Proof Assistants

Thomas Bauereiss Meven Lennon-Bertrand

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024

Chapter 7

Semantics of IMP:
A Simple Imperative Language

@ IMP Commands

@® Big-Step Semantics

© Small-Step Semantics

@ IMP Commands

Commands

Concrete syntax:

com = SKIP

Commands

Concrete syntax:

com = SKIP

| string ::= aexp

Commands

Concrete syntax:

SKIP

string : := aexp

com

com ;; com

Commands

Concrete syntax:

com ::= SKIP
| string ::= aexp
| com ;; com
|

IF bexp THEN com ELSE com

Concrete syntax:

com

Commands

SKIP
string : := aexp
com ;; com

IF bexp THEN com ELSE com
WHILE bexp DO com

Abstract syntax:

datatype com

Commands

SKIP

Assign string aexp
Seq com com

If bexp com com
While bexp com

Com. thy

@® Big-Step Semantics

Big-step semantics

Concrete syntax:

(com, initial-state) = final-state

Big-step semantics

Concrete syntax:
(com, initial-state) = final-state

Intended meaning of (¢, s) = t:

Big-step semantics

Concrete syntax:
(com, initial-state) = final-state

Intended meaning of (¢, s) = t:

Command c started in state s terminates in state ¢

Big-step semantics

Concrete syntax:
(com, initial-state) = final-state

Intended meaning of (¢, s) = t:

Command c started in state s terminates in state ¢

“=" here not typel!

Big-step rules

(SKIP, s) = s

10

Big-step rules

(SKIP, s) = s

(= a, s) = s(z:= aval a s)

Big-step rules

(SKIP, 5) = s
(= a, s) = s(z:= aval a s)

(Cl, 51) = S9 (CQ, 82) = 53

(c135 ¢y 81) = 3

10

Big-step rules

bval bs (c1, 8) =t

(IF b THEN ¢y ELSE ¢y, s) =t

11

Big-step rules

bval bs (c1, 8) =t

(IF b THEN ¢y ELSE ¢y, s) =t

—bvalbs (¢, 8) =t

(IF b THEN ¢ ELSE ¢y, s) = t

11

Big-step rules

— bval b s

(WHILE b DO ¢, s) = s

12

Big-step rules

= bval b s
(WHILE b DO ¢, s) = s

bval b s
(¢, 51) = s (WHILE b DO ¢, s5) = $3

(WHILE b DO ¢, 1) = s3

12

Logically speaking
(¢, s) =t
is just infix syntax for

big_step (c,s) t

13

Logically speaking
(¢, s) =t
is just infix syntax for
big_step (c,s) t
where
big_step 1 com X state = state = bool

is an inductively defined predicate.

13

Big Step.thy

Semantics

What can we deduce from
o (SKIP, s) =t 7

Rule inversion

15

What can we deduce from
o (SKIP, s) =t 7

Rule inversion

t=s

15

What can we deduce from
o (SKIP, s) =t 7
e (zu=ua,s) =17

Rule inversion

t=s

15

What can we deduce from
o (SKIP, s) =t 7
e (zu=ua,s) =17

Rule inversion

t=s

t = s(z:= aval a s)

15

What can we deduce from
o (SKIP, s) =t 7
® (zu=ua,8) =17
® (c13; 2, 851) = 83 7

Rule inversion

t=s

t = s(z:= aval a s)

15

Rule inversion

What can we deduce from
® (SKIP, s) =t 7 t=s
e (zu=ua,s) =17 t = s(z:= aval a s)
® (c13; 9, 81) = 53 7
I59. (1, $1) = 2 A (¢, $2) = 3

15

Rule inversion

What can we deduce from
® (SKIP, s) =t 7 t=s
e (zu=ua,s) =17 t = s(z:= aval a s)
® (c13; 9, 81) = 53 7
I59. (1, $1) = 2 A (¢, $2) = 3
® (IFb THEN c¢; ELSE ¢3,) = t 7?

15

Rule inversion

What can we deduce from

® (SKIP, s) =t 7 t=s

e (zu=ua,s) =17 t = s(z:= aval a s)

® (c155 €2, 81) = 83 7
I59. (1, $1) = 2 A (¢, $2) = 3

® (IFb THEN c¢; ELSE ¢3,) = t 7?
bval b s A\ (c1, s) =t V
= bval b s N (cg, s) =t

15

Rule inversion

What can we deduce from
® (SKIP, s) =t 7 t=s
e (zu=ua,s) =17 t = s(z:= aval a s)
® (c13; 9, 81) = 53 7
I59. (1, $1) = 2 A (¢, $2) = 3
® (IFb THEN c¢; ELSE ¢3,) = t 7?

bval b s A\ (c1, s) =t V
= bval b s N (cg, s) =t

e (w, s) = t where w= WHILE b DO ¢ 7

15

Rule inversion

What can we deduce from

® (SKIP, s) =t 7 t=s

e (zu=ua,s) =17 t = s(z:= aval a s)

® (c155 €2, 81) = 83 7
I59. (1, $1) = 2 A (¢, $2) = 3

® (IFb THEN c¢; ELSE ¢3,) = t 7?
bval b s A\ (c1, s) =t V
= bval b s N (cg, s) =t

e (w, s) = t where w= WHILE b DO ¢ 7
—bvalbsANt=s V
bval b s A (3s'. (¢, s) = s' A (w, s') = 1)

15

Automating rule inversion

Isabelle command inductive_cases produces theorems
that perform rule inversions automatically.

16

We reformulate the inverted rules. Example:

(c13; c2, $1) = S3

382. (Cl, 81) = S N (CQ, 82) = S3

17

We reformulate the inverted rules. Example:

(c13; 2, 81) = 83
382. (Cl, 81) = S N (CQ, 82) = S3

is logically equivalent to
(c135 €2, 81) = 83
N2 [(cr, 1) = 93 (e2,) = s5] = P
P

17

We reformulate the inverted rules. Example:

(c13; 2, 81) = 83
382. (Cl, 81) = S N (CQ, 82) = S3

is logically equivalent to
(c135 €2, 81) = 83
N2 [(cr, 1) = 93 (e2,) = s5] = P
P

Replaces assm (c;;; ¢2, s1) = s3 by two assms
(c1, 851) = s and (c2, $2) = s3

17

We reformulate the inverted rules. Example:

(c135 co, 81) = 3
382. (Cl, 81) = S N (CQ, 82) = S3

is logically equivalent to
(c135 €2, 81) = 83
N2 [(cr, 1) = 93 (e2,) = s5] = P
P

Replaces assm (c;;; ¢2, s1) = s3 by two assms
(c1, 81) = s and (c2, $2) = s3 (with a new fixed s,).

17

We reformulate the inverted rules. Example:

(c135 co, 81) = 3
382. (Cl, 81) = S N (CQ, 82) = S3

is logically equivalent to
(c135 €2, 81) = 83
N2 [(cr, 1) = 93 (e2,) = s5] = P
P

Replaces assm (c;;; ¢2, s1) = s3 by two assms
(c1, 81) = s and (c2, $2) = s3 (with a new fixed s,).
No 4 and Al

17

The general format: elimination rules

asm asmy — P ... asm,— P

P

18

The general format: elimination rules

asm asmy — P ... asm,— P

P

(possibly with AZ in front of the asm; = P)

18

The general format: elimination rules

asm asmy — P ... asm,— P
P

(possibly with AZ in front of the asm; = P)

Reading:
To prove a goal P with assumption asm,
prove all asm; — P

18

The general format: elimination rules

asm asmy — P ... asm,— P
P

(possibly with AZ in front of the asm; = P)

Reading:
To prove a goal P with assumption asm,
prove all asm; — P

Example:

Fv G F—P G —=— P
P

18

elim attribute

® Theorems with eltm attribute are used
automatically by blast, fastforce and auto

19

elim attribute

® Theorems with eltm attribute are used
automatically by blast, fastforce and auto

e Can also be added locally, eg (blast elim: ...)

19

elim attribute

® Theorems with elim attribute are used
automatically by blast, fastforce and auto
e Can also be added locally, eg (blast elim: ...)

e Variant: elim! applies elim-rules eagerly.

19

Big Step.thy

Rule inversion

20

Command equivalence

Two commands have the same input/output behaviour:

21

Command equivalence

Two commands have the same input/output behaviour:

c~c = (Vst (¢,8) = t+— (cs) = t)

21

Command equivalence

Two commands have the same input/output behaviour:

c~c = (Vst (¢,8) = t+— (cs) = t)

Example
w e~ w

where w = WHILE b DO ¢
w' = IF b THEN c;; w ELSE SKIP

21

Equivalence proof

(w, s) =t

22

Equivalence proof

(w, s) =t
—
bval b s A (s’ (¢, 8) = ' A (w, ') = 1)
V
= bval b s N\

22

Equivalence proof

(w, s) =t
—

bval b s A (s’ (¢, 8) = ' A (w, ') = 1)
V
—bval b s Nt=s

—
(w', s) =t

22

Equivalence proof

(w, s) =t
—

bval b s A (s’ (¢, 8) = ' A (w, ') = 1)
V
—bval b s Nt=s

—
(w', s) =t

Using the rules and rule inversions for =-.

22

Big Step.thy

Command equivalence

23

Execution is deterministic

Any two executions of the same command in the same
start state lead to the same final state:

(¢, s) =t = (¢,)=t = t=1

24

Execution is deterministic

Any two executions of the same command in the same
start state lead to the same final state:

(¢, s) =t = (¢,) =t = t=1

Proof by rule induction, for arbitrary t’.

24

Big Step.thy

Execution is deterministic

25

The boon and bane of big steps

We cannot observe intermediate states/steps

26

The boon and bane of big steps

We cannot observe intermediate states/steps

Example problem:

26

The boon and bane of big steps

We cannot observe intermediate states/steps
Example problem:

(¢,s) does not terminate iff B¢ (c, s) = ¢ 7?

26

The boon and bane of big steps

We cannot observe intermediate states/steps
Example problem:
(¢,s) does not terminate iff B¢ (c, s) = ¢ 7?

Needs a formal notion of nontermination to prove it.

26

The boon and bane of big steps

We cannot observe intermediate states/steps
Example problem:
(¢,s) does not terminate iff B¢ (c, s) = ¢ 7?

Needs a formal notion of nontermination to prove it.
Could be wrong if we have forgotten a = rule.

26

Big-step semantics cannot directly describe
® ponterminating computations,

27

Big-step semantics cannot directly describe
® ponterminating computations,
e parallel computations.

27

Big-step semantics cannot directly describe
® ponterminating computations,
e parallel computations.

We need a finer grained semantics!

27

© Small-Step Semantics

28

Small-step semantics
Concrete syntax:

(com,state) — (com,state)

29

Small-step semantics
Concrete syntax:
(com,state) — (com,state)

Intended meaning of (¢, s) — (¢, s'):

29

Small-step semantics
Concrete syntax:
(com,state) — (com,state)

Intended meaning of (¢, s) — (¢, s'):

The first step in the execution of c in state s
leaves a “remainder” command ¢’
to be executed in state s’.

29

Small-step semantics
Concrete syntax:
(com,state) — (com,state)

Intended meaning of (¢, s) — (¢, s'):

The first step in the execution of c in state s
leaves a “remainder” command ¢’
to be executed in state s’.

Execution as finite or infinite reduction:

(61781) — (62,82) — (63,83) — ...

29

Terminology

e A pair (c,s) is called a configuration.

30

Terminology

e A pair (c,s) is called a configuration.

e If cs — cs’ we say that cs reduces to cs'.

30

Terminology

e A pair (c,s) is called a configuration.
e If cs — cs’ we say that cs reduces to cs'.

e A configuration c¢s is final iff B ¢s’. cs — cs'

30

The intention:

(SKIP, s) is final

31

The intention:

(SKIP, s) is final

Why?

SKIP is the empty program.

31

The intention:

(SKIP, s) is final

Why?

SKIP is the empty program. Nothing more to be done.

31

Small-step rules

32

Small-step rules

(z:=a, s) — (SKIP, s(z := aval a s))

32

Small-step rules

(z:=a, s) — (SKIP, s(z := aval a s))
(SKIP;; ¢, s) —

32

Small-step rules

(z:=a, s) — (SKIP, s(z := aval a s))
(SKIP;; ¢, s) — (¢,)

32

Small-step rules

(r:=a, s) —
(SKIP;; ¢, s) — (¢,)
(Clas) — (CLS/)

(c13502,8) —

32

Small-step rules

(z:=a, s) — (SKIP, s(z := aval a s))
(SKIP;; ¢, s) — (¢,)
(75) — (0178)
(155 00,8) — (c];5¢0,8)

32

Small-step rules

bval b s

(IF b THEN ¢, ELSE c5,5) —

33

Small-step rules

bval b s

(IF b THEN ¢, ELSE ¢9,3) — (c1,8)

33

Small-step rules

bval b s

(IF b THEN ¢, ELSE ¢9,3) — (c1,8)

— bval b s

(IF b THEN ¢, ELSE c9,3) — (ca,5)

33

Small-step rules

bval b s

(IF b THEN ¢, ELSE ¢9,3) — (c1,8)

— bval b s

(IF b THEN ¢, ELSE c9,3) — (ca,5)

(WHILE b DO ¢, s) —

33

Small-step rules

bval b s
(IF b THEN ¢, ELSE ¢9,3) — (c1,8)

- bval b s
(IF b THEN ¢, ELSE c9,3) — (ca,5)

(WHILE b DO ¢, s) —
(IF b THEN ¢;; WHILE b DO ¢ ELSE SKIP, s)

33

Small-step rules

bval b s
(IF b THEN ¢, ELSE ¢9,3) — (c1,8)

- bval b s
(IF b THEN ¢, ELSE c9,3) — (ca,5)

(WHILE b DO ¢, s) —
(IF b THEN ¢;; WHILE b DO ¢ ELSE SKIP, s)

Fact (SKIP, s) is a final configuration.

33

omall Step.thy

Semantics

34

Are big and small-step semantics equivalent?

35

From = to —x

36

From = to —x

Theorem c¢s = t = ¢s —x* (SKIP, t)

36

From = to —x

Theorem c¢s = t = ¢s —x* (SKIP, t)

Proof by rule induction

36

From = to —x

Theorem cs = t = c¢s —x* (SKIP, 1)

Proof by rule induction (of course on ¢s =)

36

From = to —x

Theorem c¢s = t = ¢s —x* (SKIP, t)

Proof by rule induction (of course on cs = 1)
In two cases a lemma is needed:

36

From = to —x

Theorem c¢s = t = ¢s —x* (SKIP, t)

Proof by rule induction (of course on cs = 1)
In two cases a lemma is needed:

Lemma
(c1, 8) = (a1, ') = (c135 o,) =% (15 2, &)

36

From = to —x

Theorem c¢s = t = ¢s —x* (SKIP, t)

Proof by rule induction (of course on cs = 1)
In two cases a lemma is needed:

Lemma
(c1, 8) = (a1, ') = (c135 o,) =% (15 2, &)

Proof by rule induction.

36

From —%* to =

37

From —x to =

Theorem cs —x* (SKIP, 1) — c¢s =1

37

From —x to =

Theorem cs —x* (SKIP, t) = c¢s =t
Proof by rule induction on c¢s —x (SKIP, t).

37

From —x to =

Theorem cs —x* (SKIP, t) = c¢s =t

Proof by rule induction on c¢s —x (SKIP, t).
In the induction step a lemma is needed:

37

From —x to =

Theorem cs —x* (SKIP, t) = c¢s =t

Proof by rule induction on c¢s —x (SKIP, t).
In the induction step a lemma is needed:

Lemmacs - ¢cs’ — ¢ =t = cs=1

37

From —x to =

Theorem cs —x* (SKIP, t) = c¢s =t

Proof by rule induction on c¢s —x (SKIP, t).
In the induction step a lemma is needed:

Lemmacs - ¢cs’ — ¢ =t = cs=1

Proof by rule induction on ¢s — ¢s’.

37

Equivalence

Corollary ¢s = t «+— cs —x (SKIP, t)

38

Somall Step.thy

Equivalence of big and small

39

Can execution stop prematurely?

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

Lemma final (¢, s) = ¢ = SKIP

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

Lemma final (¢, s) = ¢ = SKIP

We prove the contrapositive
¢ # SKIP — = final(c,s)

by induction on c.

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

Lemma final (¢, s) = ¢ = SKIP
We prove the contrapositive

¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?
Lemma final (¢, s) = ¢ = SKIP

We prove the contrapositive
¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:
® ¢ = SKIP

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

Lemma final (¢, s) = ¢ = SKIP
We prove the contrapositive

¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:
® ¢ = SKIP = = final (c1;; co, $)

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?
Lemma final (¢, s) = ¢ = SKIP

We prove the contrapositive
¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:
® ¢ = SKIP = = final (c1;; co, $)
® ¢, # SKIP

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?
Lemma final (¢, s) = ¢ = SKIP

We prove the contrapositive
¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:
® ¢ = SKIP = = final (c1;; co, $)
® ¢ # SKIP = = final (c1, $)

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?
Lemma final (¢, s) = ¢ = SKIP

We prove the contrapositive
¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:
® ¢ = SKIP = = final (c1;; co, $)
® ¢ # SKIP = = final (c1, s) (by IH)

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

Lemma final (¢, s) = ¢ = SKIP

We prove the contrapositive
¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:
® ¢ = SKIP = = final (c1;; co, $)
® ¢ # SKIP = = final (cy, s) (by IH)
= - final (¢13; ¢3, 8)

40

Can execution stop prematurely?
That is, are there any final configs except (SKIP,s) ?

Lemma final (¢, s) = ¢ = SKIP

We prove the contrapositive
¢ # SKIP — = final(c,s)

by induction on c.
e Case c1;; co: by case distinction:
® ¢ = SKIP = = final (c1;; co, $)
® ¢ # SKIP = = final (c1, s) (by IH)
= - final (¢13; ¢3, 8)
® Remaining cases: trivial or easy

40

By rule inversion: (SKIP, s) — ct = False

41

By rule inversion: (SKIP, s) — ct = False

Together:
Corollary final (¢, s) = (¢ = SKIP)

41

Infinite executions

= yields final state iff — terminates

42

Infinite executions

= yields final state iff — terminates

Lemma (3t ¢s = t) = (Fes. cs —x e’ A final cs)

42

Infinite executions

= yields final state iff — terminates

Lemma (3t ¢s = t) = (Fes. cs —x e’ A final cs)
Proof: (3t cs =t

42

Infinite executions

= yields final state iff — terminates

Lemma (3t ¢s = t) = (Fes. cs —x e’ A final cs)

Proof: (3t cs =t
= (3t cs —* (SKIP,t))

42

Infinite executions

= yields final state iff — terminates

Lemma (3t ¢s = t) = (Fes. cs —x e’ A final cs)

Proof: (3t cs =t
= (3t cs —* (SKIP,t))
(by big = small)

42

Infinite executions

= yields final state iff — terminates

Lemma (3t ¢s = t) = (Fes. cs —x e’ A final cs)

Proof: (3t cs =t
= (3t cs —* (SKIP,t))
(by big = small)
= (Jcs’ es == cs' A final cs')

42

Infinite executions

= yields final state iff — terminates

Lemma (3t ¢s = t) = (Fes. cs —x e’ A final cs)
Proof: (3t cs =t
= (3t cs —* (SKIP,t))
(by big = small)
= (Jcs’ es == cs' A final cs')
(by final = SKIP)

42

Infinite executions

= yields final state iff — terminates

Lemma (3t ¢s = t) = (Fes. cs —x e’ A final cs)
Proof: (3t cs =t
= (3t cs —* (SKIP,t))
(by big = small)
= (Jcs’ es == cs' A final cs')
(by final = SKIP)
Equivalent:

= does not yield final state iff — does not terminate

42

— is deterministic:

May versus Must

43

— is deterministic:

Lemma cs — cs’

—

May versus Must

cs — cs’! — s =

CS

/

43

— is deterministic:

Lemma cs — ¢s’ =
(Proof by rule induction)

May versus Must

cs — cs’! — s =

CS

/

43

May versus Must

— is deterministic:

Lemmacs - ¢cs’ = c¢s— cs’ = c¢s’" = ¢S’
(Proof by rule induction)

Therefore: no difference between

may terminate (there is a terminating — path)
must terminate (all — paths terminate)

43

May versus Must

— is deterministic:

Lemmacs - ¢cs’ = c¢s— cs’ = c¢s’" = ¢S’
(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating — path)
must terminate (all — paths terminate)
Therefore: = correctly reflects termination behaviour.

43

May versus Must

— is deterministic:

Lemmacs - ¢cs’ = c¢s— cs’ = c¢s’" = ¢S’

(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating — path)
must terminate (all — paths terminate)
Therefore: = correctly reflects termination behaviour.

With nondeterminism: may have both cs = ¢t and a
nonterminating reduction c¢s — c¢s’ — ...

43

	Semantics of IMP: A Simple Imperative Language

