
What is category theory?

What we are probably seeking is a “purer” view of
functions: a theory of functions in themselves, not a
theory of functions derived from sets. What, then, is a
pure theory of functions? Answer: category theory.

Dana Sco�, Relating theories of the _-calculus, p406

set theory gives an “element-oriented” account of
mathematical structure, whereas

category theory takes a ‘function-oriented” view –
understand structures not via their elements, but by
how they transform, i.e. via morphisms.

(Both theories are part of logic, broadly construed.)

2

Category Theory emerges

1945 Eilenberg† and MacLane†

General Theory of Natural Equivalences,
Trans AMS 58, 231–294
(algebraic topology, abstract algebra)

1950s Grothendieck† (algebraic geometry)

1960s Lawvere† (logic and foundations)

1970s Johnstone, Joyal and Tierney†

(elementary topos theory)

1980s Dana Sco�, Plotkin
(semantics of programming languages)

Lambek† (linguistics)

3

Category Theory and
Computer Science

“Category theory has. . . become part of the standard
“tool-box” in many areas of theoretical informatics, from
programming languages to automata, from process
calculi to Type Theory.”

Dagstuhl Perpectives Workshop on Categorical Methods at the Crossroads

April 2014

See http://www.appliedcategorytheory.org/events for
recent examples of category theory being applied (not just in
computer science).

4

http://www.appliedcategorytheory.org/events

This course

basic concepts of category theory

adjunction natural transformation

category functor

applied to

{
typed lambda-calculus
functional programming

5

Sets

◮ Examples

Empty set: 0 = ∅ = { }

Singleton sets: 1 = {0}, {∗}

Natural numbers: N

6

◮ Products

The cartesian product of sets - and . is the set of
all ordered pairings (G,~) for G ∈ - and ~ ∈ . :

- × . = {(G, ~) | G ∈ - ∧ ~ ∈ . }

The equality for ordered pairs is pointwise:

(G, ~) = (G′, ~′) ⇔ G = G′ ∧ ~ = ~′

7

The cartesian product comes equipped with first and
second projection operations c1 and c2 satifying:

1. for all G ∈ - and ~ ∈ . ,

c1(G,~) = G , c2(G, ~) = ~

2. for all ? ∈ - × . ,

(c1 ? , c2 ?) = ?

8

Example:

For = ∈ N,

-= =

{
{ () } , if = = 0

- × -< , if = =< + 1

and, for G1, G2, . . . , G=−1, G= ∈ N, one writes (G1, . . . , G=) for
(G1, (G2, . . . (G=−1, G=) . . .)) ∈ -

=.

9

◮ Functions
The set of functions from a set - to a set . , for
which we write (- ⇒ .) or .- , consists of all the
single-valued and total relations from - to . :

(- ⇒ .) = {5 ⊆ -×. | 5 is single-valued and total}

Single-valued:

∀G ∈ -,∀~,~′ ∈ ., (G,~) ∈ 5 ∧ (G,~′) ∈ 5 ⇒ ~ = ~′

Total:
∀G ∈ -, ∃~ ∈ ., (G,~) ∈ 5

10

Notation: We write 5 : - → . or -
5
−→ . for

5 ∈ (- ⇒ .) and, for G ∈ - , we write 5 G or 5 (G) for the
unique element ~ of . such that (G, ~) ∈ 5 .

The equality for functions is extensional:

5 = 6 : - → . ⇔ ∀G ∈ -, 5 G = 6 G

This is because

1. Assuming 5 = 6, we have, for all G ∈ - , (G, 5 G) ∈ 6 and so 5 G = 6 G .

2. Assuming ∀G ∈ -, 5 G = 6 G , we have

5 = {(G,~) | (G,~) ∈ 5 } = {(G, 5 G) | G ∈ - } = {(G,6 G) | G ∈ - }

= {(G,~) | (G,~) ∈ 6} = 6

In other words, function extensionality reduces to the extensionality property of
sets: two sets are equal iff they have the same elements.

11

Convention: We typically define functions 5 : - → . by
a well-defined rule that to each element G ∈ - assigns a
unique element 5 (G) ∈ . .

Examples:
1. We define id- : - → - by:

id- (G) = G for all G ∈ -

2. For 5 : - → . and 6 : . → / , we define
6 ◦ 5 : - → / by:

(6 ◦ 5) (G) = 6(5 (G)) for all G ∈ -

3. We define app : (- ⇒ .) ×- → . by:

app(5 , G) = 5 (G) for all 5 ∈ (- ⇒ .) and G ∈ -

4. For 5 : / ×- → . , we define
cur(5) : / → (- ⇒ .) by:

(cur(5) I) (G) = 5 (I, G) for all I ∈ / and G ∈ -
12

◮ Sums
The sum of sets - and . is their disjoint union:

- + . = {]1(G) | G ∈ - } ∪ {]2(~) | ~ ∈ . }

The sum comes equipped with first and second
tagging operations]1 : - → - + . and
]2 : . → - + . .

The equality for tagged elements is:

]8 (G) =] 9 (~) ⇔ (8 = 9) ∧ (G = ~)

13

Sets in Grothendieck universes

A Grothendieck universe� is a set of sets satisfying

◮ - ∈ . ∈ �⇒ - ∈ �

◮ -, . ∈ �⇒ {-, . } ∈ �

◮ - ∈ �⇒�- , {. | . ⊆ - } ∈ �

◮ - ∈ � ∧ � : - → �⇒ {~ | ∃G ∈ -, ~ ∈ � G} ∈ �

(hence also -,. ∈ � ⇒ - × . ∈ � ∧ (- ⇒ .) ∈ �)

The above properties are satisfied by � = ∅, but we will always

assume

◮ N ∈ �

14

Algebras

Monoids

Amonoid is a structure " = (", •, y) consisting of a set
" equipped with a binary operation • : " ×" → "

and an element y ∈ " that satisfy:

◮ the associativity law:
∀G,~, I ∈ ", (G • ~) • I = G • (~ • I)

◮ the unit laws:
∀G ∈ ", y • G = G = G • y

15

Examples:

1. Lists (List-,@, nil):

List- = set of finite lists of elements of -
@ = append(

nil@ ℓ = ℓ

(G :: ℓ)@ ℓ′ = G :: (ℓ @ ℓ′)

)
nil = empty list

2. Sequences (-★, ·, Y):

-★
=

⋃
=∈N-

=

· = concatenation
((G1, . . . , G<) · (~1, . . . , ~=) = (G1, . . . , G<, ~1, . . . , ~=))

Y = ()

16

3. The set of endomorphisms on a set:

End(-) = (- ⇒ - , ◦ , id-)

is a monoid.

In particular, the monoid End(1) is trivial.

17

Amonoid homomorphism ℎ : "1 → "2 from a
monoid "1 = ("1, •1, y1) to a monoid "2 = ("2, •2, y2) is
a function ℎ : "1 → "2 such that

◮ for all G,~ ∈ "1, ℎ(G •1 ~) = ℎ(G) •2 ℎ(~)

◮ ℎ(y1) = y2

Example: For all 5 : - → . ,

map 5 : List- → List.

is a monoid homomorphism. (Check it.)

18

The product"1 ×"2 of monoids "1 = ("1, •1, y1) and
"2 = ("2, •2, y2) is the structure

("1 ×"2 , • , y)

with
(G1, G2) • (~1, ~2) = (G1 •1 ~1, G2 •2 ~2)

y = (y1, y2)

and projections homomorphisms

"1

c1
←− "1 ×"2

c2
−→ "2

given by c1(G1, G2) = G1 and c2(G1, G2) = G2.

19

Explore

? Is there a monoid of homomorphisms between
monoids?

? What is the sum "1 +Mon "2 of monoids "1

and"2?

Can you make sense of the following?

List(-) +Mon List(.) = List(- +Set .)

20

Groups

A group is a structure � = (�, , •, y) consisting of a
monoid (�, •, y) and a unary operation : " → " that
satisfies:

◮ the inverse laws:

∀G ∈ �, G • G = y = G • G

A group homomorphism ℎ : �1 → �2 from a group

�1 = (�1,
1, •1, y1) to a group�2 = (�2,

2, •2, y2) is a
monoid homomorphism ℎ : (�1, •1, y1) → (�2, •2, y2) such
that

◮ for all G ∈ �1, ℎ(G
1) = ℎ(G)

2

21

Examples:

◮ The set of integers modulo a prime ?

Z?

has a group structure.

◮ The set of automorphisms on a set

Aut(-) = { 5 : - → - | 5 is a bijection }

has a group structure.

22

Definitions:

◮ A function 5 : - → . is a bijection whenever

∀~ ∈ ., ∃!G ∈ -, 5 (G) = ~

◮ A function 5 : - → . is an isomorphism
whenever there exists a (necessarily unique)
function 6 : . → - (typically denoted 5 −1) such
that 6 ◦ 5 = id- and 5 ◦ 6 = id. .

Proposition. A function is a bijection if, and only if, it is
an isomorphism.

Explore the above for homomorphisms between monoids and

between groups.

23

Universal problems

◮ Vague problem: To manufacture a monoid out of a
set in the most general or least constrained possible
way.

This is typically referred to as freely generating a
monoid from a set.

24

◮ Mathematical problem: For a set - , consider the
data of interest to be given by a monoid
" = (", •, y) together with a function 5 : - → " .
Given a set - ,

1. construct data �- = (�-, •- , y-) and i- : - → �-

such that
1. for all data" = (", •, y) and 5 : - → " , there exists a

unique monoid homomorphism 5 # : �- → " such that
5 # ◦ i- = 5 .

25

In diagrammatic form:

-
i-

2©∀ 5

4©s.t.

�-

5 #

�-

3©∃! 5 #

" 1©∀"

? Is it a well-posed problem?

? Does it have a solution?

? If so, how can we construct it?

26

Categories

A category C is an algebraic structure specified by

◮ a set objC whose elements are called C-objects

◮ for each -, . ∈ objC, a set C(-,.) whose
elements are called C-morphisms from - to .

◮ a function assigning to each - ∈ objC an element
id- ∈ C(-,-) called the identity morphism for
the C-object -

◮ a function assigning to each 5 ∈ C(-,.) and
6 ∈ C(.,/) (where -,.,/ ∈ objC) an element
6 ◦ 5 ∈ C(-,/) called the composition of
C-morphisms 5 and 6

27

satisfying

◮ associativity: for all -,.,/,, ∈ objC,
5 ∈ C(-,.), 6 ∈ C(.,/) and ℎ ∈ C(/,,)

ℎ ◦ (6 ◦ 5) = (ℎ ◦ 6) ◦ 5

◮ unity: for all -,. ∈ objC and 5 ∈ C(-,.)

id. ◦ 5 = 5 = 5 ◦ id-

28

Category of sets: Set

◮ obj Set = a fixed universe of sets

◮ Set-morphisms are functions:
Set(-,.) = (- ⇒ .)

◮ Identities:
id-

◮ Composition of 5 ∈ Set(-,.) and 6 ∈ Set(.,/) is:
6 ◦ 5

NB: Associativity and unity laws hold. (Check it.)

29

Category of monoids: Mon

◮ objects are monoids,

◮ morphisms are monoid homomorphisms,

◮ identities and composition are as for sets and
functions.

Q: why is this well-defined?
A: because the set of functions that are monoid homomorphisms contains
identity functions and is closed under composition.

30

Category of groups: Grp

◮ objects are groups,

◮ morphisms are group homomorphisms,

◮ identities and composition are as for sets and
functions.

Q: why is this well-defined?
A: because the set of functions that are group homomorphisms contains
identity functions and is closed under composition.

31

Conventions:

◮ Given a category C, one writes

5 : - → . or -
5
−→ . or .

5
←− -

for

5 ∈ C(-,.)

in which case one says

object - is the domain of the morphism 5

object . is the codomain of the morphism 5

and writes

- = dom 5 , . = cod 5

NB: Which category C we are referring to is le�
implicit with this notation.

32

◮ The sets C(-,.) are typically referred to as
hom-sets and sometimes also denoted homC(-,.)

or simply hom(-,.) when C is clear from the
context.

◮ One o�en abbreviates 6 ◦ 5 as 6 5 .

◮ Because of the associativity law, one unambigously
writes

ℎ ◦ 6 ◦ 5 or ℎ6 5

for either of the equal composites
ℎ ◦ (6 ◦ 5) = ℎ (6 5) and (ℎ ◦ 6) ◦ 5 = (ℎ6) 5 .

33

Alternative notations

Some people write

C for objC

id for id-

HomC(-,.) for C(-,.)

- or 1- for id-

Most people use “applicative order” for morphism
composition; some people use “diagrammatic order”
and write

5 ;6 for 6 ◦ 5

34

