Compiler Construction

Lecture 3: Context-free grammars

Jeremy Yallop jeremy.yallop@cl.cam.ac.uk

Derivations

PDAs

Ambiguity

Top-down & bottom-up

Context-free grammars

What are context-free grammars?

CFGs

 \bullet 0 0

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A small fragment of the C standard:

```
6.7 Declarations
Syntax
   declaration:
        declaration-specifiers init-declarator-listort :
        static-assert-declaration
   declaration-specifiers:
        storage-class-specifier declaration-specifiersopt
        type-specifier declaration-specifiersopt
        type-qualifier declaration-specifiersont
        function-specifier declaration-specifiersont
         alignment-specifier declaration-specifiersont
   init-declarator-list
        init-declarator
        init-declarator-list . init-declarator
   init-declarator:
        declarator
        declarator = initializer
```

Today's Q: how can we turn this declarative specification into a program?

Context-Free Grammars (CFGs)

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up

Each
$$\langle A, \alpha \rangle \in P$$
 is written as $A \to \alpha$

Example CFG

```
CFGs
```


IB:
$$P_1$$
 definition is shorthand for

NB:
$$P_1$$
 definition is shorthand for

ion is shorthand for
$$P_1 = \{\langle E, E+E \rangle, \langle E, E*E \rangle, \langle E, (E) \rangle, \langle E, \mathrm{id} \rangle\}$$

 $G_1 = \langle N_1, T_1, P_1, E \rangle$

 $T_1 = \{+, *, (,), id\}$

 $P_1 = E \rightarrow E + E$

| E * E

 $N_1 = \{E\}$

where

Derviations

Derivations

PDAs

Ambiguity

Top-down & bottom-up

Notation conventions:

$$\alpha, \beta, \gamma \ldots \in (N \cup T) *$$

 $A, B, C, \ldots \in N$

Given: $\alpha A \beta$ and a production $A \rightarrow \gamma$ a derivation step is written as

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

 \Rightarrow^+ means one or more derivation steps

 \Rightarrow^* means zero or more derivation steps.

Derivations

••000

PDAs

Ambiguity

Top-down & bottom-up

Ε

A **leftmost** derivation

A rightmost derivation

Ε

CFGs

A **leftmost** derivation

 $E \Rightarrow E*E$

Ε

A rightmost derivation

••000

Derivations

PDAs

Ambiguity

Top-down & bottom-up

CFGs

A **leftmost** derivation

 $E \Rightarrow E*E$

 $\Rightarrow (E)*E$

A rightmost derivation

E

PDAs

Derivations

••000

Ambiguity

Top-down & bottom-up

CFGs

Derivations

• • 0 0 0

PDAs

A **leftmost** derivation

 $E \Rightarrow E*E$

 $\Rightarrow (E)*E$

 $\Rightarrow (E+E)*E$

Ambiguity

Top-down & bottom-up

A rightmost derivation

E

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

A rightmost derivation

E

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

A rightmost derivation

Ε

A **leftmost** derivation

A **rightmost** derivation

Derivations

PDAs

Ambiguity

Top-down & bottom-up

 $E \Rightarrow E*E$ $\Rightarrow (E)*E$ $\Rightarrow (E+E)*E$ $\Rightarrow (x+E)*E$ $\Rightarrow (x+y)*E$ $\Rightarrow (x+y)*(E)$

Ε

Derivations

• • 0 0 0

PDAs

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

Ambiguity

Top-down & bottom-up

A rightmost derivation

E

A **leftmost** derivation

A rightmost derivation

Ε

Derivations

PDAs

Ambiguity

Top-down & bottom-up

 $E \Rightarrow E*E$ $\Rightarrow (E)*E$ $\Rightarrow (E+E)*E$ $\Rightarrow (x+E)*E$ $\Rightarrow (x+y)*E$ $\Rightarrow (x+y)*(E)$ $\Rightarrow (x+y)*(E+E)$ $\Rightarrow (x+y)*(z+E)$

/ lettinost derive

••000

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

A rightmost derivation

Ε

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

$$E \Rightarrow E*E$$

A **leftmost** derivation

$$E \Rightarrow E*E$$
$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

• • 0 0 0 **PDAs**

Derivations

Ambiguity

Top-down & bottom-up

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

A **leftmost** derivation

$E \Rightarrow E*E$ $\Rightarrow (E)*E$ $\Rightarrow (E+E)*E$ $\Rightarrow (x+E)*E$

 $\Rightarrow (x+y)*E$

 $\Rightarrow (x+y)*(E)$

 \Rightarrow (x+y)*(E+E)

 $\Rightarrow (x+y)*(z+E)$

 $\Rightarrow (x+y)*(z+x)$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

$$\Rightarrow E*(E+x)$$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

$$\Rightarrow E*(E+x)$$

$$\Rightarrow E*(z+x)$$

Derivations

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

$$\Rightarrow E*(E+x)$$

$$\Rightarrow E*(z+x)$$

$$\Rightarrow (E)*(z+x)$$

A leitmost derivat

Derivations● ● ○ ○ ○

PDAs

Ambiguity

Top-down & bottom-up

A **leftmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$$\Rightarrow (x+y)*E$$

$$\Rightarrow (x+y)*(E)$$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

$$\Rightarrow E*(E+x)$$

$$\Rightarrow E*(z+x)$$

$$\Rightarrow (E)*(z+x)$$

$$\Rightarrow (E+E)*(z+x)$$

Derivations

• • 0 0 0

PDAs

Ambiguity

A **leftmost** derivation

$F \Rightarrow F*F$ \Rightarrow (E)*E

$$\Rightarrow (x+y)*E$$

$$\Rightarrow$$
 $(x+y)*(E+E)$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

$$\Rightarrow E*E$$

$$\Rightarrow (E)*E$$

$$\Rightarrow (E+E)*E$$

$$\Rightarrow (x+E)*E$$

$\Rightarrow (x+y)*(E)$

$$\Rightarrow (x+y)*(E+E)$$

$$\Rightarrow (x+y)*(z+E)$$

$$\Rightarrow (x+y)*(z+x)$$

A rightmost derivation

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

$$\Rightarrow E*(E+x)$$

$$\Rightarrow E*(z+x)$$

$$\Rightarrow$$
 $(E) * (z + x)$

$$\Rightarrow (E+E)*(z+x)$$

$$\Rightarrow (E+y)*(z+x)$$

Top-down & bottom-up

Derivations

• • 0 0 0

PDAs

A **leftmost** derivation

$E \Rightarrow E*E$ $\Rightarrow (E)*E$ $\Rightarrow (E+E)*E$ $\Rightarrow (x+E)*E$ $\Rightarrow (x+y)*E$ $\Rightarrow (x+y)*(E)$ $\Rightarrow (x+y)*(E+E)$ $\Rightarrow (x+y)*(z+E)$

 $\Rightarrow (x+y)*(z+x)$

A **rightmost** derivation

$$E \Rightarrow E*E$$

$$\Rightarrow E*(E)$$

$$\Rightarrow E*(E+E)$$

$$\Rightarrow E*(E+x)$$

$$\Rightarrow E*(z+x)$$

$$\Rightarrow (E)*(z+x)$$

$$\Rightarrow (E+E)*(z+x)$$

$$\Rightarrow (E+y)*(z+x)$$

$$\Rightarrow (x+y)*(z+x)$$

Ambiguity

Top-down & bottom-up

Derivation trees

CFGs

The derivation tree for (x+y) * (z+x):

\mbiguity

Ambiguity

Top-down & bottom-up

All derivations of this expression will produce the same derivation tree.

Concrete vs abstract syntax trees

CFGs

Derivations

 $\bullet \bullet \bullet \bullet \circ$

PDAs

Ambiguity

Top-down & bottom-up (Terminology: parse tree derivation tree concrete syntax tree)

An **abstract syntax** tree contains only the information needed to generate an intermediate representation

The language generated by a grammar L(G): the language generated by G

For example, if G has productions

So CFGs can capture more than regular languages.

 $L(G) = \{ w \in T* \mid S \Rightarrow^+ w \}$

 $S \rightarrow aSb \mid \epsilon$

 $L(G) = \{a^n b^n \mid n \ge 0\}$

Derivations

• • • • •

PDAs

Ambiguity

Top-down & bottom-up

then

Pushdown automata

Pushdown automata (PDAs)

CFGs

Regular languages are accepted by finite automata:

Derivations

PDAs

00000

Ambiguity

Top-down &

Context-free languages are accepted by **pushdown automata**, finite automata augmented with stacks.

Pushdown automata (PDAs)

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up

$$\langle q', \beta \rangle \in \delta(q, a, X)$$
 means:

Derivations

PDAs

Ambiguity

Top-down & bottom-up

stack and pushes β .

Pushdown automata (PDAs)

CFGs

Derivations

For $q \in Q, w \in \Sigma^*, \alpha \in \Gamma^*, \langle q, w, \alpha \rangle$ is called an **instantaneous description** (ID).

in state q

It denotes the PDA looking at the first symbol of w with α on the stack

Ambiguity

Top-down & bottom-up

Language accepted by a PDA

CFGs

Derivations

and for $\langle q', \beta \rangle \in \delta(q, \epsilon, X)$ as

PDAs

 $\bullet \bullet \bullet \circ$

Ambiguity

Top-down & bottom-up

Then the language accepted by M, L(M), is:

NB: M accepts words in any state when the stack and remaining input are empty

 $L(M) = \{ w \in \Sigma * \mid \exists a \in Q, \langle a_0, w, Z \rangle \rightarrow^+ \langle a, \epsilon, \epsilon \rangle \}$

 $\langle q, w, X\alpha \rangle \rightarrow \langle q', w, \beta \alpha \rangle$

 $\langle q, aw, X\alpha \rangle \rightarrow \langle q', w, \beta \alpha \rangle$

For $\langle q', \beta \rangle \in \delta(q, a, X), a \in \Sigma$, define the relation \rightarrow on IDs as

Derivations

PDAs

Ambiguity

Top-down & bottom-up $\langle q_1, aaabbb, z \rangle$

Derivations

s s s

PDAs

••••

Ambiguity

Top-down & bottom-up $\langle q_1, aaabbb, z
angle \ \langle q_1, aabbb, sz
angle$

Derivations

s s s

PDAs

Ambiguity

Top-down & bottom-up $\langle q_1, aaabbb, z
angle \ \langle q_1, aabbb, sz
angle \ \langle q_1, abbb, ssz
angle$

Derivations

S S S

PDAs

Ambiguity

Top-down & bottom-up $\langle q_1, aaabbb, z \rangle$ $\langle q_1, aabbb, sz \rangle$ $\langle q_1, abbb, ssz \rangle$ $\langle q_2, bbb, sssz \rangle$

Derivations

S S S

a|a|a|b|b|b

PDAs

••••

Ambiguity

Top-down & bottom-up

$\langle q_1,$	aaabbb, z
$\langle q_1,$	aabbb, SZ
$\langle q_1,$	abbb, SSZ
$\langle q_2,$	bbb, sssz
$\langle q_2,$	$bb, ssz\rangle$

Derivations

S S S

PDAs

Ambiguity

Top-down & bottom-up $\langle q_1, aaabbb, z \rangle$ $\langle q_1, aabbb, Sz \rangle$ $\langle q_1, abbb, SSZ \rangle$ $\langle q_2, bbb, SSSZ \rangle$ $\langle q_2, bb, SSZ \rangle$ $\langle q_2, b, SZ \rangle$

Z

CFGs

Derivations

a | a | a | b | b | b

PDAs

Ambiguity

Top-down & bottom-up $\langle q_1, aaabbb, z \rangle$ $\langle q_1, aabbb, Sz \rangle$ $\langle q_1, abbb, SSZ \rangle$ $\langle q_2, bbb, SSSZ \rangle$ $\langle q_2, bb, SSZ \rangle$ $\langle q_2, b, SZ \rangle$ $\langle q_2, e, z \rangle$

Derivations

S S S

a | a | a | b | b | b

PDAs

Ambiguity

Top-down & bottom-up

PDA and CFG facts (without proof)

CFGs

Derivations

PDA and CFG facts:

For every CFG Gthere is a PDA Msuch that L(G) = L(M) For every PDA Mthere is a CFG Gsuch that L(G) = L(M)

Ambiguity

PDAs

Is the parsing problem solved? Given a CFG G we can construct the PDA M. No! For programming languages we want M to be **deterministic**

Top-down &

Ambiguity

The origin of nondeterminism is ambiguity

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up Both derivation trees correspond to x + y * z.

But (x + y) * z is not the same as x + (y * z).

Ambiguity causes problems going from program texts to derivation trees.

Modifying the grammar to eliminate ambiguity

CFGs

We can often modify the grammar to eliminate ambiguity.

 $G_2 = \langle N_2, T_1, P_2, E \rangle$

Derivations

PDAs

 $P_2 = egin{array}{cccc} E &
ightarrow & E+T \mid T & (ext{expressions}) \ T &
ightarrow & T*F \mid F & (ext{terms}) \ F &
ightarrow & (E) \mid id & (ext{factors}) \end{array}$

Ambiguity

Top-down & bottom-up

(Can you prove that $L(G_1) = L(G_2)$?)

The modified grammar eliminates ambiguity

CFGs

The modified grammar eliminates ambiguity. The following is now the unique derivation tree for x + y * z:

Derivations

PDAs

Top-down & bottom-up

Derivations

Some context-free languages are **inherently ambiguous** — every CFG for them is ambiguous. For example

$$L = \{a^n b^n c^m d^m \mid m \ge 1, n \ge 1\}$$
$$\cup \{a^n b^m c^m d^n \mid m \ge 1, n \ge 1\}$$

PDAs

Checking for **ambiguity** in an arbitrary CFG is **not decidable**.

Ambiguity Top-down & bottom-up

Given two grammars G_1 and G_2 , checking $L(G_1) = L(G_2)$ is not decidable.

(See Hopcroft & Ullman, "Introduction to Automata Theory, Languages, and Computation")

Top-down & bottom-up

	Two approaches to building stack-based parsing machines
CFGs	
	Top-down : attempts a leftmost derivation. We'll look at two techniques:
Derivations	Recursive Predictive descent parsing (hand coded) (table driven)
PDAs	Bottom-up : attempts a rightmost derivation backwards. We'll look at two techniques:
Ambiguity	SLR(1) LR(1) (Simple LR(1))
Top-down & bottom-up	Bottom-up techniques are strictly more powerful (can parse more grammars)

Recursive descent parsing

```
CFGs
```

type token =

```
Derivations
```

PDAs

Ambiguity

```
Top-down & bottom-up
```

• • 0 0 0

```
let rec
    e toks = e' (t toks)
and e' = function
  | ADD :: toks \rightarrow e' (t toks)
  | toks \rightarrow toks (* \epsilon *)
and t toks = t' (f toks)
and t' = function
    MUL :: toks \rightarrow t' (f toks)
    toks \rightarrow toks (* \epsilon *)
and f = function
     LPAREN :: toks \rightarrow
      (match e toks with
       I RPAREN :: toks \rightarrow toks
       _ → failwith "RPAREN")
     IDENT \_ :: toks \rightarrow toks

ightarrow failwith "F"
```

ADD | MUL | LPAREN | RPAREN | IDENT of string

Parse corresponds to a leftmost derivation constructed in a top-down manner

Left recursion & recursive-descent parsing

CFGs

Derivations

Recursive descent parsing is not suitable for G_2 .

let rec

PDAs

Ambiguity

Top-down & bottom-up $\bullet \bullet \bullet \circ \circ$ Left-recursion $E \rightarrow E + T$ will lead to an infinite loop:

e toks = match e toks (* loop! *) with I ADD :: toks \rightarrow ...

 $F \rightarrow (E) \mid id$

 $E \rightarrow E + T \mid T$

 $T \rightarrow T*F|F$

Eliminating left recursion

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up

where

 $G_2 = \langle N_2, T_1, P_2, E \rangle$

 $F \rightarrow (E) \mid id$

 $P_2 = T \rightarrow T * F \mid F$

 $E \rightarrow E+T \mid T$

(Can you prove that $L(G_2) = L(G_3)$?)

where

 $E' \rightarrow + T E' \mid \epsilon$ $P_3 = T \rightarrow FT'$

 $T' \rightarrow *FT' \mid \epsilon$

 $G_3 = \langle N_3, T_1, P_3, E \rangle$

$$ec{z}
ightarrow 7$$

 $F \rightarrow (E) \mid id$

The stack machine is *implicit in the call stack*

CFGs

Derivations

PDAs

Ambiguity

Top-down & bottom-up

```
let rec
    e toks = e' (t toks)
and e' = function
  | ADD :: toks \rightarrow e' (t toks)
   toks \rightarrow toks (* \epsilon *)
and t toks = t' (f toks)
and t' = function
    MUL :: toks \rightarrow t' (f toks)
    toks \rightarrow toks (* \epsilon *)
and f = function
  I LPAREN :: toks \rightarrow
     (match e toks with
       RPAREN :: toks \rightarrow toks
     \mid \_ \rightarrow failwith "RPAREN")
  | IDENT \_ :: toks \rightarrow toks
                      \rightarrow failwith "F"
```

```
Parsing x + y * z, i.e.
  [IDENT "x";
   ADD;
   IDENT "y";
    MUL:
    IDENT "z"]
Evaluation trace:
       e toks
 \rightsquigarrow e' (t toks)
 \rightsquigarrow e' (t' (f toks))
```

Next time: LL parsing