
Proof Assistants (L81): Assignment I

Thomas Bauereiss Meven Lennon-Bertrand

Michaelmas 2024

This is the first of two marked assignments for the course “Proof As-
sistants” (L81), covering the Isabelle part of the course. This assignment
comprises a number of small formalisation and verification tasks related to
the imperative programming language IMP, as well as a short write-up ex-
plaining your work.

The due date for this assignment is Wednesday, 20 November 2024, 4pm.
You must work on this assignment as an individual; collaboration is not
allowed. Copying material found elsewhere counts as plagiarism. Please use
the Moodle page for the course to submit an archive containing your theories
and write-up by the deadline.

Each of the two assignments is worth 100 marks, distributed as follows:

• 50 marks for completing basic formalisation and verification tasks as-
sessing grasp of the material taught in the lecture. For this assignment,
please use the Isabelle theory file template provided on the course web-
site. When preparing your submission, please include all theory files
that you have edited; some tasks ask you to modify definitions and
proofs in existing theories, so please be sure to include those. You
are allowed to use Sledgehammer to find proofs, although you might
want to streamline any complex proofs it finds into something more
readable. The main assessment criteria for these tasks are correctness
and completeness of the specifications and proofs. You might want to
test your specifications to check that they work as intended.

• 20 marks for completing designated more challenging tasks, which
might require more creativity when designing specifications and proof
strategies, and might require some Isabelle techniques that go beyond
what was taught in the lecture. Completing these advanced tasks can
help you achieve a distinction grade, but you might want to focus first
on completing the main tasks before attempting the advanced tasks.

• 30 marks for a clear write-up, where 10 of these marks will be reserved
for write-ups of exceptional quality, e.g. demonstrating particular in-
sight. In general, your write-up should explain the design decisions

1

you made during the formalisation and the strategies you used for the
proofs. It might also discuss proof attempts that failed in interest-
ing ways and lessons you learned from them, if that happens. The
maximum length of the write-up is 2,500 words, although it could be
much shorter, especially if you add comments to your theory files. It
is possible to use Isabelle to generate a document,1 but you can use
any tool you prefer to prepare your write-up and add a PDF to your
submission.

1The template files for the assignment are set up to generate the handout document
with this introduction and the tasks. For more information on document preparation from
Isabelle, see Chapter 4 of “The Isabelle/Isar Reference Manual” and Chapter 3 of “The
Isabelle System Manual”.

2

Assignment I: The IMP language in Isabelle
Task 1 (5 marks) Define a function vars :: aexp ⇒ vname set that collects
all variables appearing in an expression, and prove that the value of an
expression is unaffected by changes to variables not appearing in it:

lemma aval other var update:
x /∈ vars e =⇒ aval e (s(x := y)) = aval e s

Then show the following commutativity lemma for assignments:
lemma assign commute:

assumes x 6= y and x /∈ vars e2 and y /∈ vars e1
shows (x ::= e1 ;; y ::= e2) ∼ (y ::= e2 ;; x ::= e1)

Hint: Remember lemma assign simp. You might want to add a corre-
sponding lemma for Seq.

Task 2 (15 marks) Define a function csimp :: com ⇒ com that simplifies
all arithmetic and Boolean expressions in commands using asimp and bsimp.

Show that csimp preserves the behaviour of commands:
lemma csimp sim: csimp c ∼ c

Hint: Remember lemma sim while cong for proving the WHILE case.
You might want to add a similar lemma that also allows changing the loop
condition to an equivalent one.

Task 3 (10 marks) Now define a function csimp full :: com ⇒ com that
not only simplifies expressions, but also does some dead code elimination in
cases where Boolean expressions can be simplified to constants, like in the
example below, and show that this function still preserves the behaviour of
commands.

lemma csimp full (IF (Less (N 0) (N 1)) THEN x ::= N 0 ELSE x ::= N 1) =
(x ::= N 0)

lemma csimp full sim: csimp full c ∼ c

3

Task 4 (5 marks) Modify theory AExp by adding a unary negation con-
structor Neg to aexp, so that subtraction can be expressed using Plus and
Neg:

abbreviation Minus e1 e2 ≡ Plus e1 (Neg e2)

Update the definitions of aval and asimp to handle Neg and fix any
broken proofs, then show that Minus behaves as expected:
lemma Minus correct: aval (Minus e1 e2) s = aval e1 s − aval e2 s

Add an abbreviation Equal that checks for equality of aexp expressions
using existing constructors, and show that it is correct:

lemma Equal correct: bval (Equal e1 e2) s ←→ aval e1 s = aval e2 s

Task 5 (15 marks) Consider the following implementation of Euclid’s al-
gorithm for calculating the greatest common divisor (using the Minus and
Equal expressions defined above):
abbreviation

imp gcd ≡
(WHILE (Not (Equal (V ′′a ′′) (V ′′b ′′))) DO

IF (Less (V ′′a ′′) (V ′′b ′′))
THEN ′′b ′′ ::= Minus (V ′′b ′′) (V (′′a ′′))
ELSE ′′a ′′ ::= Minus (V ′′a ′′) (V (′′b ′′)))

Show its (partial) correctness:
lemma imp gcd partial correctness:

assumes (imp gcd, s) ⇒ t and s ′′a ′′ > 0 and s ′′b ′′ > 0
shows gcd (s ′′a ′′) (s ′′b ′′) = t ′′a ′′

Task 6 (10 marks, advanced) Show that imp gcd terminates:
lemma imp gcd terminates:

assumes s ′′a ′′ > 0 and s ′′b ′′ > 0
shows ∃ t. (imp gcd, s) ⇒ t

Hint: You might want to prove a lemma about the termination of while
loops. Induction rules like measure induct rule might be useful, which allows
induction using a measure function f :: ′a ⇒ nat. The function nat for
converting from int to nat might also be useful.

4

Task 7 (10 marks, advanced) Modify theory Com by extending the type
com with a nondeterministic choice command CHOOSE x vs that sets vari-
able x to a value chosen from a list of values that may depend on the state,
i.e. vs has type state ⇒ val list.

Fix the existing proofs in theories Big Step and Small Step, including the
equivalence proof between big-step and small-step semantics, but excluding
the proofs that the semantics are deterministic and the proof about final
configurations (those have been removed from the versions of the theories
coming with this assignment).

As an example, show that the following refinement holds:
abbreviation refines :: com ⇒ com ⇒ bool (infix v 50) where

c1 v c2 ≡ (∀ s t. (c1 , s) ⇒ t −→ (c2 , s) ⇒ t)

lemma (x ::= (N 2)) v (CHOOSE x (λ . [0 , 1 , 2]))

Now consider the following specification for computation of the greatest
common divisor:
abbreviation

imp gcd spec ≡
CHOOSE ′′a ′′ (λs. [gcd (s ′′a ′′) (s ′′b ′′)]);;
′′b ′′ ::= V ′′a ′′

Find a context C :: com ⇒ com under which imp gcd refines imp gcd spec
and prove the lemma:
lemma C imp gcd v C imp gcd spec

5

