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
Γ, G : � ⊢ C : � Γ ⊢ B : �

Γ ⊢ (_G : �. C)B =V[ C [B/G] : �

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ fst(B , C) =V[ B : �

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ snd(B , C) =V[ C : �
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions

Γ ⊢ C : � � � G does not occur in C

Γ ⊢ C =V[ (_G : �. C G) : � � �

Γ ⊢ C : � × �

Γ ⊢ C =V[ (fst C , snd C) : � × �

Γ ⊢ C : unit

Γ ⊢ C =V[ () : unit
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions
◮ congruence rules

Γ, G : � ⊢ C =V[ C
′ : �

Γ ⊢ _G : �. C =V[ _G : �. C ′ : � � �

Γ ⊢ B =V[ B
′ : � � � Γ ⊢ C =V[ C

′ : �

Γ ⊢ B C =V[ B
′C ′ : �

etc
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions
◮ congruence rules
◮ =V[ is reflexive, symmetric and transitive

Γ ⊢ C : �

Γ ⊢ C =V[ C : �

Γ ⊢ B =V[ C : �

Γ ⊢ C =V[ B : �

Γ ⊢ A =V[ B : � Γ ⊢ B =V[ C : �

Γ ⊢ A =V[ C : �
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STLC V[-Equality
Soundness Theorem for semantics of STLC in a ccc.
If Γ ⊢ B =V[ C : � is provable, then in any ccc

"JΓ ⊢ B : �K = "JΓ ⊢ C : �K

are equal C-morphisms "JΓK→ "J�K.

Proof is by induction on the structure of the proof of Γ ⊢ B =V[ C : �.

Here we just check the case of V-conversion for functions.

So suppose we have Γ, G : � ⊢ C : � and Γ ⊢ B : �. We have to see that

"JΓ ⊢ (_G : �. C) B : �K = "JΓ ⊢ C [B/G] : �K
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Suppose "JΓK = -

"J�K = .

"J�K = /

"JΓ, G : � ⊢ C : �K = 5 : - × . → /

"JΓ ⊢ B : �K = 6 : - → /

Then
"JΓ ⊢ _G : �. C : � � �K = cur 5 : - → /.

and hence

"JΓ ⊢ (_G : �. C) B : �K

= app ◦〈cur 5 , 6〉

= app ◦(cur 5 × id. ) ◦ 〈id- , 6〉 since (0 × 1) ◦ 〈2 , 3〉 = 〈0 ◦ 2 , 1 ◦ 3〉

= 5 ◦ 〈id- , 6〉 by definition of cur 5

= "JΓ ⊢ C [B/G] : �K by the Substitution Theorem

as required.
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The internal language of a ccc, C
◮ one ground type for each C-object -

◮ for each - ∈ C, one constant 5 - for each
C-morphism 5 : 1→ - (“global element” of the
object - )

The types and terms of STLC over this language usefully describe constructions
on the objects and morphisms of C using its cartesian closed structure, but in an
“element-theoretic” way.

For example, . . .
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Example

In any ccc C, for any -,., / ∈ C there is an isomorphism

/ (-×. ) � (/. )-
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Example

In any ccc C, for any -,., / ∈ C there is an isomorphism

/ (-×. ) � (/. )-

which in the internal language of C is described by the terms

⋄ ⊢ B : ((- × . ) � / ) � (- � (. � / ))

⋄ ⊢ C : (- � (. � / )) � ((- × . ) � / )

where

{
B , _5 : (- × . ) � / . _G : - . _~ : . . 5 (G , ~)

C , _6 : - � (. � / ) . _I : - × . . 6 (fst I) (snd I)
and

which satisfy

{
⋄, 5 : (- × . ) � / ⊢ C (B 5 ) =V[ 5

⋄, 6 : - � (. � / ) ⊢ B (C 6) =V[ 6
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Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single

ccc F (the free ccc for that language) with an interpretation function"

so that Γ ⊢ B =V[ C : � is provable iff"JΓ ⊢ B : �K = "JΓ ⊢ C : �K in F.

125



Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single

ccc F (the free ccc for that language) with an interpretation function"

so that Γ ⊢ B =V[ C : � is provable iff"JΓ ⊢ B : �K = "JΓ ⊢ C : �K in F.

◮ F-objects are the STLC types over the given set of ground types

◮ F-morphisms �→ � are equivalence classes of STLC terms C satisfying
⋄ ⊢ C : � � � (so C is a closed term—it has no free variables) with respect to
the equivalence relation equating B and C if ⋄ ⊢ B =V[ C : � � � is provable.

◮ identity morphism on � is the equivalence class of ⋄ ⊢ _G : �. G : � � �.

◮ composition of a morphism �→ � represented by ⋄ ⊢ B : � � � and a
morphism � → � represented by ⋄ ⊢ C : � � � is represented by
⋄ ⊢ _G : �. C (B G) : � � � .
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Curry-Howard
correspondence

Type
Logic Theory

propositions ↔ types
proofs ↔ terms

E.g. IPL versus STLC.
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Curry-Howard for IPL vs STLC

Proof of ⋄, i =>k,k => \ ⊢ i => \ in IPL

(ax)· · · (wk)
Φ ⊢ k => \

(ax)· · · (wk)· · · (wk)
Φ ⊢ i =>k

(ax)
Φ ⊢ i

(=>e)
Φ ⊢ k

(=>e)
Φ ⊢ \

(=>i)
⋄, i =>k, k => \ ⊢ i => \

where Φ = ⋄, i =>k, k => \, i
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Curry-Howard for IPL vs STLC

and a corresponding STLC term

(ax)· · · (wk)
Φ ⊢ I : k => \

(ax)· · · (wk)· · · (wk)
Φ ⊢ ~ : i =>k

(ax)
Φ ⊢ G : i

(=>e)
Φ ⊢ ~ G : k

(=>e)
Φ ⊢ I(~ G) : \

(=>i)
⋄, ~ : i =>k, I : k => \ ⊢ _G : i. I(~ G) : i => \

where Φ = ⋄, ~ : i =>k, I : k => \, G : i
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Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs
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Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we
first need to define the notions of functor and natural transformation in order
to define the notion of equivalence of categories.
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Lecture 10
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Functors
are the appropriate notion of morphism between categories

Given categories C and D, a functor � : C→ D is
specified by:

◮ a function objC→ objD whose value at - is
wri�en � -

◮ for all -,. ∈ C, a function C(-,. ) → D(� -, � . )

whose value at 5 : - → . is wri�en
� 5 : � - → � .

and which is required to preserve composition and
identity morphisms:

� (6 ◦ 5 ) = � 6 ◦ � 5

� (id- ) = id� -
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