Compiler Construction

Lecture 2: Lexing

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
Lent 2025

What is the role of a lexer?

today'’s lecture

: grab 2
acc 0

acc 1
return 3

: acc 2
front end e

f—H .
. . push
/\\ const 3
oss lexin arsin typin e oo middle/back end e
then b else c g P g RIE /\ branchifnot L3
L

What is lexing?

Lexing converts a sequence of characters into a sequence of tokens.

characters

| [3|Mjtihjejn) |b] |ejljs|e]

a

o
H =
Z Z
= =
- -

What do lexers look like?

A lexer is typically specified as a sequence mapping regexes to tokens:

if
then
else

IF Token data type:

THEN type token =
ELSE INT of int
| IDENT of string
| EQUAL

| IF

| THEN

| ELSE

| ...

[_a—zA—Z]+ as s
[0-9]+ as i
[\t\n]

EQUAL
IDENT s
INT i
skip

S R R R 2

(2]
=
.2
(%]
(V2]
()
=
o
x
(0]
&
&
=J
o0
(0]
o

Today's Q: how can we turn this declarative specification into a program?

Regular expressions

(“regexes”)

Regular expression syntax

Regular expressions e over alphabet X are written:

Regexes e—0le|laleve|eelex (aed)
® O

A regular expression e denotes a language (set of strings) L(e). For example,

L((aV b) x abb) = {abb,
aabb,
babb,
aaabb,
ababb,
baabb,
bbabb,
aaaabb,

)

The regular language problem

The L(—) function can be defined inductively:

Regexes C X

X 0
{e}
{a}

L(e1) U L(e2)
{wiwg | wy € L(e1), ws € L(ea2)}

{e}
L(ee™)
U,,ZOL(e”)

The regular language problem: is w € L(e)? This is insufficient for lexing.

Finite-state automata

An NFA example

A nondeterministic finite-state automaton for recognising L((aV b) x abb):

NFA, DFA
® OO

0502070

Review of Finite Automata (FA)

states @ start state g € @

N

NFA, DFA M= (Q,%,0,qo, F)

®e0 / \

alphabet X final states F C @

For NFAs: For DFAs:
(nondeterministic) (deterministic)
Vge Q Vge Q
Vae (X2 U{e}) Vae X
9(g,a) € Q 6(g,2) € Q

NFA, DFA
o000

aw.
g1 — Qg3
if 9(q1,a) = g2 and g2 % g3

L(M) = {w|3q € F.q0 = q}

Null transition
on empty string

Including
€ transitions

Transition
on non-empty string

Language of
an automaton

Transition notation

w
g1 — g3
if 5(q1,€) 3 g2 and g2 = g3

aw.
91— q3
if 3(q1,a) > g2 and g2 = g3

L(M) = {w|3q € F.q0 = q}

Regular expressions —> NFAs

Review of RE — NFA

N(—) takes a regex e to an NFA N(e) accepting L(e) with a single final state.

RE — NFA
® OO

Review of RE — NFA

RE — NFA
@0 O

Review of RE — NFA

RE — NFA
(X N

Note: an alternative to this simple construction is Glushkov’s algorithm (1961),
which produces an equivalent automaton without the € transitions.

https://en.wikipedia.org/wiki/Glushkov%27s_construction_algorithm

NFAs — DFAs

Review of NFA — DFA
The powerset construction takes a NFA

M = <sza(57 q0, F>
and constructs a DFA
M =(Q,X, ¥, q,, F)

where the components of M are calculated as follows:

Q@ = {SI5c@

/ -
NFA - DFA §'(S, a) e-closure({q' € 6(q,a) | g € S})
000 qy = eclosure{qo}
F {SCQRISNF#0}

and the e-closure is:

e-closure(S) = {d€Q|3g€ S, g5 ¢}

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty
pop q off stack
for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack

NFA — DFA
return result

0O

stack
result

(NB: just an instance of transitive closure)

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

NFA — DFA
0O

How do we compute ¢-closure(S)?

e-closure

push elements of S onto stack
result := S
while stack not empty

@—b' pop g off stack

for each u € §(q, €)
if u¢ result
then result := {u}U result
push u on stack
return result

stack
result

(NB: just an instance of transitive closure)

DFA(N((a V b) abb))

050500

NFA — DFA

o000
powerset construction

o

The lexing problem

The lexing problem

The regular language problem (i.e. “is w € L(e)?") is insufficient for lexing.
We need to tokenize a string using a lexer specification

LE1FL ja) |
<)

if 1F
| [3\njtjhjejn) b} |ejljsje] |cj

2 [a-zA-Z]+ as s IDENT s
[0-9]+ as i INT i

[\t\n] skip

= ¢
<} =
& Z

b
o
=
z
&)
el

IDENT "a”

taking into account that

We should skip whitespace
(because whitespace is irrelevant to the parser)

Lexing

We should find the longest match accepted by the lexer
.(rg’fgeg) (treat ifif as a variable, not two keywords)

We should pick the first rule that matches the longest matched substring
(treat if as a keyword because the IF rule comes before the IDENT rule)

Define tokens with regexes (automata)

if@i@f@ = IF

Lexing

Regexes

@t@h?
- O—©

[a-zA-Z]1[a-zA-7Z0-9]* @m [a-zA-Z0-9] = IDENT S
" Lexing [0-91[0-9]x @W [0-9] = INTn

(reprise)

0000

P [\t\n] @m = gf;{'[r)eallyatoken)

Constructing a Lexer

Start from ordered lexer rules e;=t1, e&o=1o, . . ., €= tx.
Construct tagged NFA for e; V ey V...V ex.
Convert to tagged DFA: each accepting state is tagged for highest priority e;.

lexer rules tagged DFA
if = IF

[a-zA-Z]+ as s IDENT s
[0-9]+ as i INT i
[\n] skip

5:1DENT

[a-Z]
Lexing
(reprise)

0000

State 3 could be either an IDENT or the keyword IF.
Priority eliminates the ambiguity, associating state 3 with the keyword.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

start —»e—» 5:IDENT ’
[Emit tag for last accepting state

a-hj-z]

Reset state to start state

Reset position to last accepting position

i F jifxg

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state

Reset state to start state

start H o]

[a-2]

Reset position to last accepting position

AR i fx]

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state

Reset state to start state

start H o]

[a-2]

Reset position to last accepting position

AP i fx]

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

start —»e—» 5:IDENT ’
[Emit tag for last accepting state

a-hj-z]

Reset state to start state

Reset position to last accepting position

AP i fx]

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state

Reset state to start state

start H o]

[a-2]

Reset position to last accepting position

AF i fx

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

start —»e—» 5:IDENT ’
[Emit tag for last accepting state

a-hj-z]

Reset state to start state

Reset position to last accepting position

AF i fx

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state

Reset state to start state

start H o]

[a-2]

Reset position to last accepting position

EIRAENENENRS

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state

Reset state to start state

start H o]

[a-2]

Reset position to last accepting position

LAif 1) f tokens:

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state

Reset state to start state

start H o]

[a-2]

Reset position to last accepting position

AF i fx|

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

What about longest match?

lexing algorithm

Start in initial state, and repeatedly:
1. Read input until failure (no transition)

Emit tag for last accepting state

Reset state to start state

start H o]

[a-2]

Reset position to last accepting position

Ligf] ji1fxj IF IDENT ifx

Lexing
(reprise)

Note: the machine is deterministic, but the algorithm can backtrack.

Lexing with derivatives

Matching with derivatives

Brzozowski (1964)'s formulation of regex matching, based on derivatives.

Derivative of regex r w.r.t. character c is
another regex 0. r that matches s iff r matches cs.

E.g.: consider (bV c)+. After matching ¢, can accept either € or more b/c, so:

Oc(bVeo)+ = ev(bVveo+ = (bVo)x

Construct DFA for r, taking regexes r as states, adding transition r; — rj
whenever O r; = rj. For example, for (bV ¢)+:

b
start —| (bV o)+ c (bV c)*

NB: 0. (bV ¢)* = (bV ¢)x. (Can you see why?) Also: e-matching states are accepting.

Defining 0.

Oc is defined inductively over regexes.

Can you see the similarities with derivatives of numerical functions?
(Hint: read rirp as rp X rpand rp Vry as rp + r.)

eifee L(r)
0ifed L(r

More information: Regular-expression derivatives re-examined (Owens et al, 2009).

https://doi.org/10.1017/S0956796808007090

Lexing with derivatives

Lexers match input string against multiple regexes in parallel.
Automaton for matching a token; states are vectors of regexes, one per lexer rule.
Oc acts pointwise on the regex vector.

IDENT

Next time: context-free grammars

	Lexing
	Regexes
	NFA, DFA
	RE NFA
	NFADFA
	Lexing (reprise)
	

