
Proof Assistants

Thomas Bauereiss Meven Lennon-Bertrand
Department of Computer Science and Technology

University of Cambridge

Michaelmas 2024

1



Chapter 7

Semantics of IMP:
A Simple Imperative Language
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Commands

Concrete syntax:

com ::= SKIP

| string ::= aexp
| com ;; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com
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Commands

Abstract syntax:

datatype com = SKIP
| Assign string aexp
| Seq com com
| If bexp com com
| While bexp com
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Com.thy
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1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

8



Big-step semantics

Concrete syntax:

(com, initial-state) ⇒ final-state

Intended meaning of (c, s) ⇒ t:
Command c started in state s terminates in state t

“⇒” here not type!
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Big-step rules

(SKIP, s) ⇒ s

(x ::= a, s) ⇒ s(x := aval a s)

(c1, s1) ⇒ s2 (c2, s2) ⇒ s3

(c1;; c2, s1) ⇒ s3
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Big-step rules

bval b s (c1, s) ⇒ t
(IF b THEN c1 ELSE c2, s) ⇒ t

¬ bval b s (c2, s) ⇒ t
(IF b THEN c1 ELSE c2, s) ⇒ t
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Big-step rules

¬ bval b s
(WHILE b DO c, s) ⇒ s

bval b s1
(c, s1) ⇒ s2 (WHILE b DO c, s2) ⇒ s3

(WHILE b DO c, s1) ⇒ s3
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Big-step rules

¬ bval b s
(WHILE b DO c, s) ⇒ s

bval b s1
(c, s1) ⇒ s2 (WHILE b DO c, s2) ⇒ s3
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Logically speaking

(c, s) ⇒ t

is just infix syntax for

big step (c,s) t

where

big step :: com × state ⇒ state ⇒ bool

is an inductively defined predicate.
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Big_Step.thy

Semantics
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Rule inversion
What can we deduce from
• (SKIP, s) ⇒ t ?

t = s
• (x ::= a, s) ⇒ t ? t = s(x := aval a s)
• (c1;; c2, s1) ⇒ s3 ?
∃ s2. (c1, s1) ⇒ s2 ∧ (c2, s2) ⇒ s3

• (IF b THEN c1 ELSE c2, s) ⇒ t ?
bval b s ∧ (c1, s) ⇒ t ∨
¬ bval b s ∧ (c2, s) ⇒ t

• (w, s) ⇒ t where w = WHILE b DO c ?
¬ bval b s ∧ t = s ∨
bval b s ∧ (∃ s ′. (c, s) ⇒ s ′ ∧ (w, s ′) ⇒ t)
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Automating rule inversion

Isabelle command inductive_cases produces theorems
that perform rule inversions automatically.
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We reformulate the inverted rules. Example:

(c1;; c2, s1) ⇒ s3

∃ s2. (c1, s1) ⇒ s2 ∧ (c2, s2) ⇒ s3

is logically equivalent to

(c1;; c2, s1) ⇒ s3∧
s2. [[(c1, s1) ⇒ s2; (c2, s2) ⇒ s3]] =⇒ P

P

Replaces assm (c1;; c2, s1) ⇒ s3 by two assms
(c1, s1) ⇒ s2 and (c2, s2) ⇒ s3 (with a new fixed s2).
No ∃ and ∧!
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The general format: elimination rules

asm asm1 =⇒ P . . . asmn =⇒ P
P

(possibly with
∧

x in front of the asmi =⇒ P)
Reading:

To prove a goal P with assumption asm,
prove all asmi =⇒ P

Example:

F ∨ G F =⇒ P G =⇒ P
P
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elim attribute

• Theorems with elim attribute are used
automatically by blast, fastforce and auto

• Can also be added locally, eg (blast elim: . . . )
• Variant: elim! applies elim-rules eagerly.
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Big_Step.thy

Rule inversion
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Command equivalence

Two commands have the same input/output behaviour:

c ∼ c ′ ≡ (∀ s t. (c,s) ⇒ t ←→ (c ′,s) ⇒ t)

Example
w ∼ w ′

where w = WHILE b DO c
w ′ = IF b THEN c;; w ELSE SKIP
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Equivalence proof

(w, s) ⇒ t

←→
bval b s ∧ (∃ s ′. (c, s) ⇒ s ′ ∧ (w, s ′) ⇒ t)

∨
¬ bval b s ∧ t = s

←→
(w ′, s) ⇒ t

Using the rules and rule inversions for ⇒.
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Big_Step.thy

Command equivalence
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Execution is deterministic

Any two executions of the same command in the same
start state lead to the same final state:

(c, s) ⇒ t =⇒ (c, s) ⇒ t ′ =⇒ t = t ′

Proof by rule induction, for arbitrary t ′.
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Big_Step.thy

Execution is deterministic
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The boon and bane of big steps

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff @ t. (c, s) ⇒ t ?

Needs a formal notion of nontermination to prove it.
Could be wrong if we have forgotten a ⇒ rule.
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Big-step semantics cannot directly describe
• nonterminating computations,

• parallel computations.

We need a finer grained semantics!
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1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics
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Small-step semantics
Concrete syntax:

(com,state) → (com,state)

Intended meaning of (c, s) → (c ′, s ′):
The first step in the execution of c in state s
leaves a “remainder” command c ′
to be executed in state s ′.

Execution as finite or infinite reduction:

(c1,s1) → (c2,s2) → (c3,s3) → . . .
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Terminology

• A pair (c,s) is called a configuration.

• If cs → cs ′ we say that cs reduces to cs ′.

• A configuration cs is final iff @ cs ′. cs → cs ′
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The intention:

(SKIP, s) is final

Why?

SKIP is the empty program. Nothing more to be done.
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Small-step rules

(x::=a, s) →

(SKIP, s(x := aval a s))

(SKIP;; c, s) → (c, s)

(c1, s) → (c′1, s′)
(c1; ; c2, s) → (c′1; ; c2, s′)

32
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Small-step rules

bval b s
(IF b THEN c1 ELSE c2, s) →

(c1, s)
¬ bval b s

(IF b THEN c1 ELSE c2, s) → (c2, s)

(WHILE b DO c, s) →
(IF b THEN c;; WHILE b DO c ELSE SKIP, s)

Fact (SKIP, s) is a final configuration.
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Semantics
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Are big and small-step semantics equivalent?
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From ⇒ to →∗

Theorem cs ⇒ t =⇒ cs →∗ (SKIP, t)
Proof by rule induction (of course on cs ⇒ t)
In two cases a lemma is needed:
Lemma
(c1, s) →∗ (c1

′, s ′) =⇒ (c1;; c2, s) →∗ (c1
′;; c2, s ′)

Proof by rule induction.
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Equivalence

Corollary cs ⇒ t ←→ cs →∗ (SKIP, t)
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Small_Step.thy

Equivalence of big and small
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Can execution stop prematurely?

That is, are there any final configs except (SKIP,s) ?

Lemma final (c, s) =⇒ c = SKIP
We prove the contrapositive

c 6= SKIP =⇒ ¬ final(c,s)

by induction on c.
• Case c1;; c2: by case distinction:

• c1 = SKIP =⇒ ¬ final (c1;; c2, s)
• c1 6= SKIP =⇒ ¬ final (c1, s) (by IH)

=⇒ ¬ final (c1;; c2, s)
• Remaining cases: trivial or easy
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By rule inversion: (SKIP, s) → ct =⇒ False

Together:

Corollary final (c, s) = (c = SKIP)
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Infinite executions
⇒ yields final state iff → terminates

Lemma (∃ t. cs ⇒ t) = (∃ cs ′. cs →∗ cs ′ ∧ final cs ′)
Proof: (∃ t. cs ⇒ t)

= (∃ t. cs →∗ (SKIP,t))
(by big = small)

= (∃ cs ′. cs →∗ cs ′ ∧ final cs ′)
(by final = SKIP)

Equivalent:
⇒ does not yield final state iff → does not terminate
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May versus Must
→ is deterministic:

Lemma cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′
(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating → path)

must terminate (all → paths terminate)
Therefore: ⇒ correctly reflects termination behaviour.
With nondeterminism: may have both cs ⇒ t and a
nonterminating reduction cs → cs ′→ . . .

43



May versus Must
→ is deterministic:
Lemma cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′

(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating → path)

must terminate (all → paths terminate)
Therefore: ⇒ correctly reflects termination behaviour.
With nondeterminism: may have both cs ⇒ t and a
nonterminating reduction cs → cs ′→ . . .

43



May versus Must
→ is deterministic:
Lemma cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′
(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating → path)

must terminate (all → paths terminate)
Therefore: ⇒ correctly reflects termination behaviour.
With nondeterminism: may have both cs ⇒ t and a
nonterminating reduction cs → cs ′→ . . .

43



May versus Must
→ is deterministic:
Lemma cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′
(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating → path)

must terminate (all → paths terminate)

Therefore: ⇒ correctly reflects termination behaviour.
With nondeterminism: may have both cs ⇒ t and a
nonterminating reduction cs → cs ′→ . . .

43



May versus Must
→ is deterministic:
Lemma cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′
(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating → path)

must terminate (all → paths terminate)
Therefore: ⇒ correctly reflects termination behaviour.

With nondeterminism: may have both cs ⇒ t and a
nonterminating reduction cs → cs ′→ . . .

43



May versus Must
→ is deterministic:
Lemma cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′
(Proof by rule induction)

Therefore: no difference between
may terminate (there is a terminating → path)

must terminate (all → paths terminate)
Therefore: ⇒ correctly reflects termination behaviour.
With nondeterminism: may have both cs ⇒ t and a
nonterminating reduction cs → cs ′→ . . .

43


	Semantics of IMP: A Simple Imperative Language

