
STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?

113

STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?

Ans: (U)V[-equivalence — to define this, first have to
define alpha-equivalence, substitution and its
semantics.

113

Alpha equivalence of STLC terms

The names of _-bound variables should not affect
meaning.

E.g. _5 : � � �. _G : �. 5 G should have the same
meaning as _G : � � �. _5 : �. G 5 .

114

Alpha equivalence of STLC terms

The names of _-bound variables should not affect
meaning.

E.g. _5 : � � �. _G : �. 5 G should have the same
meaning as _G : � � �. _5 : �. G 5 .

This issue is best dealt with at the level of syntax rather
than semantics: from now on we re-define “STLC term”
to mean not an abstract syntax tree (generated as
described before), but rather an equivalence class of
such trees with respect to alpha-equivalence B =U C ,
defined as follows . . .

(Alternatively, one can use a “nameless” (de Bruijn) representation of terms.)

114

Alpha equivalence of STLC terms

2� =U 2
� G =U G () =U ()

B =U B
′ C =U C

′

(B , C) =U (B
′ , C ′)

C =U C
′

fst C =U fst C ′

C =U C
′

snd C =U snd C ′
B =U B

′ C =U C
′

B C =U B
′C ′

(~ G) · C =U (~ G
′) · C ′ ~ does not occur in {G, G′, C, C ′}

_G : �. C =U _G
′ : �. C ′

result of replacing all
occurrences of G with ~ in C

115

Alpha equivalence of STLC terms

2� =U 2
� G =U G () =U ()

B =U B
′ C =U C

′

(B , C) =U (B
′ , C ′)

C =U C
′

fst C =U fst C ′

C =U C
′

snd C =U snd C ′
B =U B

′ C =U C
′

B C =U B
′C ′

(~ G) · C =U (~ G
′) · C ′ ~ does not occur in {G, G′, C, C ′}

_G : �. C =U _G
′ : �. C ′

E.g.

_G : �. G G =U _~ : �.~ ~ 6=U _G : �. G ~

(_~ : �.~) G =U (_G : �. G) G 6=U (_G : �. G) ~

115

Substitution

C [B/G]

= result of replacing all free occurrences of variable G
in term C (i.e. those not occurring within the scope
of a _G : �. binder) by the term B, alpha-converting
_-bound variables in C to avoid them “capturing”
any free variables of C .

E.g. (_~ : �. (~ , G)) [~/G] is _I : �. (I , ~) and is not _~ : �. (~ , ~)

116

Substitution

C [B/G]

= result of replacing all free occurrences of variable G
in term C (i.e. those not occurring within the scope
of a _G : �. binder) by the term B, alpha-converting
_-bound variables in C to avoid them “capturing”
any free variables of C .

E.g. (_~ : �. (~ , G)) [~/G] is _I : �. (I , ~) and is not _~ : �. (~ , ~)

The relation C [B/G] = C ′ can be inductively defined by
the following rules . . .

116

Substitution

2� [B/G] = 2� G [B/G] = B

~ ≠ G

~ [B/G] = ~ () [B/G] = ()

C1[B/G] = C
′
1 C2 [B/G] = C

′
2

(C1 , C2) [B/G] = (C
′
1 , C
′
2)

C [B/G] = C ′

(fst C) [B/G] = fst C ′

C [B/G] = C ′

(snd C) [B/G] = snd C ′
C1 [B/G] = C

′
1 C2[B/G] = C

′
2

(C1 C2) [B/G] = C
′
1C
′
2

C [B/G] = C ′ ~ ≠ G and ~ does not occur in B

(_~ : �. C) [B/G] = _~ : �. C ′

117

Semantics of substitution in a ccc
Substitution Lemma If Γ ⊢ B : � and Γ, G : � ⊢ C : � are
provable, then so is Γ ⊢ C [B/G] : �.

Substitution Theorem If Γ ⊢ B : � and Γ, G : � ⊢ C : �

are provable, then in any ccc the following diagram
commutes:

"JΓK
〈id,"JΓ⊢B :�K〉

"JΓ⊢C [B/G]:�K

"JΓK ×"J�K

"JΓ,G :�⊢C :�K

"J�K

118

STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?

Ans: V[-equivalence. . .

119

STLC V[-Equality

The relation Γ ⊢ B =V[C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

120

STLC V[-Equality

The relation Γ ⊢ B =V[C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
Γ, G : � ⊢ C : � Γ ⊢ B : �

Γ ⊢ (_G : �. C)B =V[C [B/G] : �

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ fst(B , C) =V[B : �

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ snd(B , C) =V[C : �

120

STLC V[-Equality

The relation Γ ⊢ B =V[C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions

Γ ⊢ C : � � � G does not occur in C

Γ ⊢ C =V[(_G : �. C G) : � � �

Γ ⊢ C : � × �

Γ ⊢ C =V[(fst C , snd C) : � × �

Γ ⊢ C : unit

Γ ⊢ C =V[() : unit

120

STLC V[-Equality

The relation Γ ⊢ B =V[C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions
◮ congruence rules

Γ, G : � ⊢ C =V[C
′ : �

Γ ⊢ _G : �. C =V[_G : �. C ′ : � � �

Γ ⊢ B =V[B
′ : � � � Γ ⊢ C =V[C

′ : �

Γ ⊢ B C =V[B
′C ′ : �

etc

120

STLC V[-Equality

The relation Γ ⊢ B =V[C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions
◮ congruence rules
◮ =V[is reflexive, symmetric and transitive

Γ ⊢ C : �

Γ ⊢ C =V[C : �

Γ ⊢ B =V[C : �

Γ ⊢ C =V[B : �

Γ ⊢ A =V[B : � Γ ⊢ B =V[C : �

Γ ⊢ A =V[C : �

120

STLC V[-Equality
Soundness Theorem for semantics of STLC in a ccc.
If Γ ⊢ B =V[C : � is provable, then in any ccc

"JΓ ⊢ B : �K = "JΓ ⊢ C : �K

are equal C-morphisms "JΓK→ "J�K.

Proof is by induction on the structure of the proof of Γ ⊢ B =V[C : �.

Here we just check the case of V-conversion for functions.

So suppose we have Γ, G : � ⊢ C : � and Γ ⊢ B : �. We have to see that

"JΓ ⊢ (_G : �. C) B : �K = "JΓ ⊢ C [B/G] : �K

121

Suppose "JΓK = -

"J�K = .

"J�K = /

"JΓ, G : � ⊢ C : �K = 5 : - × . → /

"JΓ ⊢ B : �K = 6 : - → /

Then
"JΓ ⊢ _G : �. C : � � �K = cur 5 : - → /.

and hence

"JΓ ⊢ (_G : �. C) B : �K

= app ◦〈cur 5 , 6〉

= app ◦(cur 5 × id.) ◦ 〈id- , 6〉 since (0 × 1) ◦ 〈2 , 3〉 = 〈0 ◦ 2 , 1 ◦ 3〉

= 5 ◦ 〈id- , 6〉 by definition of cur 5

= "JΓ ⊢ C [B/G] : �K by the Substitution Theorem

as required.

122

The internal language of a ccc, C
◮ one ground type for each C-object -

◮ for each - ∈ C, one constant 5 - for each
C-morphism 5 : 1→ - (“global element” of the
object -)

The types and terms of STLC over this language usefully describe constructions
on the objects and morphisms of C using its cartesian closed structure, but in an
“element-theoretic” way.

For example, . . .

123

Example

In any ccc C, for any -,., / ∈ C there is an isomorphism

/ (-×.) � (/.)-

124

Example

In any ccc C, for any -,., / ∈ C there is an isomorphism

/ (-×.) � (/.)-

which in the internal language of C is described by the terms

⋄ ⊢ B : ((- × .) � /) � (- � (. � /))

⋄ ⊢ C : (- � (. � /)) � ((- × .) � /)

where

{
B , _5 : (- × .) � / . _G : - . _~ : . . 5 (G , ~)

C , _6 : - � (. � /) . _I : - × . . 6 (fst I) (snd I)
and

which satisfy

{
⋄, 5 : (- × .) � / ⊢ C (B 5) =V[5

⋄, 6 : - � (. � /) ⊢ B (C 6) =V[6

124

Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single

ccc F (the free ccc for that language) with an interpretation function"

so that Γ ⊢ B =V[C : � is provable iff"JΓ ⊢ B : �K = "JΓ ⊢ C : �K in F.

125

Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single

ccc F (the free ccc for that language) with an interpretation function"

so that Γ ⊢ B =V[C : � is provable iff"JΓ ⊢ B : �K = "JΓ ⊢ C : �K in F.

◮ F-objects are the STLC types over the given set of ground types

◮ F-morphisms �→ � are equivalence classes of STLC terms C satisfying
⋄ ⊢ C : � � � (so C is a closed term—it has no free variables) with respect to
the equivalence relation equating B and C if ⋄ ⊢ B =V[C : � � � is provable.

◮ identity morphism on � is the equivalence class of ⋄ ⊢ _G : �. G : � � �.

◮ composition of a morphism �→ � represented by ⋄ ⊢ B : � � � and a
morphism � → � represented by ⋄ ⊢ C : � � � is represented by
⋄ ⊢ _G : �. C (B G) : � � � .

125

Curry-Howard
correspondence

Type
Logic Theory

propositions ↔ types
proofs ↔ terms

E.g. IPL versus STLC.

126

Curry-Howard for IPL vs STLC

Proof of ⋄, i =>k,k => \ ⊢ i => \ in IPL

(ax)· · · (wk)
Φ ⊢ k => \

(ax)· · · (wk)· · · (wk)
Φ ⊢ i =>k

(ax)
Φ ⊢ i

(=>e)
Φ ⊢ k

(=>e)
Φ ⊢ \

(=>i)
⋄, i =>k, k => \ ⊢ i => \

where Φ = ⋄, i =>k, k => \, i

127

Curry-Howard for IPL vs STLC

and a corresponding STLC term

(ax)· · · (wk)
Φ ⊢ I : k => \

(ax)· · · (wk)· · · (wk)
Φ ⊢ ~ : i =>k

(ax)
Φ ⊢ G : i

(=>e)
Φ ⊢ ~ G : k

(=>e)
Φ ⊢ I(~ G) : \

(=>i)
⋄, ~ : i =>k, I : k => \ ⊢ _G : i. I(~ G) : i => \

where Φ = ⋄, ~ : i =>k, I : k => \, G : i

127

Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs

128

Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we
first need to define the notions of functor and natural transformation in order
to define the notion of equivalence of categories.

128

Lecture 10

129

Functors
are the appropriate notion of morphism between categories

Given categories C and D, a functor � : C→ D is
specified by:

◮ a function objC→ objD whose value at - is
wri�en � -

◮ for all -,. ∈ C, a function C(-,.) → D(� -, � .)

whose value at 5 : - → . is wri�en
� 5 : � - → � .

and which is required to preserve composition and
identity morphisms:

� (6 ◦ 5) = � 6 ◦ � 5

� (id-) = id� -

130

