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What is category theory?

What we are probably seeking is a “purer” view of
functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answer: category theory.

Dana Sco�, Relating theories of the _-calculus, p406

set theory gives an “element-oriented” account of
mathematical structure, whereas

category theory takes a ‘function-oriented” view –
understand structures not via their elements, but by
how they transform, i.e. via morphisms.

(Both theories are part of logic, broadly construed.)
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Category Theory emerges

1945 Eilenberg† and MacLane†

General Theory of Natural Equivalences,
Trans AMS 58, 231–294
(algebraic topology, abstract algebra)

1950s Grothendieck† (algebraic geometry)

1960s Lawvere† (logic and foundations)

1970s Johnstone, Joyal and Tierney†

(elementary topos theory)

1980s Dana Sco�, Plotkin
(semantics of programming languages)

Lambek† (linguistics)
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Category Theory and
Computer Science

“Category theory has. . . become part of the standard
“tool-box” in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory.”

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads

April 2014

See http://www.appliedcategorytheory.org/events for
recent examples of category theory being applied (not just in
computer science).
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This course

basic concepts of category theory

adjunction natural transformation

category functor

applied to

{
typed lambda-calculus
functional programming
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Sets

◮ Examples

Empty set: 0 = ∅ = { }

Singleton sets: 1 = {0}, {∗}

Natural numbers: N
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◮ Products

The cartesian product of sets - and . is the set of
all ordered pairings (G,~) for G ∈ - and ~ ∈ . :

- × . = {? | ∃!G ∈ -, ∃!~ ∈ ., ? = (G, ~)}

= {(G,~) | G ∈ - ∧ ~ ∈ . }

The equality for ordered pairs is pointwise: for all
G, G′ ∈ - and ~,~′ ∈ . ,

(G, ~) = (G′, ~′) ⇔ G = G′ ∧ ~ = ~′
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The cartesian product comes equipped with first and
second projection operations c1 and c2 satifying:

1. for all G ∈ - and ~ ∈ . ,

c1(G,~) = G , c2(G, ~) = ~

2. for all ? ∈ - × . ,

? = (c1 ? , c2 ?)

NB: For all ?, ?′ ∈ - × . , ? = ?′ iff c1(?) = c1(?
′) and

c2(?) = c2(?
′).
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Example:

For = ∈ N,

-= =

{
{ ( ) } , if = = 0

- × -< , if = =< + 1

and, for G1, G2, . . . , G=−1, G= ∈ N, one writes (G1, . . . , G=) for
(G1, (G2, . . . (G=−1, G=) . . .)) ∈ -

=.
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◮ Functions
The set of functions from a set - to a set . , for
which we write (- ⇒ . ) or .- , consists of all the
single-valued and total relations from - to . :

(- ⇒ . ) = {5 ⊆ -×. | 5 is single-valued and total}

Single-valued:

∀G ∈ -,∀~,~′ ∈ ., (G,~) ∈ 5 ∧ (G,~′) ∈ 5 ⇒ ~ = ~′

Total:
∀G ∈ -, ∃~ ∈ ., (G,~) ∈ 5
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Notation: We write 5 : - → . or -
5
−→ . or .

5
←− - for

5 ∈ (- ⇒ . ) and, for G ∈ - , we write 5 G or 5 (G) or 5G
for the unique element ~ of . such that (G, ~) ∈ 5 .

The equality for functions is extensional:

5 = 6 : - → . ⇔ ∀G ∈ -, 5 G = 6 G

This is because

1. Assuming 5 = 6, we have, for all G ∈ - , (G, 5 G) ∈ 6 and so 5 G = 6 G .

2. Assuming ∀G ∈ -, 5 G = 6 G , we have

5 = {(G,~) | (G,~) ∈ 5 } = {(G, 5 G) | G ∈ - } = {(G,6 G) | G ∈ - }

= {(G,~) | (G,~) ∈ 6} = 6

In other words, function extensionality reduces to the extensionality property of
sets: two sets are equal iff they have the same elements.
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Convention: We typically define functions 5 : - → . by
a well-defined rule that to each element G ∈ - assigns a
unique element 5 (G) ∈ . .

Examples:
1. We define id- : - → - by:

id- (G) = G for all G ∈ -

2. For 5 : - → . and 6 : . → / , we define
6 ◦ 5 : - → / by:

(6 ◦ 5 ) (G) = 6(5 (G)) for all G ∈ -

3. We define app : (- ⇒ . ) ×- → . by:

app(5 , G) = 5 (G) for all 5 ∈ (- ⇒ . ) and G ∈ -

4. For 5 : / ×- → . , we define
cur(5 ) : / → (- ⇒ . ) by:

(cur(5 ) I) (G) = 5 (I, G) for all I ∈ / and G ∈ -
12



◮ Sums
The sum of sets - and . is their disjoint union:

- + . = {]1(G) | G ∈ - } ∪ {]2(~) | ~ ∈ . }

The sum comes equipped with first and second
tagging operations ]1 : - → - + . and
]2 : . → - + . .

The equality for tagged elements is:

]8 (G) = ] 9 (~) ⇔ (8 = 9) ∧ (G = ~)
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Sets in Grothendieck universes

A Grothendieck universe� is a class of sets satisfying

◮ - ∈ . ∈ �⇒ - ∈ �

◮ -, . ∈ �⇒ {-, . } ∈ �

◮ - ∈ �⇒�- , {. | . ⊆ - } ∈ �

◮ - ∈ � ∧ � : - → �

⇒
⋃
G∈- � (G) , {~ | ∃G ∈ -, ~ ∈ � (G)} ∈ �

(hence also

-,. ∈ � ⇒ (- × . ), (- ⇒ . ), (- + . ) ∈ �)

The above properties are satisfied by � = ∅, but we will always

assume

◮ N ∈ �
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Algebras

Monoids

Amonoid is a structure " = (", •, y) consisting of a set
" equipped with a binary operation • : " ×" → "

and an element y ∈ " that satisfy:

◮ the associativity law:
∀G,~, I ∈ ", (G • ~) • I = G • (~ • I)

◮ the unit laws:
∀G ∈ ", y • G = G = G • y
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Examples:

1. Lists (List-,@, nil):

List- = set of finite lists of elements of -
@ = append(

nil@ ℓ = ℓ

(G :: ℓ)@ ℓ′ = G :: (ℓ @ ℓ′)

)
nil = empty list

2. Sequences (-★, ·, Y):

-★
=

⋃
=∈N-

=

· = concatenation
( (G1, . . . , G<) · (~1, . . . , ~=) = (G1, . . . , G<, ~1, . . . , ~=) )

Y = ( )
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3. The set of endomorphisms on a set:

End(- ) = (- ⇒ - , ◦ , id- )

is a monoid.

In particular, the monoid End(1) is trivial.
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Amonoid homomorphism ℎ : "1 → "2 from a
monoid "1 = ("1, •1, y1) to a monoid "2 = ("2, •2, y2) is
a function ℎ : "1 → "2 such that

◮ for all G,~ ∈ "1, ℎ(G •1 ~) = ℎ(G) •2 ℎ(~)

◮ ℎ(y1) = y2

Example: For all 5 : - → . ,

map 5 : List- → List.

is a monoid homomorphism. (Check it.)
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The product"1 ×"2 of monoids "1 = ("1, •1, y1) and
"2 = ("2, •2, y2) is the structure

("1 ×"2 , • , y )

with
(G1, G2) • (~1, ~2) = (G1 •1 ~1, G2 •2 ~2)

y = (y1, y2)

and projections homomorphisms

"1

c1
←− "1 ×"2

c2
−→ "2

given by c1(G1, G2) = G1 and c2(G1, G2) = G2.
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Explore

? Is there a monoid of homomorphisms between
monoids?

? What is the sum "1 +Mon "2 of monoids "1

and"2?

Can you make sense of the following?

List(- ) +Mon List(. ) = List(- +Set . )
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Groups

A group is a structure � = (�, , •, y) consisting of a
monoid (�, •, y) and a unary operation : " → " that
satisfies:

◮ the inverse laws:

∀G ∈ �, G • G = y = G • G

A group homomorphism ℎ : �1 → �2 from a group

�1 = (�1,
1, •1, y1) to a group�2 = (�2,

2, •2, y2) is a
monoid homomorphism ℎ : (�1, •1, y1) → (�2, •2, y2) such
that

◮ for all G ∈ �1, ℎ(G
1) = ℎ(G)

2
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Examples:

◮ The set of integers modulo a prime ?

Z?

has a group structure.

◮ The set of automorphisms on a set

Aut(- ) = { 5 : - → - | 5 is a bijection }

has a group structure.
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Definitions:

◮ A function 5 : - → . is a bijection whenever

∀~ ∈ ., ∃!G ∈ -, 5 (G) = ~

◮ A function 5 : - → . is an isomorphism
whenever there exists a (necessarily unique)
function 6 : . → - (typically denoted 5 −1) such
that 6 ◦ 5 = id- and 5 ◦ 6 = id. .

Proposition. A function is a bijection if, and only if, it is
an isomorphism.

Explore the above for homomorphisms between monoids and

between groups.
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Universal problems

◮ Vague problem: To manufacture a monoid out of a
set in the most general or least constrained possible
way.

This is typically referred to as freely generating a
monoid from a set.
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◮ Mathematical problem: For a set - , consider the
data of interest to be given by a monoid
" = (", •, y) together with a function 5 : - → " .
Given a set - ,

1. construct data �- = (�-, •- , y- ) and i- : - → �-

such that
1. for all data" = (", •, y) and 5 : - → " , there exists a

unique monoid homomorphism 5 # : �- → " such that
5 # ◦ i- = 5 .
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In diagrammatic form:

-
i-

2©∀ 5

4©s.t.

�-

5 #

�-

3©∃! 5 #

" 1©∀"

? Is it a well-posed problem?

? Does it have a solution?

? If so, how can we construct it?
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Categories

A category C is an algebraic structure specified by

◮ a set objC whose elements are called C-objects

◮ for each -, . ∈ objC, a set C(-,. ) whose
elements are called C-morphisms from - to .

◮ a function assigning to each - ∈ objC an element
id- ∈ C(-,- ) called the identity morphism for
the C-object -

◮ a function assigning to each 5 ∈ C(-,. ) and
6 ∈ C(.,/ ) (where -,.,/ ∈ objC) an element
6 ◦ 5 ∈ C(-,/ ) called the composition of
C-morphisms 5 and 6
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satisfying

◮ associativity: for all -,.,/,, ∈ objC,
5 ∈ C(-,. ), 6 ∈ C(.,/ ) and ℎ ∈ C(/,, )

ℎ ◦ (6 ◦ 5 ) = (ℎ ◦ 6) ◦ 5

◮ unity: for all -,. ∈ objC and 5 ∈ C(-,. )

id. ◦ 5 = 5 = 5 ◦ id-
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Category of sets: Set

◮ obj Set = a fixed universe of sets

◮ Set-morphisms are functions:
Set(-,. ) = (- ⇒ . )

◮ Identities:
id-

◮ Composition of 5 ∈ Set(-,. ) and 6 ∈ Set(.,/ ) is:
6 ◦ 5

NB: Associativity and unity laws hold. (Check it.)
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Category of monoids: Mon

◮ objects are monoids,

◮ morphisms are monoid homomorphisms,

◮ identities and composition are as for sets and
functions.

Q: why is this well-defined?
A: because the set of functions that are monoid homomorphisms contains
identity functions and is closed under composition.
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Category of groups: Grp

◮ objects are groups,

◮ morphisms are group homomorphisms,

◮ identities and composition are as for sets and
functions.

Q: why is this well-defined?
A: because the set of functions that are group homomorphisms contains
identity functions and is closed under composition.
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Conventions:

◮ Given a category C, one writes

5 : - → . or -
5
−→ . or .

5
←− -

for

5 ∈ C(-,. )

in which case one says

object - is the domain (or source) of 5

object . is the codomain (or target) of 5

and writes

- = domC 5 = dom 5 , . = codC 5 = cod 5

NB: Which category C one is referring to is o�en
le� implicit.
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◮ The sets C(-,. ) are typically referred to as
hom-sets and sometimes also denoted homC(-,. )

or simply hom(-,. ) when C is clear from the
context.

◮ One o�en abbreviates 6 ◦ 5 as 6 5 .

◮ Because of the associativity law, one unambigously
writes

ℎ ◦ 6 ◦ 5 or ℎ6 5

for either of the equal composites
ℎ ◦ (6 ◦ 5 ) = ℎ (6 5 ) and (ℎ ◦ 6) ◦ 5 = (ℎ6) 5 .
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Alternative notations

Some people write

|C | or C for objC

id for id-

HomC(-,. ) for C(-,. )

- or 1- for id-

Most people use “applicative order” for morphism
composition; some people use “diagrammatic order”
and write

5 ;6 for 6 ◦ 5
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Commutative diagrams

In a category C:

a diagram is
a directed graph whose vertices are C-objects
and whose edges are C-morphisms

and the diagram is commutative (or commutes) if
any two finite paths in the graph between any
two vertices determine equal morphisms in the
category under composition
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Examples:

◮ The diagram

-
5

5

.

id.
6

. 6 /

commutes by the unity laws.

◮ The diagram

-
6 5

5

.

ℎ

.
ℎ 6

6

/

commutes by the associativity law.
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One-object categories

Problem: Give an equivalent elementary description of
categories with a singleton set of objects.
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Each monoid determines a category

Given a monoid " = (", •, y), we get a category

C"

by taking

◮ objects: objC" = {∗} (a singleton set)

◮ morphisms: C" (∗, ∗) = "

◮ identity morphism: id∗ = y ∈ " = C" (∗, ∗)

◮ composition 6 ◦ 5 ∈ C" of 5 ∈ C" (∗, ∗) and
6 ∈ C" (∗, ∗) is 6 • 5 ∈ " = C" (∗, ∗)
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Isomorphism
Let C be a category. A C-morphism 5 : - → . is an
isomorphism if there is some 6 : . → - for which

-
5

id-

.

6
id.

-
5
.

is a commutative diagram.
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Isomorphism
Let C be a category. A C-morphism 5 : - → . is an
isomorphism if there is some 6 : . → - with
6 ◦ 5 = id- and 5 ◦ 6 = id. .

◮ Such a 6 is uniquely determined by 5 (why?) and

we write 5 −1 for it.

◮ Given -,. ∈ C, if such an 5 exists, we say the
objects - and . are isomorphic in C and write
- � .

NB: There may be many different morphisms witnessing
the fact that two objects are isomorphic.

39



Proposition. A function 5 ∈ Set(-,. ) is an
isomorphism in the category Set iff 5 is a bijection,
equivalently:

◮ injective: ∀G, G′ ∈ -, 5 G = 5 G′⇒ G = G′

and

◮ surjective: ∀~ ∈ .,∃G ∈ -, 5 G = ~
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Proposition. A function 5 ∈ Set(-,. ) is an
isomorphism in the category Set iff 5 is a bijection,
equivalently:

◮ injective: ∀G, G′ ∈ -, 5 G = 5 G′⇒ G = G′

and

◮ surjective: ∀~ ∈ .,∃G ∈ -, 5 G = ~

Proposition. A monoid morphism
5 ∈ Mon(("1, •1, y1), ("2, •2, y2)) is an isomorphism in
the categoryMon iff 5 ∈ Set("1, "2) is a bijection.
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Categories with trivial hom-sets

Problem: Give an equivalent elementary description of
categories with trivial hom-sets in the sense of being
either empty or a singleton set.
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Preorders and posets

A preorder % = (%,⊑) consists of a set % to equipped
with a binary relation on it ⊑ ⊆ % × % that is

reflexive: ∀G ∈ %, G ⊑ G

transitive: ∀G,~, I ∈ %, G ⊑ ~ ∧ ~ ⊑ I ⇒ G ⊑ I

A poset or (partial order) is a preorder that is also

anti-symmetric: ∀G,~ ∈ %, G ⊑ ~ ∧ ~ ⊑ G ⇒ G = ~
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Examples:

◮ (N, ≤) , (N, ≥)

◮ (�(- ), ⊆), (�(- ), ⊇)

◮ (Z, | ) where = |<
△

⇔ = divides<

Proposition.

1. If % = (%,⊑) is a preorder, then so is %op , (%,⊒)

where G ⊒ ~
△

⇔ ~ ⊑ G .

2. (%op)op = %
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Each preorder determines a category

Given a preorder % = (%,⊑), we get a category

C%

by taking

◮ objects: objC% = %

◮ morphisms: C% (G,~) ,

{
{ (G,~) } , if G ⊑ ~

∅ , if G 6⊑ ~

◮ identity morphisms and composition are uniquely
determined (why?)
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Each preorder determines a category

Given a preorder % = (%,⊑), we get a category

C%

by taking

◮ objects: objC% = %

◮ morphisms: C% (G,~) ,

{
{ (G,~) } , if G ⊑ ~

∅ , if G 6⊑ ~
◮ identity morphisms and composition are uniquely

determined (why?)

E.g. when % has just one element 0

C% =
0(0,0)=id0

one object, one morphism
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Each preorder determines a category

Given a preorder % = (%,⊑), we get a category

C%

by taking

◮ objects: objC% = %

◮ morphisms: C% (G,~) ,

{
{ (G,~) } , if G ⊑ ~

∅ , if G 6⊑ ~
◮ identity morphisms and composition are uniquely

determined (why?)

E.g. when % has just two elements 0 ⊑ 1

C% = 0(0,0)=id0
(0,1)

1 id1=(1,1)

two objects, one non-identity morphism
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Category of preorders: Preord

◮ objects: preorders

◮ morphisms:

Preord((%1, ⊑1), (%2, ⊑2))

, {5 ∈ Set(%1, %2) | 5 is monotone}

monotonicity: ∀G, G′ ∈ %1, G ⊑1 G
′⇒ 5 G ⊑2 5 G

′
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Category of preorders: Preord

◮ objects: preorders

◮ morphisms:

Preord((%1, ⊑1), (%2, ⊑2))

, {5 ∈ Set(%1, %2) | 5 is monotone}

monotonicity: ∀G, G′ ∈ %1, G ⊑1 G
′⇒ 5 G ⊑2 5 G

′

◮ identities and composition: as for Set

Q: why is this well-defined?
A: because the set of monotone functions contains identity functions
and is closed under composition.
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Subcategory of posets: Poset

Define Poset to be the category whose objects are
posets, and is otherwise defined like the category
Preord of preorders.

NB: Pre and partial orders are relevant to the
denotational semantics of programming languages
(among other things).
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Proposition. A morphism 5 ∈ Poset((%1, ⊑1), (%2, ⊑2))

is an isomorphism in the category Poset iff the function
5 ∈ Set(%1, %2) is

surjective: ∀~ ∈ %2, ∃G ∈ %1, 5 (G) = ~

and

reflective: ∀G, G′ ∈ %1, 5 G ⊑2 5 G
′⇒ G ⊑1 G

′

(Why does this characterisation not work for Preord?)
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Problem: Recalling that categories generalise both
monoids and preorders, find a notion of morphism
between categories that generalises both monoid
homomorphisms and monotone functions.
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Category-theoretic properties

Any two isomorphic objects in a category should have
the same category-theoretic properties – statements
that are provable in a formal logic for category theory,
whatever that is.

Instead of trying to formalize such a logic, we will just
look at examples of category-theoretic properties.

Here is our first one. . .

49



Terminal object
An object) of a category C is terminal if for all - ∈ C,
there is a unique C-morphism from - to) , which we
write as 〈〉- : - → ) .

So we have

{
∀- ∈ C, 〈〉- ∈ C(-,) )

∀- ∈ C,∀5 ∈ C(-,) ), 5 = 〈〉-

(In particular, id) = 〈〉) .)

Convention: Sometimes we write !- or - for 〈〉- —there
is no commonly accepted notation— and also just write
〈〉 or !.

50



Examples of terminal objects

◮ In Set a set is terminal iff it is a singleton.

◮ Any one-element set has a unique preorder and this
makes it terminal in Preord and Poset.

◮ Any one-element set has a unique monoid (group)
structure and this makes it terminal in Mon (Grp).
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Examples of terminal objects

◮ In Set a set is terminal iff it is a singleton.

◮ Any one-element set has a unique preorder and this
makes it terminal in Preord and Poset.

◮ Any one-element set has a unique monoid (group)
structure and this makes it terminal in Mon (Grp).

◮ A preorder % = (%,⊑), regarded as a category C% ,

has a terminal object iff it has a greatest element ⊤,
that is: ∀G ∈ %, G ⊑ ⊤.
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Terminal object

terminal objects are unique up to unique isomorphism
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Terminal object

terminal objects are unique up to unique isomorphism

Proposition. In a category,

(a) If ) and ) ′ are both terminal, then) � ) ′ (and
there is only one isomorphism between ) and ) ′).

(b) If ) is terminal and ) � ) ′, then ) ′ is terminal.

Notation: If a category C has a terminal object we will
write that object as 1C or 1 .
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Global elements

Given a category C with a terminal object 1.

A global element of an object - ∈ objC is by definition
a morphism 1→ - in C.

E.g. Set(1Set, - ) � - ; in Mon(1Mon, ") � 1Set.
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Global elements

Given a category C with a terminal object 1.

A global element of an object - ∈ objC is by definition
a morphism 1→ - in C.

E.g. Set(1Set, - ) � - ; in Mon(1Mon, ") � 1Set.

Say that C is well-pointed if for all 5 , 6 : - → . in C we
have: (

∀1
G
−→ - in C, 5 ◦ G = 6 ◦ G

)
⇒ 5 = 6

E.g. Set is well-pointed (by function extensionality); Mon

is not.
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Generalising elements

◮ Proposition. For all 5 , 6 : " → "′ inMon,
if

∀4 : N→ " in Mon, 5 ◦ 4 = 6 ◦ 4 : N→ "′

then

5 = 6
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Directed graphs
Let DiGph be the category with

◮ objects: ( �, # ∈ obj Set , B, C : � → # in Set );

◮ morphisms:

ℎ = (ℎe, ℎn) : ( �
B

C
# ) −→ ( �′

B′

C ′
# ′ )

given by functions ℎe : � → �′ and ℎn : # → # ′

such that

∀0 ∈ �. B′(ℎe 0) = ℎn(B 0)

and

∀0 ∈ �. C ′(ℎe 0) = ℎn(C 0)

◮ identities and composition: given pointwise as in
Set.
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Directed graphs in a category

◮ For a category C, let DiGph(C) be the category
with

◮ objects: diagrams �
B

C
# in C;

◮ morphisms:

ℎ = (ℎe, ℎn) : ( �
B

C
# ) −→ ( �′

B ′

C ′
# ′ )

given by ℎe : � → �′ and ℎn : # → # ′ in C such that

�

ℎe

B
#

ℎn

�′
B ′

# ′

and

�

ℎe

C
#

ℎn

�′
C ′

# ′

commute;
◮ identities and composition: given pointwise as in C.
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NB. DiGph((4C) = DiGph.

Proposition. DiGph(Set) is not well-pointed. (Why?)

? Is there a single � ∈ DiGph(Set) such that, for all
5 , 6 : � → �′ in DiGph(Set),

∀2 : � → � in DiGph(Set), 5 ◦ 2 = 6 ◦ 2 : � → �′

implies

5 = 6 ?
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Proposition. There exist �, � ∈ DiGph(Set) such that
for all 5 , 6 : � → �′ in DiGph(Set),
if

∀0 : �→ � in DiGph(Set), 5 ◦ 0 = 6 ◦ 0 : �→ �′

and
∀1 : � → � in DiGph(Set), 5 ◦ 1 = 6 ◦ 1 : � → �′

then

5 = 6
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Generalised elements

Idea:

Replace global elements 1
G
−→ - of -

by morphisms �
G
−→ - for � ∈ objC
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Generalised elements

Idea:

Replace global elements 1
G
−→ - of -

by morphisms �
G
−→ - for � ∈ objC

Some people say that G is a generalised element of -
at stage� and use the notation G ∈� - . For instance,
〈〉� ∈� 1 is the unique generalised element of 1 at
stage� .

One may also think that G inhabits - in context � and
use the notation� ⊢ G : - ; for instance, � ⊢ 〈〉� : 1.

59



NB: One has to take into account “change of stage or
context”: for f : � → � ,

G ∈� - ⇒ G f ∈� -

� ⊢ G : - ⇒ � ⊢ G f : -

(cf. Kripke’s “possible world” semantics of intuitionistic and modal logics)
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Opposite of a category

Given a category C, its opposite category Cop is defined
by interchanging the operations of dom and cod in C:

◮ objCop
, objC

◮ Cop(-,. ) , C(.,- ), for all objects - and .

◮ identity morphism on - ∈ objCop is
id- ∈ C(-,- ) = Cop(-,- )

◮ composition in Cop of 5 ∈ Cop(-,. ) and
6 ∈ Cop(.,/ ) is given by the composition
5 ◦ 6 ∈ C(/,- ) = Cop(-,/ ) in C

(associativity and unity properties hold for this
operation because they do in C)
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The Principle of Duality

Whenever one defines a concept / proves a theorem

in terms of commutative diagrams in a category C,

one obtains another concept / theorem, called its dual,

by reversing the direction or morphisms throughout,

that is, by replacing C by its opposite category Cop.

For example, “isomorphism” is a self-dual concept.
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Initial object
(the dual notion to “terminal object”)

An object 0 of a category C is initial if for all - ∈ C,
there is a unique C-morphism 0→ - , which we write as
[]- : 0→ - .

So we have

{
∀- ∈ C, []- ∈ C(0, - )

∀- ∈ C,∀5 ∈ C(0, - ), 5 = []-

(In particular, id0 = []0.)

NB: By duality, we have that initial objects are unique
up to unique isomorphism and that any object
isomorphic to an initial object is itself initial.
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Examples of initial objects

◮ The empty set is initial in Set.

◮ Any singleton set has a uniquely determined
monoid structure and is initial inMon. (why?)

So initial and terminal objects coincide inMon

An object that is both initial and terminal in a category is called a

zero object.

◮ A preorder % = (%,⊑), regarded as a category C% ,
has an initial object iff it has a least element ⊥, that
is: ∀G ∈ %,⊥ ⊑ G .
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Free monoids as initial objects

The free monoid on a set - is
List - = (List-,@, nil) where

List- = set of finite lists of elements of -
@ = list concatenation

nil = empty list
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Free monoids as initial objects

The free monoid on a set - is
List - = (List-,@, nil) where

List- = set of finite lists of elements of -
@ = list concatenation

nil = empty list

The singleton-list function

s- : - → List-

G ↦→ [G] = G :: nil

has the following (initial) universal property . . .
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Free monoids as initial objects
Theorem. For any monoid " = (", •, y) and function
5 : - → " , there is a unique monoid morphism
5 # ∈ Mon(List -,") making

-
s-

5

List-

5 #

"

commute in Set.
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Free monoids as initial objects
Theorem. ∀" ∈ Mon,∀5 ∈ Set(-,"), ∃!5 # ∈ Mon(List -,"), 5 # ◦ s- = 5

The theorem just says that s- : - → List- is an initial
object in the category -/Mon:

◮ objects: (", 5 ) where " ∈ objMon and
5 ∈ Set(-,")

◮ morphisms in -/Mon(("1, 51) , ("2, 52)) are
ℎ ∈ Mon("1, "2) such that ℎ ◦ 51 = 52

◮ identities and composition as inMon
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Free monoids as initial objects
Theorem. ∀" ∈ Mon,∀5 ∈ Set(-,"), ∃!5 # ∈ Mon(List -,"), 5 # ◦ s- = 5

The theorem just says that s- : - → List- is an initial
object in the category -/Mon:

So this “universal property” determines the monoid List- uniquely up to
isomorphism inMon.

We will see later that - ↦→ List- is part of a functor (= morphism of categories)
which is le� adjoint to the “forgetful functor”Mon→ Set : " ↦→ " .
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Products

Problem: In a category, find a universal construction
specifying a product object - × . that internalises pairs
of generalised elements of objects - and . .

66



Products

Problem: In a category, find a universal construction
specifying a product object - × . that internalises pairs
of generalised elements of objects - and . .

That is,

� −→ - × .

� −→ - � −→ .

where the passage from top to bo�om is given by
projecting on the first and second components.

66



More precisely,

-
c1
←− - × .

c2
−→ .

such that

hom(�,- × . )
〈 c1◦ , c2◦ 〉

hom(�,- ) × hom(�,. )

is an isomorphism.
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Binary products

In a category C, a product for objects -,. ∈ C is a

diagram -
c1
←− %

c2
−→ . with the universal property:

For all -
G
←− �

~
−→ . in C, there is a unique C-morphism

D : � → % such that the following diagram commutes in
C: �

G ~
D

- %c1 c2
.
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Binary products

In a category C, a product for objects -,. ∈ C is a

diagram -
c1
←− %

c2
−→ . with the universal property:

For all -
G
←− �

~
−→ . in C, there is a unique C-morphism

D : � → % such that
G = c1 ◦ D and ~ = c2 ◦ D

So (%, c1, c2) is a terminal object in the category with

◮ objects: (�, G,~) where -
G
←− �

~
−→ . in C

◮ morphisms 5 : (�1, G1,~1) → (�2, G2,~2) are 5 ∈ C(�1,�2) such that
G1 = G2 ◦ 5 and ~1 = ~2 ◦ 5

◮ composition and identities as in C

So if it exists, the binary product of two objects in a category is unique up to
(unique) isomophism.
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Binary products

In a category C, a product for objects -,. ∈ C is a

diagram -
c1
←− %

c2
−→ . with the universal property:

For all -
G
←− �

~
−→ . in C, there is a unique C-morphism

D : � → % such that
G = c1 ◦ D and ~ = c2 ◦ D

N.B. products of objects in a category do not always exist. For example in the
category

0id0 1 id1

two objects, no non-identity morphisms

the objects 0 and 1 do not have a product, because there is no diagram of the
form 0← ?→ 1 in this category.
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Notation for binary products

Assuming C has binary products of objects, the product
of -, . ∈ C is wri�en

-
c1
←− - × .

c2
−→ .

and given -
G
←− �

~
−→ . , the unique D : � → - × . with

c1 ◦D = G and c2 ◦ D = ~ is wri�en

〈G , ~〉 : � → - × .
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Examples:

◮ In Set, category-theoretic products are given by the
usual cartesian product of sets (set of all ordered
pairs) and their projections:

- × . = {(G, ~) | G ∈ - ∧ ~ ∈ . }

c1(G,~) = G

c2(G,~) = ~
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◮ In Mon, can take product of ("1, ·1, 41) and
("2, ·2, 42) to be

("1 ×"2, · , (41, 42))

product in Set
(G1, G2) · (~1, ~2) =
(G1 ·1 ~1, G2 ·2 ~2)
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◮ In Mon, can take product of ("1, ·1, 41) and
("2, ·2, 42) to be

("1 ×"2, · , (41, 42))

product in Set
(G1, G2) · (~1, ~2) =
(G1 ·1 ~1, G2 ·2 ~2)

The projection functions "1
c1
←− "1 ×"2

c2
−→ "2 are

monoid morphisms for this monoid structure on
"1 ×"2 and have the universal property needed for
a product inMon (check).
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◮ In Preord, we can take the product of (%1, ⊑1) and
(%2, ⊑2) to be

(%1 × %2, ⊑)

product in Set

(G1, G2) ⊑ (~1, ~2)
△

⇔

G1 ⊑1 ~1 ∧ G2 ⊑2 ~2
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◮ In Preord, we can take the product of (%1, ⊑1) and
(%2, ⊑2) to be

(%1 × %2, ⊑)

product in Set

(G1, G2) ⊑ (~1, ~2)
△

⇔

G1 ⊑1 ~1 ∧ G2 ⊑2 ~2

The projection functions %1
c1
←− %1 × %2

c2
−→ %2 are

monotone for this preorder on %1 × %2 and have the
universal property needed for a product in Preord

(check).
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◮ Recall that each preorder % = (%,⊑) determines a
category C% .
Given ?, @ ∈ % = objC% , the product ? × @ (if it
exists) is a greatest lower bound (or glb, or meet)
for ? and @ in % :
lower bound:
? × @ ⊑ ? ∧ ? × @ ⊑ @

greatest among all lower bounds:
∀ℓ ∈ %, ℓ ⊑ ? ∧ ℓ ⊑ @ ⇒ ℓ ⊑ ? × @

Notation: glbs are o�en wri�en ? ∧ @ or ? ⊓ @
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Binary product of morphisms

Suppose a category C has binary products; that is,
for every pair of C-objects - and . there is a product

diagram -
c1
←− - × .

c2
−→ . .

Given 5 ∈ C(�,- ) and 6 ∈ C(�,. ), then

5 × 6 : � × � → - × .

stands for 〈5 ◦ c1 , 6 ◦ c2〉; that is, the unique morphism
D ∈ C(� × �,- × . ) satisfying c1 ◦D = 5 ◦ c1 and
c2 ◦D = 6 ◦ c2.
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Binary coproducts
A binary coproduct of two objects in a category C is
their product in the category Cop.
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Binary coproducts
A binary coproduct of two objects in a category C is
their product in the category Cop.

Thus the coproduct of -,. ∈ C if it exists,

is a diagram -
]1
−→ - + .

]2
←− . with the

universal property:

∀ (-
5
−→ /

6
←− . ),

∃! (- + .
[5 ,6]
−→ / ),

5 = [5 , 6] ◦ ]1 ∧ 6 = [5 , 6] ◦ ]2
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Binary coproducts
A binary coproduct of two objects in a category C is
their product in the category Cop.

Thus the coproduct of -,. ∈ C if it exists,

is a diagram -
]1
−→ - + .

]2
←− . with the

universal property:

〈 ◦]1 , ◦]2〉 : C(-+., / )
�

−→ C(-, / )×C(., / )
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Examples:

◮ In Set, the coproduct of - and .

-
]1
−→ - + .

]2
←− .

is given by their disjoint union (tagged sum)

- + . = {(1, G) | G ∈ - } ∪ {(2, ~) | ~ ∈ . }

]1(G) = (1, G)

]2(~) = (2, ~)

(prove this)
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◮ Recall that each preorder % = (%,⊑) determines a
category C% .
Given ?, @ ∈ % = objC% , the coproduct ? + @ (if it
exists) is a least upper bound (or lub, or join)
for ? and @ in % :
upper bound:
? ⊑ ? + @ ∧ @ ⊑ ? + @

least among all upper bounds:
∀D ∈ %, ? ⊑ D ∧ @ ⊑ D ⇒ ? + @ ⊑ D

Notation: lubs are o�en wri�en ? ∨ @ or ? ⊔ @
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Binary coproduct of morphisms

Suppose a category C has binary coproducts; that is,
for every pair of C-objects - and . there is a coproduct

diagram -
]1
−→ - + .

]2
←− . .

Given 5 ∈ C(�,- ) and 6 ∈ C(�,. ), then

5 + 6 : � + � → - + .

stands for []1 ◦ 5 , ]2 ◦ 6]; that is, the unique morphism
D ∈ C(� + �,- + . ) satisfying D ◦ ]1 = ]1 ◦ 5 and
D ◦ ]2 = ]2 ◦ 6.
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Exponentials

Problem: In a category with binary products, find a
universal construction specifying an exponential object
(or internal hom) - ⇒ . with generalised elements
corresponding to parameterised morphisms from - to . .
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Exponentials

Problem: In a category with binary products, find a
universal construction specifying an exponential object
(or internal hom) - ⇒ . with generalised elements
corresponding to parameterised morphisms from - to . .

That is,
� −→ - ⇒ .

� ×- −→ .

where the passage from top to bo�om is given by
application.
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More precisely,

app : (- ⇒ . ) ×- → .

such that

hom(�,- ⇒ . )
app ◦( ×id- )

hom(� × -,. )

is an isomorphism.
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Exponential objects

Suppose a category C has binary products

An exponential for C-objects - and . is specified by
a C-object - ⇒ .

a C-morphism app : (- ⇒ . ) × - → .

satisfying the universal property

for all� ∈ C and 5 ∈ C(� ×-, . ), there is a unique

D ∈ C(�,- ⇒ . ) such that (- ⇒ . ) ×-
app

.

� × -

D×id-
5

commutes in C.

Notation: we write cur 5 for the unique D such that
app ◦(D × id- ) = 5 .

81



Exponential objects

The universal property of app : (- ⇒ . ) × - → . says
that there is a bijection

hom(�,- ⇒ . ) � hom(� ×-, . )

6 ↦→ app ◦(6 × id- )

cur 5 ←[ 5

app ◦(cur 5 × id- ) = 5

6 = cur(app ◦(6 × id- ))
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Exponential objects

The universal property of app : (- ⇒ . ) × - → . says
that there is a bijection. . .
It also says that (- ⇒ ., app) is a terminal object in the following category:

◮ objects: (�, 5 ) where 5 ∈ C(� × -,. )

◮ morphisms 6 : (�, 5 ) → (�′, 5 ′) are 6 ∈ C(/,/ ′) such that
5 ′ ◦ (6 × id- ) = 5

◮ composition and identities as in C.

So when they exist, exponential objects are unique up to (unique) isomorphism.
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Example: Exponential objects in Set.

Given -,. ∈ Set, let (- ⇒ . ) ∈ Set denote the set of all
functions from - to . .

Function application gives a morphism
app : (- ⇒ . ) ×- → . in Set

app(5 , G) = 5 G (5 ∈ (- ⇒ . ), G ∈ - )

The Currying operation transforms morphisms
5 : � ×- → . in Set to morphisms

cur 5 : � → - ⇒ . in Set

cur 5 2 G = 5 (2, G) (5 ∈ (- ⇒ . ), 2 ∈ �, G ∈ - )
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For each function 5 : � ×- → . we get a commutative
diagram in Set:

(- ⇒ . ) × -
app

.

� ×-

cur 5 × id-
5

(cur 5 2, G) cur 5 2 G = 5 (2, G)

(2, G)
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For each function 5 : � ×- → . we get a commutative
diagram in Set:

(- ⇒ . ) ×-
app

.

� × -

cur 5 × id-
5

Furthermore, if any function 6 : � → - ⇒ . also
satisfies

(- ⇒ . ) × -
app

.

� ×-

6× id-
5

then 6 = cur 5 , because of function extensionality.
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Indeed,

app ◦(6 × id- ) = 5

⇒ ∀(2, G) ∈ � × -, app(6 2, G) = 5 (2, G)

⇒ ∀G ∈ -,∀2 ∈ �,6 2 G = cur 5 2 G

⇒ ∀2 ∈ �,6 2 = cur 5 2

⇒ 6 = cur 5
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Cartesian closed category
Definition. C is a cartesian closed category (ccc) if it is
a category with a terminal object, binary products, and
exponentials of any pair of objects.

This is a key concept for the semantics of lambda calculus and for the foundations
of functional programming languages.

Examples:

◮ Set is a ccc — as we have seen.

◮ Preord is a ccc: we already saw that it has a terminal object and binary
products; the exponential of (%1,⊑1) and (%2,⊑2) is (%1 ⇒ %2,⊑) where

%1 ⇒ %2 , Preord((%1,⊑1), (%2,⊑2))

5 ⊑ 6
△

⇔ ∀G ∈ %1, 5 G ⊑2 6 G

(check that this is a pre-order and does give an exponential in Preord)

◮ DiGph(Set) is a ccc.
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Bicartesian closed category
Definition. C is a bicartesian category if it is a category
with a terminal and initial object, and binary products
and coproducts of any pair of objects.

Definition. C is a bicartesian closed category (biccc) if
it is a bicartesian category with exponentials of any pair
of objects.

This is a key concept for the semantics of lambda calculus and for the foundations
of functional programming languages.

Examples: Set, Preord, DiGph(Set) are bicccs.
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Non-example of a ccc

The categoryMon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

�(- ) � Set(-,Z2)

� Mon(List-,Z2)

� Mon(1 × List-,Z2)

by universal property of
the free monoid List-

on the set -

- � 1 × -

88



Non-example of a ccc

The categoryMon of monoids has a terminal object and
binary products, but is not a ccc

because of the following bijections between sets, where 1 denotes a one-element

set and the corresponding one-element monoid:

�(- ) � Set(-,Z2)

� Mon(List-,Z2)

� Mon(1 × List-,Z2)

Since the one-element monoid is initial inMon, for any" ∈ Mon, we have
Mon(1, ") � 1 and hence

List- ⇒ Z2 exists inMon iff �(- ) � 1 iff - = 0

Btw, a ccc has a zero object if, and only if, it is trivial (check).
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Cartesian closed pre-order

Recall that each preorder % = (%,⊑) gives a category C% .
It is a biccc iff % has

◮ a greatest element ⊤: ∀? ∈ %, ? ⊑ ⊤

◮ a least element ⊥: ∀? ∈ %, ⊥ ⊑ ?

◮ binary meets ? ∧ @:
∀A ∈ %, A ⊑ ? ∧ @ ⇔ A ⊑ ? ∧ A ⊑ @

◮ binary joins ? ∨ @:
∀A ∈ %, ? ∨ @ ⊑ A ⇔ ? ⊑ A ∧ @ ⊑ A

◮ Heyting implications ? � @:
∀A ∈ %, A ⊑ ? � @ ⇔ A ∧ ? ⊑ @
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Examples:

◮ Any Boolean algebra (with ? � @ = ¬? ∨ @).

◮ ( [0, 1], ≤) with ⊤ = 1, ⊥ = 0, ? ∧ @ = min{?, @},

? ∨ @ = max{?, @}, and ? � @ =

{
1 if ? ≤ @

@ if @ < ?
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Intuitionistic Propositional Logic (IPL)

We present it in “natural deduction” style and only consider the fragment with

conjunction and implication, with the following syntax:

Formulas of IPL: i,k, \, . . . ::=
?, @, A , . . . propositional identifiers
true truth
i &k conjunction
i =>k implication

Sequents of IPL: Φ ::= ⋄ empty
Φ, i non-empty

(so sequents are finite lists of formulas)
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IPL entailment Φ ⊢ i

The intended meaning of Φ ⊢ i is “the conjunction of the formulas in Φ implies

the formula i”. The relation ⊢ is inductively generated by the following rules:

Φ, i ⊢ i
(ax)

Φ ⊢ i

Φ,k ⊢ i
(wk)

Φ ⊢ i Φ, i ⊢ k

Φ ⊢ k
(cut)

Φ ⊢ true
(true)

Φ ⊢ i Φ ⊢ k

Φ ⊢ i &k
(&i)

Φ, i ⊢ k

Φ ⊢ i =>k
(=>i)

Φ ⊢ i &k

Φ ⊢ i
(&e1)

Φ ⊢ i &k

Φ ⊢ k
(&e2)

Φ ⊢ i =>k Φ ⊢ i

Φ ⊢ k
(=>e)
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For example, if Φ = ⋄, i =>k,k => \ , then Φ ⊢ i => \ is
provable in IPL, because:

(ax)
Φ ⊢ k => \

(wk)
Φ, i ⊢ k => \

(ax)
⋄, i =>k ⊢ i =>k

(wk)
Φ ⊢ i =>k

(wk)
Φ, i ⊢ i =>k

(ax)
Φ, i ⊢ i

(=>e)
Φ, i ⊢ k

(=>e)
Φ, i ⊢ \

(=>i)
Φ ⊢ i => \
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Semantics of IPL
in a cartesian closed pre-order (%,⊑)

Given a function " assigning a meaning to each propositional

identifier ? as an element " (?) ∈ % , we can assign meanings to IPL

formula i and sequents Φ as elements "JiK, "JΦK ∈ % by recursion

on their structure:

"J?K = " (?)

"JtrueK = ⊤ greatest element

"Ji &kK = "JiK ∧"JkK binary meet

"Ji =>kK = "JiK � "JkK Heyting implication

"J⋄K = ⊤ greatest element

"JΦ, iK = "JΦK ∧"JiK binary meet
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Semantics of IPL
in a cartesian closed pre-order (%,⊑)

Soundness Theorem. If Φ ⊢ i is provable from the
rules of IPL, then"JΦK ⊑ "JiK holds in any cartesian
closed pre-order.

Proof. exercise (show that {(Φ, i) | "JΦK ⊑ "JiK} is closed under the rules
defining IPL entailment and hence contains {(Φ, i) | Φ ⊢ i})
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Example
Peirce’s Law ⋄ ⊢ ((i =>k ) => i) => i

is not provable in IPL.
(whereas the formula ((i =>k ) => i) => i is a classical tautology)
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Example
Peirce’s Law ⋄ ⊢ ((i =>k ) => i) => i

is not provable in IPL.
(whereas the formula ((i =>k ) => i) => i is a classical tautology)

For if ⋄ ⊢ ((i =>k ) => i) => i were provable in IPL, then by the
Soundness Theorem we would have
⊤ = "J⋄K ⊑ "J((i =>k ) => i) => iK.

But in the cartesian closed poset ([0, 1], ≤), taking" (?) = 1/2 and
" (@) = 0, we get

"J((? => @) => ?) => ?K = ((1/2 � 0) � 1/2) � 1/2

= (0 � 1/2) � 1/2

= 1 � 1/2

= 1/2

� 1
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Semantics of IPL
in a cartesian closed preorder (%,⊑)

Completeness Theorem. Given Φ, i , if for all cartesian
closed preorders (%,⊑) and all interpretations" of the
propositional identifiers as elements of % , it is the case
that"JΦK ⊑ "JiK holds in % , then Φ ⊢ i is provable in
IPL.

96



Semantics of IPL
in a cartesian closed preorder (%,⊑)

Completeness Theorem. Given Φ, i , if for all cartesian
closed preorders (%,⊑) and all interpretations" of the
propositional identifiers as elements of % , it is the case
that"JΦK ⊑ "JiK holds in % , then Φ ⊢ i is provable in
IPL.
Proof. Define

% , {formulas of IPL}

i ⊑ k , ⋄, i ⊢ k is provable in IPL

Then one can show that (%, ⊑) is a cartesian closed preorder.
For this preorder, taking" to be" (?) = ? , one can show that"JΦK ⊑ "JiK
holds in % iff Φ ⊢ i is provable in IPL. �
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Proof theory

Two IPL proofs of ⋄, i =>k,k => \ ⊢ i => \

(ax)· · · (wk)
Φ, i ⊢ k => \

(ax)· · · (wk)· · · (wk)
Φ, i ⊢ i =>k

(ax)
Φ, i ⊢ i

(=>e)
Φ, i ⊢ k

(=>e)
Φ, i ⊢ \

(=>i)
Φ ⊢ i => \ where Φ , ⋄, i =>k,k => \

(ax)· · · (wk)· · · (wk)
Ψ ⊢ i =>k

(ax)
Ψ ⊢ i

(=>e)
Ψ ⊢ k

(ax)· · · (wk)· · · (wk)
Ψ,k ⊢ k => \

(ax)
Ψ,k ⊢ k

(=>e)
Ψ,k ⊢ \

(cut)
Ψ ⊢ \ (=>i)

⋄, i =>k,k => \ ⊢ i => \
where Ψ , ⋄, i =>k,k => \, i
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Proof theory

Two IPL proofs of ⋄, i =>k,k => \ ⊢ i => \

(ax)· · · (wk)
Φ, i ⊢ k => \

(ax)· · · (wk)· · · (wk)
Φ, i ⊢ i =>k

(ax)
Φ, i ⊢ i

(=>e)
Φ, i ⊢ k

(=>e)
Φ, i ⊢ \

(=>i)
Φ ⊢ i => \ where Φ , ⋄, i =>k,k => \

(ax)· · · (wk)· · · (wk)
Ψ ⊢ i =>k

(ax)
Ψ ⊢ i

(=>e)
Ψ ⊢ k

(ax)· · · (wk)· · · (wk)
Ψ,k ⊢ k => \

(ax)
Ψ,k ⊢ k

(=>e)
Ψ,k ⊢ \

(cut)
Ψ ⊢ \ (=>i)

⋄, i =>k,k => \ ⊢ i => \
where Ψ , ⋄, i =>k,k => \, i

Why is the first proof simpler than the second one?
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Proof theory

Φ, i ⊢ i
(ax)

Φ ⊢ i

Φ,k ⊢ i
(wk)

Φ ⊢ i Φ, i ⊢ k

Φ ⊢ k
(cut)

Φ ⊢ true
(true)

Φ ⊢ i Φ ⊢ k

Φ ⊢ i &k
(&i)

Φ, i ⊢ k

Φ ⊢ i =>k
(=>i)

Φ ⊢ i &k

Φ ⊢ i
(&e1)

Φ ⊢ i &k

Φ ⊢ k
(&e2)

Φ ⊢ i =>k Φ ⊢ i

Φ ⊢ k
(=>e)

FACT: if an IPL sequent Φ ⊢ q is provable from the rules, it is
provable without using the (cut) rule.
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Proof theory

Φ, i ⊢ i
(ax)

Φ ⊢ i

Φ,k ⊢ i
(wk)

Φ ⊢ i Φ, i ⊢ k

Φ ⊢ k
(cut)

Φ ⊢ true
(true)

Φ ⊢ i Φ ⊢ k

Φ ⊢ i &k
(&i)

Φ, i ⊢ k

Φ ⊢ i =>k
(=>i)

Φ ⊢ i &k

Φ ⊢ i
(&e1)

Φ ⊢ i &k

Φ ⊢ k
(&e2)

Φ ⊢ i =>k Φ ⊢ i

Φ ⊢ k
(=>e)

FACT: if an IPL sequent Φ ⊢ q is provable from the rules, it is
provable without using the (cut) rule.

Simply-Typed Lambda Calculus provides a language for describing
proofs in IPL and their properties.
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Simply-Typed Lambda Calculus (STLC)

Types: �, �,�, . . . ::=

�,�′,�′′ . . . “ground” types
unit unit type
� × � product type
� � � function type
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Simply-Typed Lambda Calculus (STLC)

Types: �, �,�, . . . ::=

�,�′,�′′ . . . “ground” types
unit unit type
� × � product type
� � � function type

Terms: B, C, A, . . . ::=

2� constants (of given type �)
G variable (countably many)
() unit value
(B , C) pair
fst C snd C projections
_G : �. C function abstraction
B C function application
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STLC
Some examples of terms:

◮ _I : (� � �) × (� � �) . _G : �. ((fst I) G , (snd I) G))

(has type ((� � �) × (� � �)) � (� � (� ×�)))

◮ _I : � � (� ×�) . (_G : �. fst(I G) , _~ : �. snd(I ~))

(has type (� � (� ×�)) � ((� � �) × (� � �)))

◮ _I : � � (� ×�) . _G : �. ((fst I) G , (snd I) G)

(has no type)
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STLC typing relation, Γ ⊢ C : �

Γ ranges over typing environments

Γ ::= ⋄ | Γ, G : �

(so typing environments are comma-separated lists of (variable,type)-pairs — in

fact only the lists whose variables are mutually distinct get used)

The typing relation Γ ⊢ C : � is inductively defined by the
following rules, which make use of the notation below

Γ ok means: no variable occurs more than once in Γ

dom Γ = finite set of variables occurring in Γ
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STLC typing relation, Γ ⊢ C : �

Typing rules for variables

Γ ok G ∉ dom Γ

Γ, G : � ⊢ G : �
(var)

Γ ⊢ G : � G′ ∉ dom Γ

Γ, G′ : �′ ⊢ G : �
(var’)

Typing rules for constants and unit value

Γ ok

Γ ⊢ 2� : �
(cons)

Γ ok

Γ ⊢ () : unit
(unit)
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STLC typing relation, Γ ⊢ C : �

Typing rules for pairs and projections

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ (B , C) : � × �
(pair)

Γ ⊢ C : � × �

Γ ⊢ fst C : �
(fst)

Γ ⊢ C : � × �

Γ ⊢ snd C : �
(snd)
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STLC typing relation, Γ ⊢ C : �

Typing rules for function abstraction & application

Γ, G : � ⊢ C : �

Γ ⊢ _G : �. C : � � �
(fun)

Γ ⊢ B : � � � Γ ⊢ C : �

Γ ⊢ B C : �
(app)
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STLC typing relation, Γ ⊢ C : �

Example typing derivation:

(var)
Γ ⊢ 6 : � � �

(var’)
Γ, G : � ⊢ 6 : � � �

(var)
⋄, 5 : � � � ⊢ 5 : � � �

(var’)
Γ ⊢ 5 : � � �

(var’)
Γ, G : � ⊢ 5 : � � �

(var)
Γ, G : � ⊢ G : �

(app)
Γ, G : � ⊢ 5 G : �

(app)
Γ, G : � ⊢ 6(5 G) : �

(fun)
Γ ⊢ _G : �.6(5 G) : � � �

(fun)
⋄, 5 : � � � ⊢ _6 : � � �. _G : �.6(5 G) : (� � �) � (� � �)

(fun)
⋄ ⊢ _5 : � � �. _6 : � � �. _G : �.6(5 G) : (� � �) � (� � �) � (� � �)

where Γ , ⋄, 5 : � � �,6 : � � �

NB: The STLC typing rules are “syntax-directed”, by the structure of terms C and
then in the case of variables G , by the structure of typing environments Γ.
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Semantics of STLC types in a ccc

Given a cartesian closed category C, any function " mapping

ground types � to objects" (�) ∈ C extends to a function

� ↦→ "J�K ∈ C and Γ ↦→ "JΓK ∈ C from STLC types and typing

environments to C-objects, by recursion on their structure:

"J�K = " (�) an object in C

"JunitK = 1 terminal object in C

"J� × �K = "J�K ×"J�K product in C

"J� � �K = "J�K⇒ "J�K exponential in C

"J⋄K = 1 terminal object in C

"JΓ, G : �K = "JΓK ×"J�K product in C
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Semantics of STLC terms in a ccc

Given a cartesian closed category C, and

given any function" mapping

◮ ground types� to C-objects" (�)
(which extends to a function mapping all types to objects,� ↦→ "J�K, as
we have seen)
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Semantics of STLC terms in a ccc

Given a cartesian closed category C, and

given any function" mapping

◮ ground types� to C-objects" (�)
◮ constants 2� to C-morphisms " (2�) : 1→ "J�K

(In a category with a terminal object 1, given an object - ∈ C, morphisms
1→ - are typically called global elements of - .)
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Semantics of STLC terms in a ccc

Given a cartesian closed category C, and

given any function" mapping

◮ ground types� to C-objects" (�)

◮ constants 2� to C-morphisms " (2�) : 1→ "J�K

we get a function mapping provable instances of the
typing relation Γ ⊢ C : � to C-morphisms

"JΓ ⊢ C : �K : "JΓK→ "J�K

defined by recursing over the proof of Γ ⊢ C : � from the
typing rules (which follows the structure of C ):
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Semantics of STLC terms in a ccc

Variables:

"JΓ, G : � ⊢ G : �K = "JΓK ×"J�K
c2
−→ "J�K

"JΓ, G′ : �′ ⊢ G : �K

= "JΓK ×"J�′K
c1
−→ "JΓK

"JΓ⊢G :�K
−−−−−−−→ "J�K

Constants:

"JΓ ⊢ 2� : �K = "JΓK
〈〉
−→ 1

" (2�)
−−−−→ "J�K

Unit value:

"JΓ ⊢ () : unitK = "JΓK
〈〉
−→ 1
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Semantics of STLC terms in a ccc

Pairing:

"JΓ ⊢ (B , C) : � × �K

= "JΓK
〈"JΓ⊢B :�K,"JΓ⊢C :�K〉
−−−−−−−−−−−−−−−−→ "J�K ×"J�K

Projections:

"JΓ ⊢ fst C : �K

= "JΓK
"JΓ⊢C :�×�K
−−−−−−−−−→ "J�K ×"J�K

c1
−→ "J�K

109



Semantics of STLC terms in a ccc

Pairing:

"JΓ ⊢ (B , C) : � × �K

= "JΓK
〈"JΓ⊢B :�K,"JΓ⊢C :�K〉
−−−−−−−−−−−−−−−−→ "J�K ×"J�K

Projections:

"JΓ ⊢ fst C : �K

= "JΓK
"JΓ⊢C :�×�K
−−−−−−−−−→ "J�K ×"J�K

c1
−→ "J�K

Given that Γ ⊢ fst C : � holds,
there is a unique type �

such that Γ ⊢ C : � × � already
holds.

Lemma. If Γ ⊢ C : � and Γ ⊢ C : � are provable, then � = �.
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Semantics of STLC terms in a ccc

Pairing:

"JΓ ⊢ (B , C) : � × �K

= "JΓK
〈"JΓ⊢B :�K,"JΓ⊢C :�K〉
−−−−−−−−−−−−−−−−→ "J�K ×"J�K

Projections:

"JΓ ⊢ snd C : �K =

"JΓK
"JΓ⊢C :�×�K
−−−−−−−−−→ "J�K ×"J�K

c2
−→ "J�K

(As for the case of fst, if Γ ⊢ snd C : �, then Γ ⊢ C : � × � already holds for a

unique type �.)
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Semantics of STLC terms in a ccc

Function abstraction:

"JΓ ⊢ _G : �.C : � � �K

= cur 5 : "JΓK→ ("J�K⇒ "J�K)

where

5 = "JΓ, G : � ⊢ C : �K : "JΓK ×"J�K→ "J�K
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Semantics of STLC terms in a ccc

Function application:

"JΓ ⊢ B C : �K

= "JΓK
〈5 ,6〉
−−−→ ("J�K⇒ "J�K) ×"J�K

app
−−−→ "J�K

where

� = unique type such that Γ ⊢ B : � � � and Γ ⊢ C : �
already holds (exists because Γ ⊢ B C : � holds)

5 = "JΓ ⊢ B : � � �K : "JΓK→ ("J�K⇒ "J�K)

6 = "JΓ ⊢ C : �K : "JΓK→ "J�K

111



Example

Consider C , _G : �.6(5 G) so that Γ ⊢ C : � � � for

Γ , ⋄, 5 : � � �,6 : � � � .

Suppose "J�K = - , "J�K = . and"J�K = / in C. Then

"JΓK = (1 × .- ) × /.

"JΓ, G : �K = ((1 × .- ) × /. ) × -

"JΓ, G : � ⊢ G : �K = c2

"JΓ, G : � ⊢ 6 : � � �K = c2 ◦ c1

"JΓ, G : � ⊢ 5 : � � �K = c2 ◦ c1 ◦ c1

"JΓ, G : � ⊢ 5 G : �K = app ◦〈c2 ◦ c1 ◦ c1 , c2〉

"JΓ, G : � ⊢ 6 (5 G) : �K = app ◦〈c2 ◦ c1 , app ◦〈c2 ◦ c1 ◦ c1 , c2〉〉

"JΓ ⊢ C : � � �K = cur(app ◦〈c2 ◦ c1 , app ◦〈c2 ◦ c1 ◦ c1 , c2〉〉)
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STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?
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STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?

Ans: (U)V[-equivalence — to define this, first have to
define alpha-equivalence, substitution and its
semantics.
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Alpha equivalence of STLC terms

The names of _-bound variables should not affect
meaning.

E.g. _5 : � � �. _G : �. 5 G should have the same
meaning as _G : � � �. _5 : �. G 5 .
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Alpha equivalence of STLC terms

The names of _-bound variables should not affect
meaning.

E.g. _5 : � � �. _G : �. 5 G should have the same
meaning as _G : � � �. _5 : �. G 5 .

This issue is best dealt with at the level of syntax rather
than semantics: from now on we re-define “STLC term”
to mean not an abstract syntax tree (generated as
described before), but rather an equivalence class of
such trees with respect to alpha-equivalence B =U C ,
defined as follows . . .

(Alternatively, one can use a “nameless” (de Bruijn) representation of terms.)
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Alpha equivalence of STLC terms

2� =U 2
� G =U G () =U ()

B =U B
′ C =U C

′

(B , C) =U (B
′ , C ′)

C =U C
′

fst C =U fst C ′

C =U C
′

snd C =U snd C ′
B =U B

′ C =U C
′

B C =U B
′C ′

(~ G) · C =U (~ G
′) · C ′ ~ does not occur in {G, G′, C, C ′}

_G : �. C =U _G
′ : �. C ′

result of replacing all
occurrences of G with ~ in C
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Alpha equivalence of STLC terms

2� =U 2
� G =U G () =U ()

B =U B
′ C =U C

′

(B , C) =U (B
′ , C ′)

C =U C
′

fst C =U fst C ′

C =U C
′

snd C =U snd C ′
B =U B

′ C =U C
′

B C =U B
′C ′

(~ G) · C =U (~ G
′) · C ′ ~ does not occur in {G, G′, C, C ′}

_G : �. C =U _G
′ : �. C ′

E.g.

_G : �. G G =U _~ : �.~ ~ 6=U _G : �. G ~

(_~ : �.~) G =U (_G : �. G) G 6=U (_G : �. G) ~
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Substitution

C [B/G]

= result of replacing all free occurrences of variable G
in term C (i.e. those not occurring within the scope
of a _G : �. binder) by the term B, alpha-converting
_-bound variables in C to avoid them “capturing”
any free variables of C .

E.g. (_~ : �. (~ , G)) [~/G] is _I : �. (I , ~) and is not _~ : �. (~ , ~)
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Substitution

C [B/G]

= result of replacing all free occurrences of variable G
in term C (i.e. those not occurring within the scope
of a _G : �. binder) by the term B, alpha-converting
_-bound variables in C to avoid them “capturing”
any free variables of C .

E.g. (_~ : �. (~ , G)) [~/G] is _I : �. (I , ~) and is not _~ : �. (~ , ~)

The relation C [B/G] = C ′ can be inductively defined by
the following rules . . .
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Substitution

2� [B/G] = 2� G [B/G] = B

~ ≠ G

~ [B/G] = ~ () [B/G] = ()

C1[B/G] = C
′
1 C2 [B/G] = C

′
2

(C1 , C2) [B/G] = (C
′
1 , C
′
2)

C [B/G] = C ′

(fst C) [B/G] = fst C ′

C [B/G] = C ′

(snd C) [B/G] = snd C ′
C1 [B/G] = C

′
1 C2[B/G] = C

′
2

(C1 C2) [B/G] = C
′
1C
′
2

C [B/G] = C ′ ~ ≠ G and ~ does not occur in B

(_~ : �. C) [B/G] = _~ : �. C ′
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Semantics of substitution in a ccc
Substitution Lemma If Γ ⊢ B : � and Γ, G : � ⊢ C : � are
provable, then so is Γ ⊢ C [B/G] : �.

Substitution Theorem If Γ ⊢ B : � and Γ, G : � ⊢ C : �

are provable, then in any ccc the following diagram
commutes:

"JΓK
〈id,"JΓ⊢B :�K〉

"JΓ⊢C [B/G]:�K

"JΓK ×"J�K

"JΓ,G :�⊢C :�K

"J�K
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STLC equations

take the form Γ ⊢ B = C : � where Γ ⊢ B : � and Γ ⊢ C : �

are provable.

Such an equation is satisfied by the semantics in a ccc if
"JΓ ⊢ B : �K and"JΓ ⊢ C : �K are equal C-morphisms
"JΓK→ "J�K.

�: which equations are always satisfied in any ccc?

Ans: V[-equivalence. . .
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
Γ, G : � ⊢ C : � Γ ⊢ B : �

Γ ⊢ (_G : �. C)B =V[ C [B/G] : �

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ fst(B , C) =V[ B : �

Γ ⊢ B : � Γ ⊢ C : �

Γ ⊢ snd(B , C) =V[ C : �
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions

Γ ⊢ C : � � � G does not occur in C

Γ ⊢ C =V[ (_G : �. C G) : � � �

Γ ⊢ C : � × �

Γ ⊢ C =V[ (fst C , snd C) : � × �

Γ ⊢ C : unit

Γ ⊢ C =V[ () : unit
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions
◮ congruence rules

Γ, G : � ⊢ C =V[ C
′ : �

Γ ⊢ _G : �. C =V[ _G : �. C ′ : � � �

Γ ⊢ B =V[ B
′ : � � � Γ ⊢ C =V[ C

′ : �

Γ ⊢ B C =V[ B
′C ′ : �

etc
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STLC V[-Equality

The relation Γ ⊢ B =V[ C : � (where Γ ranges over typing

environments, B and C over terms, and � over types) is
inductively defined by the following rules:

◮ V-conversions
◮ [-conversions
◮ congruence rules
◮ =V[ is reflexive, symmetric and transitive

Γ ⊢ C : �

Γ ⊢ C =V[ C : �

Γ ⊢ B =V[ C : �

Γ ⊢ C =V[ B : �

Γ ⊢ A =V[ B : � Γ ⊢ B =V[ C : �

Γ ⊢ A =V[ C : �
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STLC V[-Equality
Soundness Theorem for semantics of STLC in a ccc.
If Γ ⊢ B =V[ C : � is provable, then in any ccc

"JΓ ⊢ B : �K = "JΓ ⊢ C : �K

are equal C-morphisms "JΓK→ "J�K.

Proof is by induction on the structure of the proof of Γ ⊢ B =V[ C : �.

Here we just check the case of V-conversion for functions.

So suppose we have Γ, G : � ⊢ C : � and Γ ⊢ B : �. We have to see that

"JΓ ⊢ (_G : �. C) B : �K = "JΓ ⊢ C [B/G] : �K
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Suppose "JΓK = -

"J�K = .

"J�K = /

"JΓ, G : � ⊢ C : �K = 5 : - × . → /

"JΓ ⊢ B : �K = 6 : - → /

Then
"JΓ ⊢ _G : �. C : � � �K = cur 5 : - → /.

and hence

"JΓ ⊢ (_G : �. C) B : �K

= app ◦〈cur 5 , 6〉

= app ◦(cur 5 × id. ) ◦ 〈id- , 6〉 since (0 × 1) ◦ 〈2 , 3〉 = 〈0 ◦ 2 , 1 ◦ 3〉

= 5 ◦ 〈id- , 6〉 by definition of cur 5

= "JΓ ⊢ C [B/G] : �K by the Substitution Theorem

as required.
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The internal language of a ccc, C
◮ one ground type for each C-object -

◮ for each - ∈ C, one constant 5 - for each
C-morphism 5 : 1→ - (“global element” of the
object - )

The types and terms of STLC over this language usefully describe constructions
on the objects and morphisms of C using its cartesian closed structure, but in an
“element-theoretic” way.

For example, . . .
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Example

In any ccc C, for any -,., / ∈ C there is an isomorphism

/ (-×. ) � (/. )-

124



Example

In any ccc C, for any -,., / ∈ C there is an isomorphism

/ (-×. ) � (/. )-

which in the internal language of C is described by the terms

⋄ ⊢ B : ((- × . ) � / ) � (- � (. � / ))

⋄ ⊢ C : (- � (. � / )) � ((- × . ) � / )

where

{
B , _5 : (- × . ) � / . _G : - . _~ : . . 5 (G , ~)

C , _6 : - � (. � / ) . _I : - × . . 6 (fst I) (snd I)
and

which satisfy

{
⋄, 5 : (- × . ) � / ⊢ C (B 5 ) =V[ 5

⋄, 6 : - � (. � / ) ⊢ B (C 6) =V[ 6
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Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single

ccc F (the free ccc for that language) with an interpretation function"

so that Γ ⊢ B =V[ C : � is provable iff"JΓ ⊢ B : �K = "JΓ ⊢ C : �K in F.
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Free cartesian closed categories

The Soundness Theorem has a converse—completeness.

In fact for a given set of ground types and typed constants there is a single

ccc F (the free ccc for that language) with an interpretation function"

so that Γ ⊢ B =V[ C : � is provable iff"JΓ ⊢ B : �K = "JΓ ⊢ C : �K in F.

◮ F-objects are the STLC types over the given set of ground types

◮ F-morphisms �→ � are equivalence classes of STLC terms C satisfying
⋄ ⊢ C : � � � (so C is a closed term—it has no free variables) with respect to
the equivalence relation equating B and C if ⋄ ⊢ B =V[ C : � � � is provable.

◮ identity morphism on � is the equivalence class of ⋄ ⊢ _G : �. G : � � �.

◮ composition of a morphism �→ � represented by ⋄ ⊢ B : � � � and a
morphism � → � represented by ⋄ ⊢ C : � � � is represented by
⋄ ⊢ _G : �. C (B G) : � � � .
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Curry-Howard
correspondence

Type
Logic Theory

propositions ↔ types
proofs ↔ terms

E.g. IPL versus STLC.
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Curry-Howard for IPL vs STLC

Proof of ⋄, i =>k,k => \ ⊢ i => \ in IPL

(ax)· · · (wk)
Φ ⊢ k => \

(ax)· · · (wk)· · · (wk)
Φ ⊢ i =>k

(ax)
Φ ⊢ i

(=>e)
Φ ⊢ k

(=>e)
Φ ⊢ \

(=>i)
⋄, i =>k, k => \ ⊢ i => \

where Φ = ⋄, i =>k, k => \, i
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Curry-Howard for IPL vs STLC

and a corresponding STLC term

(ax)· · · (wk)
Φ ⊢ I : k => \

(ax)· · · (wk)· · · (wk)
Φ ⊢ ~ : i =>k

(ax)
Φ ⊢ G : i

(=>e)
Φ ⊢ ~ G : k

(=>e)
Φ ⊢ I(~ G) : \

(=>i)
⋄, ~ : i =>k, I : k => \ ⊢ _G : i. I(~ G) : i => \

where Φ = ⋄, ~ : i =>k, I : k => \, G : i

127



Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs
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Curry-Howard-Lawvere/Lambek
correspondence

Type Category
Logic Theory Theory

propositions ↔ types ↔ objects
proofs ↔ terms ↔ morphisms

E.g. IPL versus STLC versus CCCs

These correspondences can be made into category-theoretic equivalences—we
first need to define the notions of functor and natural transformation in order
to define the notion of equivalence of categories.
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Functors

morphisms of categories

129



Given categories C and D, a functor � : C→ D is
specified by:

◮ a function objC→ objD whose value at - is
wri�en � -

◮ for all -,. ∈ C, a function C(-,. ) → D(� -, � . )

whose value at 5 : - → . is wri�en
� 5 : � - → � .

and which is required to preserve composition and
identity morphisms:

� (6 ◦ 5 ) = � 6 ◦ � 5

� (id- ) = id� -
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. * : Mon→ Set{
* (", •, y) = "

* (("1, •1, y1)
5
−→ ("2, •2, y2)) = "1

5
−→ "2
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Examples of functors

“Forgetful” functors from categories of
set-with-structure back to Set.

E.g. * : Mon→ Set{
* (", •, y) = "

* (("1, •1, y1)
5
−→ ("2, •2, y2)) = "1

5
−→ "2

Similarly * : Preord→ Set.
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Examples of functors

Free monoid functor � : Set→ Mon

Given � ∈ Set,

� � = (List�,@, nil), the free monoid on �
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Examples of functors

Free monoid functor � : Set→ Mon

Given � ∈ Set,

� � = (List�,@, nil), the free monoid on �

Given a function 5 : �→ �, we get a function
� 5 : List�→ List� by mapping 5 over finite lists:

� 5 [01, . . . , 0=] = [5 01, . . . , 5 0=]

This gives a monoid morphism � �→ � �; and mapping over lists preserves
composition (� (6 ◦ 5 ) = � 6 ◦ � 5 ) and identities (� id� = id� �). So we do get a
functor from Set to Mon.
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Examples of functors

If C is a category with binary products and - ∈ C, then
the function ( ) ×- : objC→ objC extends to a
functor ( ) ×- : C→ C mapping morphisms
5 : . → . ′ to

5 × id- : . ×- → . ′ × -

(
recall that 5 × 6 is the unique morphism with

{
c1 ◦ (5 × 6) = 5 ◦ c1

c2 ◦ (5 × 6) = 6 ◦ c2

)

since it is the case that{
id- × id. = id-×.

(5 ′ ◦ 5 ) × id- = (5 ′ × id- ) ◦ (5 × id- )
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Examples of functors

If C is a cartesian closed category and - ∈ C, then the
function ( )- : objC→ objC extends to a functor

( )- : C→ C mapping morphisms 5 : . → . ′ to

5 - , cur(5 ◦ app) : .- → . ′-

since it is the case that{
(id. )

-
= id.-

(6 ◦ 5 )- = 6- ◦ 5 -
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Contravariance
Given categories C and D, a functor � : Cop→ D is
called a contravariant functor from C to D.

Note that if -
5
−→ .

6
−→ / in C, then -

5
←− .

6
←− / in Cop

so � -
� 5
←−− � .

� 6
←−− � / in D and hence

� (6 ◦C 5 ) = � 5 ◦D � 6

(contravariant functors reverse the order of composition)

A functor C→ D is sometimes called a covariant functor from C to D.
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Example of a contravariant functor

If C is a cartesian closed category and - ∈ C, then the
function - ( ) : objC→ objC extends to a functor

- ( ) : Cop → C mapping morphisms 5 : . → . ′ to

- 5
, cur(app ◦(id-. ′ × 5 )) : -

. ′ → -.

since it is the case that{
- id. = id-.

-6◦5 = - 5 ◦ -6
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Note that since a functor � : C→ D preserves domains,
codomains, composition, and identity morphisms

it sends commutative diagrams in C to commutative
diagrams in D

E.g.

-
5

ℎ.

6

/

�
↦→

� -
� 5

� ℎ=� (6◦5 )=� 6◦� 5� .

� 6

� /
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Note that since a functor � : C→ D preserves domains,
codomains, composition, and identity morphisms

it sends isomorphisms in C to isomorphisms in D,
because

-
5

id-

.

6
id.

-
5
.

�
↦→

� -
� 5

id� -

� .

� 6
id� .

� -
� 5

� .

so � (5 −1) = (� 5 )−1
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Composing functors

Given functors � : C→ D and� : D→ E, we get a
functor � ◦ � : C→ E with

� ◦ �
©­
«
-

5

.

ª®
¬
=

� (� - )

� (� 5 )

� (� . )

(this preserves composition and identity morphisms, because � and � do)
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Identity functor

on a category C is idC : C→ C where

idC
©­«
-

5

.

ª®¬
=

-

5

.
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Functor composition and identity functors satisfy

associativity � ◦ (� ◦ � ) = (� ◦�) ◦ �

unity idD ◦ � = � = � ◦ idC

So we can get categories whose objects are categories
and whose morphisms are functors

but we have to be a bit careful about size. . .
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets -0, -1, -2, . . . with

· · · ∈ -=+1 ∈ -= ∈ · · · ∈ -2 ∈ -1 ∈ -0

So in particular there is no set - with - ∈ - .

So we cannot form the “set of all sets” or the “category of all categories”.
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Size
One of the axioms of set theory is

set membership is a well-founded relation, that is, there
is no infinite sequence of sets -0, -1, -2, . . . with

· · · ∈ -=+1 ∈ -= ∈ · · · ∈ -2 ∈ -1 ∈ -0

So in particular there is no set - with - ∈ - .

So we cannot form the “set of all sets” or the “category of all categories”.

But we do assume there are (lots of) big sets

�0 ∈ �1 ∈ �2 ∈ · · ·

where “big” means each�= is a Grothendieck universe. . .
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Grothendieck universes

A Grothendieck universe � is a set of sets satisfying

◮ - ∈ . ∈ �⇒ - ∈ �

◮ -, . ∈ �⇒ {-, . } ∈ �

◮ - ∈ �⇒�- , {. | . ⊆ - } ∈ �

◮ � ∈ � ∧ � ∈ �� ⇒

{G | ∃8 ∈ �, G ∈ � 8} ∈ �

The above properties are satisfied by� = ∅, but we will always assume

◮ N ∈ �
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Size

We assume

there is an infinite sequence �0 ∈ �1 ∈ �2 ∈ · · · of
bigger and bigger Grothendieck universes

and revise the previous definition of “the” category of sets and functions:

Set= = category whose objects are all the sets in�= and
with Set= (-,. ) = .

-
= all functions from - to . .

Notation: Set , Set0 — its objects are called small sets
(and other sets we call large).
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Size

Set is the category of small sets.

Definition. A category C is locally small if for all
-,. ∈ C, the set of C-morphisms - → . is small;
that is, C(-,. ) ∈ Set.

C is a small category if it is both locally small and
objC ∈ Set.

E.g. Set, Preord, and Mon are all locally small (but not small).

Given % ∈ Preord, the category C% it determines is small; similarly, the category
C" determined by" ∈ Mon is small.
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The category of small categories, Cat

◮ objects are all small categories

◮ morphisms in Cat(C,D) are all functors C→ D

◮ composition and identity morphisms as for functors

Cat is a locally small category
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Problem: Is Cat a bicartesian closed category?
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Cat has an initial object

The empty category
(with no objects and no morphisms)

is initial in Cat.
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Cat has binary coproducts

Given small categories C,D ∈ Cat, their coproduct

C
]1
−→ C + D

]2
←− D is:
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Cat has binary coproducts

Given small categories C,D ∈ Cat, their coproduct

C
]1
−→ C + D

]2
←− D is:

◮ objects: obj(C + D) , obj(C) + obj(D)

◮ morphisms:

(C + D)
(
y1 (�), y2 (�

′)
)
, C(�,�′)

(C + D)
(
y2 (�), y2 (�

′)
)
, D(�, �′)

(C + D)
(
y1 (�), y2 (�)

)
, ∅

(C + D)
(
y2 (�), y1 (�)

)
, ∅

◮ composition and identity morphisms are given by those of C
(between objects tagged by ]1) or D (between objects tagged
by ]2)
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◮ 

]1(�

5
−→ �′) , y1(�)

y1(5 )
−−−→ y1(�

′)

]2(�
6
−→ �′) , y2(�)

y2(6)
−−−→ y1(�

′)
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Cat has a terminal object

The category

∗ id∗

one object, one morphism

is terminal in Cat
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Cat has binary products

Given small categories C,D ∈ Cat, their product

C
c1
←− C × D

c2
−→ D is:
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Cat has binary products

Given small categories C,D ∈ Cat, their product

C
c1
←− C × D

c2
−→ D is:

◮ objects: obj(C × D) , obj(C) × obj(D)

◮ morphisms:

(C × D)
(
(�, �), (�′, �′)

)
, C(�,�′) × D(�, �′)

◮ composition and identity morphisms are given by those of C
(in the first component) and D (in the second component)
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◮ 


c1

(
(�, �)

(5 ,6)
−−−→ (�′, �′)

)
= �

5
−→ �′

c2

(
(�, �)

(5 ,6)
−−−→ (�′, �′)

)
= �

6
−→ �′
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Cat has exponentials

Exponentials in Cat are called functor categories.

To define them we need to consider natural
transformations, which are the appropriate
notion of morphism between functors.
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Natural transformations

Definition. Given categories and functors �,� : C→ D,
a natural transformation \ : � → � is a family of
D-morphisms \- ∈ D(� -,� - ), one for each - ∈ C,
such that for all C-morphisms 5 : - → . , the diagram

� -
\-

� 5

� -

� 5

� .
\.

� .

commutes in D, that is, \. ◦ � 5 = � 5 ◦ \- .
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Composing natural transformations

Given functors �,�, � : C→ D and natural
transformations \ : � → � and i : � → � ,

we get i ◦ \ : � → � with

(i ◦ \)- =

(
� -

\-
−−→ � -

i-
−−→ � -

)
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Composing natural transformations

Given functors �,�, � : C→ D and natural
transformations \ : � → � and i : � → � ,

we get i ◦ \ : � → � with

(i ◦ \)- =

(
� -

\-
−−→ � -

i-
−−→ � -

)

Check naturality:

� 5 ◦ (i ◦ \ )- , � 5 ◦ i- ◦ \-

= i. ◦� 5 ◦ \- naturality of i

= i. ◦ \. ◦ � 5 naturality of \

, (i ◦ \ ). ◦ � 5
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Identity natural transformation

Given a functor � : C→ D, we get a natural
transformation id� : � → � with

(id� )- = � -
id� -
−−−−→ � -
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Identity natural transformation

Given a functor � : C→ D, we get a natural
transformation id� : � → � with

(id� )- = � -
id� -
−−−−→ � -

Check naturality:

� 5 ◦ (id� )- , � 5 ◦ id� - = � 5 = id� . ◦ � 5 , (id� ). ◦ � 5
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Functor categories

It is easy to see that composition and identities for natural transformations
satisfy

(k ◦ i) ◦ \ = k ◦ (i ◦ \ )

id� ◦ \ = \ ◦ id�

so that we get a category:

Definition. Given categories C and D, the functor

category DC has

◮ objects are all functors C→ D

◮ given �,� : C→ D, morphism from � to� in DC

are the natural transformations � → �

◮ composition and identity morphisms as above
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If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value - ) we also have that �, - ∈ � implies - � ∈ �.
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If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value - ) we also have that �, - ∈ � implies - � ∈ �.
Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆
∑
�∈(obj�)objC

∏
-,.∈objCD(� -, � . )

C(-,. )

DC(�,�) ⊆
∏
-∈objCD(� -,� - )
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If � is a Grothendieck universe, then for each � ∈ � and � ∈ �� we
have that their dependent product and dependent function sets∑

8∈� � 8 , {(8, G) | 8 ∈ � ∧ G ∈ � 8}∏
8∈� � 8 , {5 ⊆

∑
8∈� � 8 | 5 is single-valued and total}

are also in�; and, as a special case (of
∏
, when � is a constant

function with value - ) we also have that �, - ∈ � implies - � ∈ �.
Hence

If C and D are small categories, then so is DC.

because

obj(DC) ⊆
∑
�∈(obj�)objC

∏
-,.∈objCD(� -, � . )

C(-,. )

DC(�,�) ⊆
∏
-∈objCD(� -,� - )

Aim to show that functor category DC is the exponential of C and D in Cat . . .
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Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Given (�,- ) ∈ DC × C, we define

app(�,- ) , � -

and given (\, 5 ) : (�, - ) → (�,. ) in DC × C, we define

app

(
(�,- )

(\,5 )
−−−−→ (�,. )

)
, � -

� 5
−−→ � .

\.
−−→ � .

= � -
\-
−−→ � -

� 5
−−→ � .

Check:

{
app(id� , id- ) = id� -

app(i ◦ \,6 ◦ 5 ) = app(i,6) ◦ app(\, 5 )
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Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Definition of currying: given functor � : E × C→ D, we get a functor
cur � : E→ DC as follows. For each / ∈ E, cur � / ∈ DC is the functor

cur � /
©­­­
«

-

5

- ′

ª®®®
¬
,

� (/,- )

� (id/ ,5 )

� (/,- ′)

For each 6 : / → / ′ in E, cur � 6 : cur � / → cur � / ′ is the natural
transformation whose component at each - ∈ C is

(cur � 6)- , � (6, id- ) : � (/,- ) → � (/ ′, - )

(Check that this is natural in - ; and that cur � preserves composition and
identities in E.)
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Theorem. There is an application functor
app : DC × C→ D

that makes DC the exponential for C and D in Cat.

Have to check that cur � is the unique functor� : E→ DC that makes

E × C
�

�×idC

D

DC × C

app

commute in Cat (exercise).
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Example of natural transformation (I)

Fix a set ( ∈ Set and consider the two functors
�,� : Set→ Set given by

�

(
-

5
−→ .

)
= ( ×-

id(×5
−−−−−→ ( × .

�

(
-

5
−→ .

)
= - × (

5 ×id(
−−−−−→ . × (
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Example of natural transformation (I)

Fix a set ( ∈ Set and consider the two functors
�,� : Set→ Set given by

�

(
-

5
−→ .

)
= ( ×-

id(×5
−−−−−→ ( × .

�

(
-

5
−→ .

)
= - × (

5 ×id(
−−−−−→ . × (

For each - ∈ Set there is an isomorphism (bijection) \- : � - � � -
in Set given by 〈c2 , c1〉 : ( × - → - × ( .

These isomorphisms do not depend on the particular nature of each
set - (they are “polymorphic in - ”). One way to make this precise
is . . .
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. . . if we change from - to . along a function 5 : - → . ,
then we get a commutative diagram in Set:

( ×-
〈c2,c1〉

id×5

- × (

5 ×id

( × .
〈c2,c1〉

. × (

The square commutes because for all B ∈ ( and G ∈ -

〈c2 , c1〉((id × 5 ) (B, G)) = 〈c2 , c1〉(B, 5 G)

= (5 G, B)

= (5 × id) (G, B)

= (5 × id) (〈c2 , c1〉(B, G))
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. . . if we change from - to . along a function 5 : - → . ,
then we get a commutative diagram in Set:

� -
\-

� 5

� -

� 5

� .
\.

� .

We say that the family (\- | - ∈ Set) is natural in - .
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Example of natural transformation (II)

Recall forgetful (* ) and free (� ) functors:

Set
�

Mon
*

There is a natural transformation [ : idSet → * ◦ � ,
where for each � ∈ Set

[� : �→ * (� �) = List�

0 ∈ � ↦→ [0] ∈ List� (one-element list)

(Easy to see that Σ
[�

5

* (� �)

* (� 5 )

�
[�

* (� �)

commutes.)
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Example of natural transformation (III)

The covariant powerset functor� : Set→ Set is

�- , {( | ( ⊆ - }

�

(
-

5
−→ .

)
, �-

� 5
−−−→�.

( ↦→ � 5 ( , {5 G ∈ . | G ∈ (}
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Example of natural transformation (III)

The covariant powerset functor� : Set→ Set is

�- , {( | ( ⊆ - }

�

(
-

5
−→ .

)
, �-

� 5
−−−→�.

( ↦→ � 5 ( , {5 G ∈ . | G ∈ (}

There is a natural transformation
⋃

: � ◦�→ �

whose component at - ∈ Set sends ℱ ∈ �(�- ) to⋃
-

ℱ , {G ∈ - | ∃( ∈ ℱ, G ∈ (} ∈ �-

(check that
⋃

- is natural in - )
163



Non-example of natural transformation

The classic example of an “un-natural transformation”
(the one that caused Eilenberg and MacLane to invent
the concept of naturality) is the linear isomorphism
between a finite dimensional real vectorspace + and its
dual + ∗, the vector space of linear functions + → R.

Both+ and + ∗ have the same finite dimension, so are
isomorphic by choosing bases; but there is no choice of
basis for each + that makes the family of isomorphisms
natural in + .
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Adjoint functors

The concepts of “category”, “functor” and “natural
transformation” were invented by Eilenberg and
MacLane in order to formalise “adjoint situations”.

They appear everywhere in mathematics, logic and
(hence) computer science.

Examples of adjoint situations that we have already
seen . . .
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Free monoids

�→ * (", •, y) morphisms in Set

� �→ (", •, y) morphisms inMon

============================================

bijection
Set(�,* (", •, y)) � Mon(� �, (", •, y))

5 ↦→ 5̂

ℎ ◦ [� ←[ ℎ
(where [� : �→ * � � = List� is 0 ↦→ [0])

The bijection is “natural in � and (", •, y)” (to be explained)
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Binary product in a category C

(/, / ) → (-,. ) morphisms in C × C

/ → - × . morphisms in C

================================================

bijection
(C × C)

(
(/,/ ), (-,. )

)
� C(/,- × . )

(5 , 6) ↦→ 〈5 , 6〉

(c1 ◦ ℎ, c2 ◦ ℎ) ←[ ℎ
This bijection is “natural in -,. , / ” (to be explained)
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Exponentials in a category C with binary products

/ ×- → . morphisms in C

/ → .- morphisms in C

===================================

bijection
C(/ × -,. ) � C(/,.- )

5 ↦→ cur 5

app ◦(6 × id- ) ←[ 6

The bijection is “natural in -,. , / ” (to be explained)
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Adjunction
Definition. An adjunction between two categories C
and D is specified by:

◮ functors C
�

D
�

◮ for each - ∈ C and . ∈ D a bijection
\-,. : D(� -,. ) � C(-,� . )

which is natural in - and . .

for all

{
D : - ′ → - in C

E : . → . ′ in D
and all 6 : � - → . in D

- ′
D
−→ -

\-,. (6)
−−−−−−→ � .

� E
−−→ � . ′ = \- ′,. ′

(
� - ′

� D
−−→ � -

6
−→ .

E
−→ . ′

)
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Adjunction
Definition. An adjunction between two categories C
and D is specified by:

◮ functors C
�

D
�

◮ for each - ∈ C and . ∈ D a bijection
\-,. : D(� -,. ) � C(-,� . )

which is natural in - and . .

what has this to do with the concept of natural
transformation between functors?
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Hom functors

If C is a locally small category, then we get a functor

HomC : Cop × C→ Set

with Hom� (-,. ) , C(-,. ) and

HomC

(
(-,. )

(5 , 6)
−−−−−→ (- ′, . ′)

)
, C(-,. )

Hom� (5 ,6)
−−−−−−−→ C(- ′, . ′)

Hom� (5 , 6) ℎ , 6 ◦ ℎ ◦ 5
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Hom functors

If C is a locally small category, then we get a functor

HomC : Cop × C→ Set

with Hom� (-,. ) , C(-,. ) and

HomC

(
(-,. )

(5 , 6)
−−−−−→ (- ′, . ′)

)
, C(-,. )

Hom� (5 ,6)
−−−−−−−→ C(- ′, . ′)

Hom� (5 , 6) ℎ , 6 ◦ ℎ ◦ 5

If (5 , 6) : (-,. ) → (- ′, . ′) in Cop × C and ℎ : - → . in C,
then in C we have 5 : - ′ → - , 6 : . → . ′ and so 6 ◦ ℎ ◦ 5 : - ′ → . ′
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Natural isomorphisms

Given functors �,� : C→ D, a natural isomorphism
\ : � � � is simply an isomorphism between � and� in
the functor category DC.
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Natural isomorphisms

Given functors �,� : C→ D, a natural isomorphism
\ : � � � is simply an isomorphism between � and� in
the functor category DC.

Lemma. If \ : � → � is a natural transformation and for each - ∈ C,
\- : � - → � - is an isomorphism in D, then the family of morphisms
(\−1- : � - → � - | - ∈ C) gives a natural transformation \−1 : � → � which is
inverse to \ in DC and hence \ is a natural isomorphism. �
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An adjunction between locally small categories C and D

is simply a triple (�,�, \) where

◮ C
�

D
�

◮ \ is a natural isomorphism between the functors

Dop × D
HomD

Cop × D

�op×idD

idCop×�

and Set

Cop × C
HomC
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Terminology:

Given C
�

D
�

if there is some natural isomorphism

\ : HomD ◦ (�
op × idD) � HomC ◦ (idCop ×�)

one says

� is a le� adjoint for�

� is a right adjoint for �

and writes
� ⊣ �
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Notation associated with an adjunction(�,�, \)

Given

{
6 : � - → .

5 : - → � .

we write

{
6 , \-,. (6) : - → � .

5 , \−1
-,.
(5 ) : � - → .

Thus 6 = 6, 5 = 5 and naturality of \-,. in - and .
means that

E ◦ 6 ◦ � D = � E ◦ 6 ◦ D
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Notation associated with an adjunction(�,�, \)

The existence of \ is sometimes indicated by writing

� -
6
−→ .

-
6
−→ � .

Using this notation, one can split the naturality
condition for \ into two:

� - ′
� D
−−→ � -

6
−→ .

- ′
D
−→ -

6
−→ � .

� -
6
−→ .

E
−→ . ′

-
6
−→ � .

� E
−−→ � . ′
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Theorem. A category C has binary products iff the
diagonal functor Δ = 〈idC , id�〉 : C→ C ×C has a right
adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all - ∈ C, the
functor ( ) × - : C→ C has a right adjoint.

Common situation: we are given a functor � : C→ D and want to know whether
it has a right adjoint� : D→ C (and dually for le� adjoints).

Q: what is the least info we need to specify the existence of a right
adjoint?
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Theorem. A category C has binary products iff the
diagonal functor Δ = 〈idC , id�〉 : C→ C ×C has a right
adjoint.

Theorem. A category C with binary products also has
all exponentials of pairs of objects iff for all - ∈ C, the
functor ( ) × - : C→ C has a right adjoint.

Common situation: we are given a functor � : C→ D and want to know whether
it has a right adjoint� : D→ C (and dually for le� adjoints).

Q: what is the least info we need to specify the existence of a right
adjoint?

Both the above theorems are instances of the following theorem, which is a very
useful characterisation of when a functor has a right adjoint (or dually, a le�
adjoint).
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Characterisation of right adjoints
Theorem. A functor � : C→ D has a right adjoint iff
for all D-objects . ∈ D, there is a C-object� . ∈ C and a
D-morphism Y. : � (� . ) → . with the following
universal property:

(UP)
for all - ∈ C and 6 ∈ D(� -,. )
there is a unique 6 ∈ C(-,� . )
satisfying Y. ◦ � (6) = 6
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Characterisation of right adjoints
Theorem. A functor � : C→ D has a right adjoint iff
for all D-objects . ∈ D, there is a C-object� . ∈ C and a
D-morphism Y. : � (� . ) → . with the following
universal property:

(UP)
for all - ∈ C and 6 ∈ D(� -,. )
there is a unique 6 ∈ C(-,� . )
satisfying Y. ◦ � (6) = 6

∀

.

� -
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Characterisation of right adjoints
Theorem. A functor � : C→ D has a right adjoint iff
for all D-objects . ∈ D, there is a C-object� . ∈ C and a
D-morphism Y. : � (� . ) → . with the following
universal property:

(UP)
for all - ∈ C and 6 ∈ D(� -,. )
there is a unique 6 ∈ C(-,� . )
satisfying Y. ◦ � (6) = 6

∀

.

� -

6
∃!

� .

-

6 with
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Characterisation of right adjoints
Theorem. A functor � : C→ D has a right adjoint iff
for all D-objects . ∈ D, there is a C-object� . ∈ C and a
D-morphism Y. : � (� . ) → . with the following
universal property:

(UP)
for all - ∈ C and 6 ∈ D(� -,. )
there is a unique 6 ∈ C(-,� . )
satisfying Y. ◦ � (6) = 6

∀

.

� -

6
∃!

� .

-

6 with

� (� . )
Y.

.

� -

� 6
6
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Proof of the Theorem—“only if” part:

Given an adjunction (�,�, \ ), for each . ∈ D we produce Y. : � (� . ) → . in D

satisfying (UP).
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Proof of the Theorem—“only if” part:

Given an adjunction (�,�, \ ), for each . ∈ D we produce Y. : � (� . ) → . in D

satisfying (UP).

We are given \-,. : D(� -,. ) � C(-,� . ), natural in - and . . Define

Y. , \
−1
� .,.
(id�. ) : � (� . ) → .

In other words Y. = id� . .
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Proof of the Theorem—“only if” part:

Given an adjunction (�,�, \ ), for each . ∈ D we produce Y. : � (� . ) → . in D

satisfying (UP).

We are given \-,. : D(� -,. ) � C(-,� . ), natural in - and . . Define

Y. , \
−1
� .,.
(id�. ) : � (� . ) → .

In other words Y. = id� . .

Given any

{
6 : � - → . in D

5 : - → � . in C
, by naturality of \ we have

� -
6
−→ .

-
6
−→ � .

and
Y. ◦ � 5 : � -

� 5
−−→ � (� . )

id�.

−−−−→ .

5 : -
5
−→ � .

id�.

−−−−→ � .

Hence 6 = Y. ◦ � 6 and 6 = Y. ◦ � 5 ⇒ 6 = 5 .

Thus we do indeed have (UP).
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Proof of the Theorem—“if” part:

We are given � : C→ D and for each . ∈ D a C-object� . and C-morphism
Y. : � (� . ) → . satisfying (UP). We have to

1. extend . ↦→ � . to a functor� : D→ C

2. construct a natural isomorphism \ : HomD ◦ (�
op × idD) � HomC ◦ (idCop ×�)
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Proof of the Theorem—“if” part:

We are given � : C→ D and for each . ∈ D a C-object� . and C-morphism
Y. : � (� . ) → . satisfying (UP). We have to

1. extend . ↦→ � . to a functor� : D→ C

For each D-morphism 6 : . ′ → . we get � (� . ′)
Y. ′
−−→ . ′

6
−→ . and can apply (UP)

to get
� 6 , 6 ◦ Y. ′ : � .

′ → � .

The uniqueness part of (UP) implies

� id = id and � (6′ ◦ 6) = � 6′ ◦� 6

so that we get a functor� : D→ C. �
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Proof of the Theorem—“if” part:

We are given � : C→ D and for each . ∈ D a C-object� . and C-morphism
Y. : � (� . ) → . satisfying (UP). We have to

2. construct a natural isomorphism \ : HomD ◦ (�
op × idD) � HomC ◦ (idCop ×�)

Since for all 6 : � - → . there is a unique 5 : - → � . with 6 = Y. ◦ � 5 ,

5 ↦→ 5 , Y. ◦ � 5

determines a bijection C(-,� . ) � C(� -,. ); and it is natural in - & . because

� E ◦ 5 ◦ D , Y. ′ ◦ � (� E ◦ 5 ◦D)

= (Y. ′ ◦ � (� E)) ◦ � 5 ◦ � D since � is a functor

= (E ◦ Y. ) ◦ � 5 ◦ � D by definition of� E

= E ◦ 5 ◦ � D by definition of 5

So we can take \ to be the inverse of this natural isomorphism. �
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Dual of the Theorem:

� : C← D has a le� adjoint iff for all - ∈ C there are
� - ∈ D and [- ∈ C(-,� (� - )) with the universal
property:

for all . ∈ D and 5 ∈ C(-,� . )

there is a unique 5 ∈ D(� -,. )

satisfying � 5 ◦ [- = 5
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Dual of the Theorem:

� : C← D has a le� adjoint iff for all - ∈ C there are
� - ∈ D and [- ∈ C(-,� (� - )) with the universal
property:

for all . ∈ D and 5 ∈ C(-,� . )

there is a unique 5 ∈ D(� -,. )

satisfying � 5 ◦ [- = 5

E.g. we can conclude that the forgetful functor* : Mon→ Set has a le� adjoint
� : Set→ Mon, because of the universal property of

� � , (List�,@, nil) and [� : �→ List�
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Why are adjoint functors
important/useful?

Their universal property (UP) usually embodies some
useful mathematical construction

(e.g. “freely generated structures are le� adjoints for forge�ing-stucture”)

and pins it down uniquely up to isomorphism.
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Dependent Types

A brief look at some category theory for modelling type
theories with dependent types.

Will restrict a�ention to the case of Set, rather than in
full generality.
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Simple types

⋄, G1 : )1, . . . , G= : )= ⊢ C (G1, . . . , G=) : )

Dependent types

⋄, G1 : )1, . . . , G= : )= ⊢ C (G1, . . . , G=) : ) (G1, . . . , G=)

and more generally

⋄, G1 : )1, G2 : )2(G1), G3 : )3(G1, G2), . . . ⊢

C (G1, G2, G3, . . .) : ) (G1, G2, G3, . . .)
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If type expressions denote sets, then

a type )1(G) dependent upon G : )

should denote

an indexed family of sets (� 8 | 8 ∈ � )
(where � is the set denoted by type) )

i.e. � : � → Set is a set-valued function on a set � .
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For each � ∈ Set, let Set� be the category with

◮ obj(Set� ) , (obj Set)� , so objects are � -indexed
families of sets, - = (-8 | 8 ∈ � )

◮ morphisms 5 : - → . in Set� are � -indexed families
of functions 5 = (58 ∈ Set(-8, .8) | 8 ∈ � )

◮ composition: (6 ◦ 5 ) , (68 ◦ 58 | 8 ∈ � )
(i.e. use composition of functions in Set at each index 8 ∈ � )

◮ identity: id- , (id-8
| 8 ∈ � )

(i.e. use identity functions in Set at each index 8 ∈ � )
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For each ? : � → � in Set, let ?∗ : Set� → Set� be the
functor defined by:

?∗
©­­­
«

.9

59

. ′9

9 ∈ �
ª®®®
¬
,

©­­­
«

.? 8

5? 8

. ′? 8

8 ∈ �
ª®®®
¬

i.e. ?∗ takes � -indexed families of sets/functions to � -indexed ones by
precomposing with ?
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Dependent products
of families of sets

For �, � ∈ Set, consider the functor c∗1 : Set
� → Set�×�

induced by precomposition with the first projection
function c1 : � × � → � .

Theorem. c∗1 has a le� adjoint Σ : Set�×� → Set� .

Proof. We apply the characterisation Theorem. For each � ∈ Set�× � we define
Σ � ∈ Set� and [� : � → c∗1 (Σ �) in Set�× � with the required universal property . . .
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Theorem. c∗1 has a le� adjoint Σ : Set�×� → Set� .

For each � ∈ Set�× � , define Σ � ∈ Set� to be the function mapping each 8 ∈ � to the
set

(Σ �)8 ,
∑

9∈ � � (8, 9 ) = {( 9 , 4) | 9 ∈ � ∧ 4 ∈ � (8, 9 )}
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Theorem. c∗1 has a le� adjoint Σ : Set�×� → Set� .

For each � ∈ Set�× � , define Σ � ∈ Set� to be the function mapping each 8 ∈ � to the
set

(Σ �)8 ,
∑

9∈ � � (8, 9 ) = {( 9 , 4) | 9 ∈ � ∧ 4 ∈ � (8, 9 )}

and define [� : � → c∗1 (Σ �) in Set�× � to be the function mapping each

(8, 9 ) ∈ � × � to the function ([�) (8 . 9 ) : � (8, 9 ) → (Σ �)8 given by 4 ↦→ ( 9 , 4) .

Universal property–
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Theorem. c∗1 has a le� adjoint Σ : Set�×� → Set� .

For each � ∈ Set�× � , define Σ � ∈ Set� to be the function mapping each 8 ∈ � to the
set

(Σ �)8 ,
∑

9∈ � � (8, 9 ) = {( 9 , 4) | 9 ∈ � ∧ 4 ∈ � (8, 9 )}

and define [� : � → c∗1 (Σ �) in Set�× � to be the function mapping each

(8, 9 ) ∈ � × � to the function ([�) (8 . 9 ) : � (8, 9 ) → (Σ �)8 given by 4 ↦→ ( 9 , 4) .

Universal property–existence part: given any - ∈ Set� and 5 : � → c∗1 (- ) in

Set�× � , we have �
[�

5

c∗1 (Σ �)

c∗1 (5 )

Σ �

5

c∗1 (- ) -

where for all 8 ∈ � , 9 ∈ � and 4 ∈ � (8, 9 ) 5 8 ( 9 , 4) , 5(8, 9 ) (4)
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Theorem. c∗1 has a le� adjoint Σ : Set�×� → Set� .

For each � ∈ Set�× � , define Σ � ∈ Set� to be the function mapping each 8 ∈ � to the
set

(Σ �)8 ,
∑

9∈ � � (8, 9 ) = {( 9 , 4) | 9 ∈ � ∧ 4 ∈ � (8, 9 )}

and define [� : � → c∗1 (Σ �) in Set�× � to be the function mapping each

(8, 9 ) ∈ � × � to the function ([�) (8 . 9 ) : � (8, 9 ) → (Σ �)8 given by 4 ↦→ ( 9 , 4) .

Universal property–uniqueness part: given 6 : Σ � → - in Set� making

�
[�

5

c∗1 (Σ �)

c∗1 (6)

c∗1 (- )

commute in Set�× � ,

then for all 8 ∈ � , and ( 9 , 4) ∈ (Σ �)8 we have

5 8 ( 9 , 4) , 5(8, 9 ) (4) = (c
∗
16 ◦ [�) (8, 9 ) 4 = (c

∗
16) (8, 9 ) (([�) (8, 9 ) 4) , 68 ( 9 , 4)

so 6 = 5 . �
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Dependent functions
of families of sets

We have seen that the le� adjoint to c∗1 : Set� → Set�× � is given by dependent
products of sets.

Dually, dependent function sets give:

Theorem. c∗1 has a right adjoint Π : Set�×� → Set� .

Proof. We apply the characterisation Theorem. For each � ∈ Set�× � we define
Π � ∈ Set� and Y� : c∗1 (Π �) → � in Set�× � with the required universal property . . .
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Theorem. c∗1 has a right adjoint Π : Set�×� → Set� .

For each � ∈ Set�× � , define Π � ∈ Set� to be the function mapping each 8 ∈ � to
the set

(Π �)8 ,
∏

9∈ � � (8, 9 ) = {5 ⊆ (Σ �)8 | 5 is single-value and total}

where 5 ⊆ (Σ �)8 is

single-valued if ∀9 ∈ � ,∀4, 4′ ∈ � (8, 9 ) , ( 9 , 4) ∈ 5 ∧ ( 9 , 4
′) ∈ 5 ⇒ 4 = 4′

total if ∀9 ∈ � , ∃4 ∈ � (8, 9 ) ( 9 , 4) ∈ 5

Thus each 5 ∈ (Π �)8 is a dependently typed function mapping elements 9 ∈ � to
elements of � (8, 9 ) (result set depends on the argument 9 ).

190



Theorem. c∗1 has a right adjoint Π : Set�×� → Set� .

For each � ∈ Set�× � , define Π � ∈ Set� to be the function mapping each 8 ∈ � to
the set

(Π �)8 ,
∏

9∈ � � (8, 9 ) = {5 ⊆ (Σ �)8 | 5 is single-value and total}

and define Y� : c∗1 (Π �) → � in Set�× � to be the function mapping each

(8, 9 ) ∈ � × � to the function (Y�) (8, 9 ) : (Π �)8 → � (8, 9 ) given by 5 ↦→ 5 9 = unique

4 ∈ � (8, 9 ) such that ( 9 , 4) ∈ 5 .

Universal property–
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Theorem. c∗1 has a right adjoint Π : Set�×� → Set� .

For each � ∈ Set�× � , define Π � ∈ Set� to be the function mapping each 8 ∈ � to
the set

(Π �)8 ,
∏

9∈ � � (8, 9 ) = {5 ⊆ (Σ �)8 | 5 is single-value and total}

and define Y� : c∗1 (Π �) → � in Set�× � to be the function mapping each

(8, 9 ) ∈ � × � to the function (Y�) (8, 9 ) : (Π �)8 → � (8, 9 ) given by 5 ↦→ 5 9 = unique

4 ∈ � (8, 9 ) such that ( 9 , 4) ∈ 5 .

Universal property–existence part: given any - ∈ Set� and 5 : c∗1 (- ) → � in

Set�× � , we have Π � c∗1 (Π �)
Y�

�

-

5

c∗1 (- )

c∗1 (5 ) 5

where for all 8 ∈ � and G ∈ -8 5 8 G , {( 9 , 5(8, 9 ) G) | 9 ∈ � }
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Theorem. c∗1 has a right adjoint Π : Set�×� → Set� .

For each � ∈ Set�× � , define Π � ∈ Set� to be the function mapping each 8 ∈ � to
the set

(Π �)8 ,
∏

9∈ � � (8, 9 ) = {5 ⊆ (Σ �)8 | 5 is single-value and total}

and define Y� : c∗1 (Π �) → � in Set�× � to be the function mapping each

(8, 9 ) ∈ � × � to the function (Y�) (8, 9 ) : (Π �)8 → � (8, 9 ) given by 5 ↦→ 5 9 = unique

4 ∈ � (8, 9 ) such that ( 9 , 4) ∈ 5 .

Universal property–uniqueness part: given 6 : - → Π � in Set� making

c∗1 (Π �)
Y�

�

c∗1 (- )

c∗1 (6)
5

commute in Set�× � ,

then for all 8 ∈ � , 9 ∈ � and G ∈ -8 we have

5 8 G 9 , 5(8, 9 ) G = (Y� ◦ c
∗
16) (8, 9 ) G = (Y�) (8, 9 ) (68 G) , 68 G 9

so 6 = 5 . �
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Isomorphism of categories

Two categories C and D are isomorphic if they are
isomorphic objects in the category of all categories of
some given size; that is, if there are functors

C
�

D
�

with idC = � ◦ � and � ◦� = idD.

In which case, as usual, we write C � D .
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Equivalence of categories
Two categories C and D are equivalent if there are

functors C
�

D
�

and natural isomorphisms

[ : idC � � ◦ � and Y : � ◦� � idD.
In which case, one writes C ≃ D .
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Equivalence of categories
Two categories C and D are equivalent if there are

functors C
�

D
�

and natural isomorphisms

[ : idC � � ◦ � and Y : � ◦� � idD.
In which case, one writes C ≃ D .

Some deep results in mathematics take the form of equivalences of categories.
E.g.

Stone duality:

(
category of

Boolean algebras

)op
≃

©­
«
category of compact
totally disconnected
Hausdorff spaces

ª®
¬

Gelfand duality:

(
category of

abelian�∗ algebras

)op
≃

(
category of compact
Hausdorff spaces

)
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Example: Set� ≃ Set/�

Set/� is a slice category:

◮ objects are pairs (�, ?) where � ∈ obj Set and
? ∈ Set(�, � )

◮ morphisms 6 : (�, ?) → (�′, ?′) are 5 ∈ Set(�, �′)
satisfying ?′ ◦ 5 = ? in Set

◮ composition and identities – as for Set
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Example: Set� ≃ Set/�

There are functors � : Set� → Set/� and
� : Set/� → Set� , given on objects and morphisms by:

� - , ({(8, G) | 8 ∈ � ∧ G ∈ -8}, fst)

� 5 (8, G) , (8, 58 G)

� (�, ?) , ({4 ∈ � | ? 4 = 8} | 8 ∈ � )

(� 5 )8 4 , 5 4
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Example: Set� ≃ Set/�

There are functors � : Set� → Set/� and
� : Set/� → Set� , given on objects and morphisms by:

� - , ({(8, G) | 8 ∈ � ∧ G ∈ -8}, fst)

� 5 (8, G) , (8, 58 G)

� (�, ?) , ({4 ∈ � | ? 4 = 8} | 8 ∈ � )

(� 5 )8 4 , 5 4

There are natural isomorphisms

[ : idSet� � � ◦ � and Y : � ◦� � idSet/�

defined by . . . [exercise]
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FACT Given ? : � → � in Set, the composition

Set/� ≃ Set�
?∗

−→ Set� ≃ Set/�

is the functor “pullback along ?”.

One can generalize from Set to any category C with
pullbacks and model Σ/Π types by le�/right adjoints to
pullback functors – see locally cartesian closed
categories in the literature.
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Presheaf categories

Let C be a small category. The functor category SetC
op

is called the category of presheaves on C.

◮ objects are contravariant functors from C to Set

◮ morphisms are natural transformations

Much used in the semantics of various dependently-typed languages and logics.
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Given a category C with a terminal object 1

A global element of an object - ∈ objC is by definition
a morphism 1→ - in C

E.g. in Set . . .

E.g. inMon . . .
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Given a category C with a terminal object 1

A global element of an object - ∈ objC is by definition
a morphism 1→ - in C

We say that C is well-pointed if for all 5 , 6 : - → . in C

we have: (
∀1

G
−→ -, 5 ◦ G = 6 ◦ G

)
⇒ 5 = 6

(Set is, Mon isn’t.)
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Idea:

replace global elements of - , 1
G
−→ -

by arbitrary morphisms �
G
−→ - (for any � ∈ objC)
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Idea:

replace global elements of - , 1
G
−→ -

by arbitrary morphisms �
G
−→ - (for any � ∈ objC)

Some people use the notation G ∈� - and say
“G is a generalised element of - at stage�”

Have to take into account “change of stage”:

G ∈� - ∧ �
5
−→ � ⇒ G ◦ 5 ∈� -

(cf. Kripke’s “possible world” semantics of intuitionistic and modal logics)
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Yoneda functor

y : C→ SetC
op

(where C is a small category)

is the Curried version of the hom functor

C × Cop
� Cop × C

HomC
−−−−→ Set
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Yoneda functor

y : C→ SetC
op

(where C is a small category)

is the Curried version of the hom functor

C × Cop
� Cop × C

HomC
−−−−→ Set

◮ For each C-object - , the object y- ∈ SetC
op

is the functor
C( , - ) : Cop → Set given by

/

5

↦→ C(/,- ) 6 ◦ 5

↦→

. ↦→ C(.,- ) 6
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Yoneda functor

y : C→ SetC
op

(where C is a small category)

is the Curried version of the hom functor

C × Cop
� Cop × C

HomC
−−−−→ Set

◮ For each C-object - , the object y- ∈ SetC
op

is the functor
C( , - ) : Cop → Set given by

/

5

↦→ C(/,- ) 6 ◦ 5

↦→

. ↦→ C(.,- ) 6

5 ∗

this function is o�en wri�en as 5 ∗
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Yoneda functor

y : C→ SetC
op

(where C is a small category)

is the Curried version of the hom functor

C × Cop
� Cop × C

HomC
−−−−→ Set

◮ For each C-morphism .
5
−→ - , the morphism y.

y5
−−→ y- in

SetC
op

is the natural transformation whose component at any
given / ∈ Cop is the function

y. (/ )
(y5 )/

y- (/ )

C(/,. ) C(/,- )

6 5 ◦ 6
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Yoneda functor

y : C→ SetC
op

(where C is a small category)

is the Curried version of the hom functor

C × Cop
� Cop × C

HomC
−−−−→ Set

◮ For each C-morphism .
5
−→ - , the morphism y.

y5
−−→ y- in

SetC
op

is the natural transformation whose component at any
given / ∈ Cop is the function

y. (/ )
(y5 )/

y- (/ )

C(/,. ) C(/,- )

6
5∗

5 ◦ 6

this function is o�en
wri�en as 5∗
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The Yoneda Lemma
For each small category C, each object - ∈ C and each
presheaf � ∈ SetC

op

, there is a bijection of sets

[-,� : Set
Cop

(y-, � ) � � (- )

which is natural in both - and � .
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The Yoneda Lemma
For each small category C, each object - ∈ C and each
presheaf � ∈ SetC

op

, there is a bijection of sets

[-,� : Set
Cop

(y-, � ) � � (- )

which is natural in both - and � .

the set of natural transformations from
the functor y- : Cop → Set

to the functor � : Cop → Set

the value of
� : Cop → Set

at -
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The Yoneda Lemma
For each small category C, each object - ∈ C and each
presheaf � ∈ SetC

op

, there is a bijection of sets

[-,� : Set
Cop

(y-, � ) � � (- )

which is natural in both - and � .

Definition of the function [-,� : Set
Cop

(y-, � ) → � (- ):

for each \ : y- → � in SetC
op

we have the function

C(-,- ) = y- (- )
\-
−−→ � (- ) and define

[-,� (\ ) , \- (id- )
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The Yoneda Lemma
For each small category C, each object - ∈ C and each
presheaf � ∈ SetC

op

, there is a bijection of sets

[-,� : Set
Cop

(y-, � ) � � (- )

which is natural in both - and � .

Definition of the function [−1-,� : � (- ) → SetC
op

(y-, � ):

for each G ∈ � (- ), . ∈ C and 5 ∈ y- (. ) = C(.,- ),

we get a � (- )
� (5 )
−−−→ � (. ) in Set and hence � (5 )(G) ∈ � (. );
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The Yoneda Lemma
For each small category C, each object - ∈ C and each
presheaf � ∈ SetC

op

, there is a bijection of sets

[-,� : Set
Cop

(y-, � ) � � (- )

which is natural in both - and � .

Definition of the function [−1-,� : � (- ) → SetC
op

(y-, � ):

for each G ∈ � (- ), . ∈ C and 5 ∈ y- (. ) = C(.,- ),

we get a � (- )
� (5 )
−−−→ � (. ) in Set and hence � (5 )(G) ∈ � (. );

Define
(
[−1-,� (G)

)
.
: y- (. ) → � (. ) by

(
[−1
-,�
(G)

)
.
(5 ) , � (5 )(G)

check this gives a
natural transformation
[−1
-,�
(G) : y- → �

199



Proof of [-,� ◦ [
−1
-,�

= id� (- )

For any G ∈ � (- ) we have

[-,�

(
[−1-,� (G)

)
,

(
[−1-,� (G)

)
-
(id- ) by definition of [-,�

, � (id- )(G) by definition of [−1-,�

= id� (- ) (G) since � is a functor

= G
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Proof of [−1
-,�
◦ [-,� = idSetCop (y-,� )

For any y-
\
−→ � in SetC

op

and .
5
−→ - in C, we have(

[−1-,�

(
[-,� (\ )

))
.
5 ,

(
[−1-,� (\- (id- )))

)
.
5 by definition of [-,�

, � (5 ) (\- (id- )) by definition of [−1-,�

=\. (5
∗ (83- )) by naturality of \

, \. (id- ◦ 5 ) by definition of 5 ∗

= \. (5 )

naturality of \

y- (. )
\.

� (. )

y- (- )

5 ∗

\-
� (- )

� (5 )
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Proof of [−1
-,�
◦ [-,� = idSetCop (y-,� )

For any y-
\
−→ � in SetC

op

and .
5
−→ - in C, we have(

[−1-,�

(
[-,� (\ )

))
.
5 ,

(
[−1-,� (\- (id- )))

)
.
5 by definition of [-,�

, � (5 ) (\- (id- )) by definition of [−1-,�

=\. (5
∗ (83- )) by naturality of \

, \. (id- ◦ 5 ) by definition of 5 ∗

= \. (5 )

so ∀\,. ,
(
[−1-,�

(
[-,� (\ )

))
.
= \.

so ∀\, [−1
-,�

(
[-,� (\ )

)
= \

so [−1-,�
◦ [-,� = id.
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The Yoneda Lemma
For each small category C, each object - ∈ C and each
presheaf � ∈ SetC

op

, there is a bijection of sets

[-,� : Set
Cop

(y-, � ) � � (- )

which is natural in both - and � .
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Proof that [-,� is natural in � :

Given �
i
−→ � in SetC

op

, have to show that

SetC
op

(y-, � )

i∗

[-,�

� (- )

i-

SetC
op

(y-,�)
[-,�

� (- )

commutes in Set. For all y-
\
−→ � we have

i-
(
[-,� (\ )

)
, i- (\- (id- ))

, (i ◦ \ )- (id- )

, [-,� (i ◦ \ )

, [-,� (i∗ (\ ))
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Proof that [-,� is natural in - :

Given .
5
−→ - in C, have to show that

SetC
op

(y-, � )

(y5 )∗

[-,�

� (- )

� (5 )

SetC
op

(y., � )
[.,�

� (. )

commutes in Set. For all y-
\
−→ � we have

� (5 ) (([-,� (\ )) , � (5 ) (\- (id- ))

= \. (5
∗(id- )) by naturality of \

= \. (5 )

= \. (5∗ (id. ))

, (\ ◦ y5 ). (id. )

, [.,� (\ ◦ y5 )

, [.,� ((y5 )
∗(\ ))
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Corollary of the Yoneda Lemma:

the functor y : C→ SetC
op

is full and faithful.

In general, a functor � : C→ D is

◮ faithful if for all -,. ∈ C the function

C(-,. ) → D(� (- ), � (. ))

5 ↦→ � (5 )

is injective:

∀5 , 5 ′ ∈ C(-,. ), � (5 ) = � (5 ′) ⇒ 5 = 5 ′

◮ full if the above functions are all surjective:

∀6 ∈ D(� (- ), � (. )),∃5 ∈ C(-,. ), � (5 ) = 6
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Corollary of the Yoneda Lemma:

the functor y : C→ SetC
op

is full and faithful.

Proof. From the proof of the Yoneda Lemma, for each � ∈ SetC
op

we have a
bijection

� (- )
([-,� )

−1

−−−−−−−→ SetC
op

(y-, � )

By definition of ([-,� )
−1, when � = y. the above function is equal to

y. (- ) = C(-,. ) → SetC
op

(y-, y. )

5 ↦→ 5∗ = y5

So, being a bijection, 5 ↦→ y5 is both injective and surjective; so y is both faithful
and full. �
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Recall (for a small category C):

Yoneda functor y : C→ SetC
op

Yoneda Lemma: there is a bijection
SetC

op

(y-, � ) � � (- ) which is natural both in � ∈ SetC
op

and - ∈ C.

An application of the Yoneda Lemma:

Theorem. For each small category C, the category
SetC

op

of presheaves is cartesian closed.
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Theorem. For each small category C, the category
SetC

op

of presheaves is cartesian closed.
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Theorem. For each small category C, the category
SetC

op

of presheaves is cartesian closed.

Proof sketch.

Terminal object in SetC
op

is the functor 1 : Cop → Set given by{
1(- ) , {0} terminal object in Set

1(5 ) , id{0}
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Theorem. For each small category C, the category
SetC

op

of presheaves is cartesian closed.

Proof sketch.

Product of �,� ∈ SetC
op

is the functor � ×� : Cop → Set given by{
(� ×�)(- ) , � (- ) ×� (- ) cartesian product of sets

(� ×�)(5 ) , � (5 ) ×� (5 )

with projection morphisms �
c1
←− � ×�

c2
−→ � given by the natural

transformations whose components at - ∈ C are the projection

functions � (- )
c1
←− � (- ) ×� (- )

c2
−→ � (- ).
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Theorem. For each small category C, the category
SetC

op

of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential�� ∈ SetC
op

at
- ∈ C has to be using the Yoneda Lemma:

�� (- ) � SetC
op

(y-,�� ) � SetC
op

(y- × �,�)

Yoneda Lemma
universal property of

the exponential

207



Theorem. For each small category C, the category
SetC

op

of presheaves is cartesian closed.

Proof sketch.

We can work out what the value of the exponential�� ∈ SetC
op

at
- ∈ C has to be using the Yoneda Lemma:

�� (- ) � SetC
op

(y-,�� ) � SetC
op

(y- × �,�)

We take the set SetC
op

(y- × �,�) to be the definition of the value of
�� at - . . .

207



Exponential objects in SetC
op

:

�� (- ) , SetC
op

(y- × �,�)

Given .
5
−→ - in C, we have y.

y5
−−→ y- in SetC

op

and hence

�� (- ) , SetC
op

(y- × �,�) → SetC
op

(y. × �,�) , �� (. )

\ ↦→ \ ◦ (y5 × id� )

We define

�� (5 ) , (y5 × id� )
∗

Have to check that these definitions make �� ino a functor
Cop → Set.
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Application morphisms in SetC
op

:

Given �,� ∈ SetC
op

, the application morphism

app : �� × � → �

is the natural transformation whose component at - ∈ C is the
function

(�� × � ) (- ) , �� (- ) × � (- ) , SetC
op

(y- × �,�) × � (- )
app-
−−−−→ � (- )

defined by

app- (\, G) , \- (id- , G)

Have to check that this is natural in - .
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Currying operation in SetC
op

:(
� × �

\
−→ �

)
↦→

(
�

cur\
−−−−→ ��

)

Given � × �
\
−→ � in SetC

op

, the component of cur \ at - ∈ C

� (- )
(cur\ )-
−−−−−−→ �� (- ) , SetC

op

(y- × �,�)

is the function mapping each I ∈ � (- ) to the natural
transformation y- × � → � whose component at . ∈ C is the
function

(y- × � )(. ) , C(.,- ) × � (. ) → � (. )

defined by

((cur\ )- (I)). (5 ,~) , \. (� (5 )(I), ~)
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Currying operation in SetC
op

:(
� × �

\
−→ �

)
↦→

(
�

cur\
−−−−→ ��

)

((cur\ )- (I)). (5 ,~) , \. (� (5 )(I), ~)

Have to check that this is natural in . ,

then that (cur\ )- is natural in - ,

then that cur \ is the unique morphism �
i
−→ �� in SetC

op

satisfying
app ◦(i × id� ) = \ .

210



Theorem. For each small category C, the category
SetC

op

of presheaves is cartesian closed.

So we can interpret simply typed lambda calculus in any
presheaf category.

More than that, presheaf categories (usefully) model
dependently-typed languages.

211



Appendix
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Monads

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.
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Monads

Used in Haskell to abstract generic aspects of
computation (return a value, sequencing) and to
encapsulate effectful code.

Concept imported into functional programming from
category theory, first for its denotational semantics by
Moggi and then for its practice by Wadler.

Here, a quick overview of:

◮ Moggi’s computational _-calculus and its
categorical semantics using (strong) monads

◮ monads and adjunctions

213

https://www.sciencedirect.com/science/article/pii/0890540191900524
https://dl.acm.org/doi/abs/10.1145/91556.91592


Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations . . .

Types: �, �, . . . ::= STLC types, plus

T(�) type of “computations” of values of type �

Terms: B, C, . . . ::= STLC terms, plus

return C trivial computation
do{G ← B; C} sequenced computation (binds free G in C )

As for STLC, we identify CLC syntax trees up to U-equivalence, where =U is extended by the rules

C =U C ′

return C =U return C ′
and

B =U B′ (~ G ) · C =U (~ G ′ ) · C ′

~ does not occur in {B, B′, G, G ′, C, C ′ }

do{G ← B ; C} =U do{G ′ ← B′ ; C ′}
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Computational Lambda Calculus
(CLC)

CLC extends STLC with new types, terms and equations . . .

Types: �, �, . . . ::= STLC types, plus

T(�) type of “computations” of values of type �

Terms: B, C, . . . ::= STLC terms, plus

return C trivial computation
do{G ← B; C} sequenced computation (binds free G in C )

Typing rules:

Γ ⊢ C : �

Γ ⊢ return C : T(�)
(val)

Γ ⊢ B : T(�) Γ, G : � ⊢ C : T(�)

Γ ⊢ do{G ← B; C} : T(�)
(seq)

Equations . . .
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CLC equations

Extend STLC V[-equality (Γ ⊢ B =V[ C : �) to a relation Γ ⊢ B = C : � by adding the

following rules:

Γ ⊢ B : � Γ, G : � ⊢ C : T(�)

Γ ⊢ do{G ← return B; C} = C [B/G] : T(�)

Γ ⊢ C : T(�)

Γ ⊢ C = do{G ← C ; returnG} : T(�)

Γ ⊢ B : T(�) Γ, G : � ⊢ C : T(�) Γ, ~ : � ⊢ D : T(�)

Γ ⊢ do{~ ← do{G ← B; C};D} = do{G ← B; do{~ ← C ;D}}
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CLC equations

Extend STLC V[-equality (Γ ⊢ B =V[ C : �) to a relation Γ ⊢ B = C : � by adding the

following rules:

Γ ⊢ B : � Γ, G : � ⊢ C : T(�)

Γ ⊢ do{G ← return B; C} = C [B/G] : T(�)

Γ ⊢ C : T(�)

Γ ⊢ C = do{G ← C ; returnG} : T(�)

Γ ⊢ B : T(�) Γ, G : � ⊢ C : T(�) Γ, ~ : � ⊢ D : T(�)

Γ ⊢ do{~ ← do{G ← B; C};D} = do{G ← B; do{~ ← C ;D}}

(To describe a particular notion of computation (I/O, mutable state, exceptions, concurrent processes, . . . ) one can consider extensions of
vanilla CLC, e.g. with extra ground types, constants and equations.)
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Parameterised Kleisli triple

is the following extra structure on a category C with
binary products:

◮ a function mapping each - ∈ objC to an object
) (- ) ∈ objC

◮ for each - ∈ objC, a C-morphism -
[-
−−→ ) (- )

◮ for each C-morphism - × .
5
−→ ) (/ ) a C-morphism

- ×) (. )
5 ∗

−→ ) (/ )

satisfying . . .

216



Parameterised Kleisli triple[cont.]

◮ if -
5
−→ - ′ and - ′ × .

6
−→ ) (/ ), then

(6 ◦ (5 × id. ))
∗
= 6∗ ◦ (5 × id) (. ))

◮ if - × .
5
−→ ) (/ ), then

5 ∗ ◦ (id- × [. ) = 5

◮ if - × .
5
−→ ) (/ ) and - × /

6
−→ ) (, ), then

(6∗ ◦ 〈c1 , 5 〉)
∗
= 6∗ ◦ 〈c1 , 5

∗〉
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Examples in Set

State: fix a set ( (of “states”) and define

) (- ) , (- × ()(

[- G B , (G, B)

5 ∗(G, C) B , 5 (G,~) B′ where C B = (~, B′)
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Examples in Set

State: fix a set ( (of “states”) and define

) (- ) , (- × ()(
computations are functions ( → - × (

taking states to values in - paired with
a next state

[- G B , (G, B)

5 ∗(G, C) B , 5 (G,~) B′ where C B = (~, B′)

5 ∗ (G, ) first “runs” C ∈ ) (. ) in state B to get (~, B′),
then runs 5 (G,~) ∈ ) (/ ) in the new state B′

218



Examples in Set

Error:

) (- ) , - + 1 = {(0, G) | G ∈ - } ∪ {(1, 0)}

[- G , (0, G)

5 ∗(G, C) ,

{
5 (G, ~) if C = (0, ~)

(1, 0) if C = (1, 0)
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Examples in Set

Error:

) (- ) , - + 1 = {(0, G) | G ∈ - } ∪ {(1, 0)}

computations are either
copies (0, G) of values in
G ∈ - or an error (1, 0)

[- G , (0, G)

5 ∗(G, C) ,

{
5 (G, ~) if C = (0, ~)

(1, 0) if C = (1, 0)

if C ∈ ) (. ) is the error,
then 5 ∗ (G, ) propagates it,
otherwise it acts like 5
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Examples in Set

Continuations: fix a set ' (of “results”) and define

) (- ) , '('
- )

[- G , _2 ∈ '
- . 2 G

5 ∗(G, A ) , _2 ∈ '/ . A (_~ ∈ . . 5 (G, ~) 2)
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Examples in Set

Continuations: fix a set ' (of “results”) and define

) (- ) , '('
- ) computations are functions A : '- → '

mapping continuations 2 ∈ '- of the
computation to results A 2 ∈ '

[- G , _2 ∈ '
- . 2 G

5 ∗(G, A ) , _2 ∈ '/ . A (_~ ∈ . . 5 (G, ~) 2)

5 ∗ maps a computation A ∈ ' ('
. ) to the

function taking a continuation 2 ∈ '/ to
the result of applying A to the

continuation _~ ∈ . . 5 (G,~) 2 in '.

220



Semantics of CLC

Given a ccc C equipped with a parameterised Kleisli
triple (), [, ( )∗), we can extend the semantics of STLC
to one for CLC.
Computation types: JT(�)K = ) (J�K)
Trivial computations:

JΓ ⊢ return C : T(�)K = JΓK
JΓ⊢C :�K
−−−−−→ J�K

[J�K
−−−→ ) (J�K)

Sequencing: JΓ ⊢ do{G ← B; C} : T(�)K = 5 ∗ ◦ 〈idJΓK , 6〉

where



5 = JΓK × J�K

JΓ,G :�⊢C :T(�)K
−−−−−−−−−−→ ) (J�K)

6 = JΓK
JΓ⊢B :T(�)K
−−−−−−−−→ ) (J�K)

(and where � is uniquely determined from the proof of Γ ⊢ do{G ← B; C} : T(�))
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Semantics of CLC

Given a ccc C equipped with a parameterised Kleisli
triple (), [, ( )∗), we can extend the semantics of STLC
to one for CLC.

As for STLC versus cccs,

◮ the semantics of CLC in cc+Kleisli categories is
equationally sound and complete

◮ one can use CLC as an internal language for
describing constructs in cc+Kleisli categories

◮ there is a correspondence between equational
theories in CLC and cc+Kleisli categories
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Monads
A monad on a category C is given by a functor ) : C→ C and
natural transformations [ : id→ ) and ` : ) ◦) → ) satisfying

)
)[

id)

) ◦)

`

)
[)

id)

)

) ◦) ◦)
`)

) `

) ◦)

`

) ◦) ` )
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Monads
A monad on a category C is given by a functor ) : C→ C and
natural transformations [ : id→ ) and ` : ) ◦) → ) satisfying

)
)[

id)

) ◦)

`

)
[)

id)

)

) ◦) ◦)
`)

) `

) ◦)

`

) ◦) ` )

If C has binary products, then the monad is strong if there is a

family of C-morphisms (- ×) (. )
B-,.
−−−→ ) (- × . ) | -,. ∈ objC)

satisfying a number (7, in fact) of commutative diagrams (details
omi�ed, see Moggi).
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Monads
A monad on a category C is given by a functor ) : C→ C and
natural transformations [ : id→ ) and ` : ) ◦) → ) satisfying

)
)[

id)

) ◦)

`

)
[)

id)

)

) ◦) ◦)
`)

) `

) ◦)

`

) ◦) ` )

If C has binary products, then the monad is strong if there is a

family of C-morphisms (- ×) (. )
B-,.
−−−→ ) (- × . ) | -,. ∈ objC)

satisfying a number (7, in fact) of commutative diagrams (details
omi�ed, see Moggi).

FACT: for a given category with binary products, “parameterised
Kleisli triple” and “strong monad” are equivalent notions – each
gives rise to the other in a bijective fashion.
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Monads and adjunctions

◮ Given an adjunction C
�

D
�

� ⊣ �

we get a monad (� ◦ �, [, `) on C

where

{
[- = id� -

`- = � (id� (� - ) )

E.g. for Set

�

Mon
*

where* is the forgetful functor,) = * ◦ � is

the list monad on Set () (- ) = List- , [ given by singleton lists, ` by
fla�ening lists of lists). It’s a strong monad (all monads of Set have a
strength), but in general the monad associated with an adjunction may
not be strong.
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Monads and adjunctions

◮ Given an adjunction C
�

D
�

� ⊣ �

we get a monad (� ◦ �, [, `) on C

◮ Given a monad (), [, `) on C we get an adjunction

C
�

C)

�

� ⊣ �
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Monads and adjunctions

◮ Given an adjunction C
�

D
�

� ⊣ �

we get a monad (� ◦ �, [, `) on C

◮ Given a monad (), [, `) on C we get an adjunction

C
�

C)

�

� ⊣ �

C) is the category of Eilenberg-Moore algebras
for the monad ) , which has objects (�, U) with
U : ) (�) → � satisfying

�
[�

id�

) �

U

�

) () �)
`�

) U

) �

U

) �
U

�

and morphisms 5 (�,U) → (�, V) with 5 : �→ �

satisfying

) �
) 5

U

) �

V

�
5

�
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Monads and adjunctions

◮ Given an adjunction C
�

D
�

� ⊣ �

we get a monad (� ◦ �, [, `) on C

◮ Given a monad (), [, `) on C we get an adjunction

C
�

C)

�

� ⊣ �

◮ Starting from C
�

D
�

� ⊣ � and forming the monad

) = � ◦ � , there’s an obvious functor  : D→ C) .

Monadicity Theorems impose conditions on� : D→ C which ensure that

 is an equivalence of categories. E.g. Mon is equivalent to the category of

Eilenberg-Moore algebras for the list monad on Set (and similarly for any

algebraic theory).
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Some current themes involving
category theory in computer science

◮ semantics of effects & co-effects in programming
languages
(monads and comonads)

◮ homotopy type theory
(higher-dimensional category theory)

◮ structural aspects of networks, quantum
computation/protocols, . . .
(string diagrams for monoidal categories)
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