
Lecture 4: Truth-Conditional Semantics

Weiwei Sun

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024/25

Do we see truth? Do we see truth? Do we see truth? Do we see
truth? Do we see truth? Do we see truth? Do we see truth? Do we
see truth? Do we see truth? Do we see truth? Do we see truth? Do
we see truth? Do we see truth? Do we see truth? Do we see truth?
Do we see truth? Do we see truth? Do we see truth? Do we see
truth? Do we see truth? Do we see truth? Do we see truth? Do we
see truth? Do we see truth? Do we see truth? Do we see truth? Do
we see truth? Do we see truth? Do we see truth?

Lecture 4: Truth-Conditional Semantics

1. Functions and λs

2. Truth conditions

3. First-Order Predicate Logic

4. Davidsonian semantics

Assignment I

Using predicate logic, write the truth-conditional semantic representations
of the following sentences.

• London Tube drivers to strike over pay

• We don’t want to go on strike

• Aslef is seeking a pay agreement with London Underground.

• No trade union can accept any pay proposal where management.

• about 10,000 of its members were involved in the dispute.

• The cost of living is always important to our finances.

• the rise is likely to be £10.50 to £628 a month

• Someone receiving attendance allowance will see an increase of about
£1.85 a week in April.

• Why the benefit rise could have been higher

• Many people face higher monthly repayments

1 of 29

Functions and λs

Set-theoretic semantics

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

. . .

World Model Language

• The semantics is defined in terms of Set Theory.

• JTrumpK = i12

• How can we easily and precisely describe sets as well as operations over
sets?

2 of 29

Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)lighter’(x)silver’(x)golden’(x)

3 of 29

Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)

lighter’(x)silver’(x)golden’(x)

3 of 29

Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)

lighter’(x)

silver’(x)golden’(x)

3 of 29

Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)lighter’(x)

silver’(x)

golden’(x)

3 of 29

Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)lighter’(x)silver’(x)

golden’(x)

3 of 29

Predicates are functions; predicates are sets.

Q What is the meaning of politician?

A politician’

• politician’ is a semantic predicate which is a set and also a function.

• Discourse referents are mapped to either 0 or 1 through politician’.
The referents mapped to 1 indicate politicians.

• How can we easily and precisely describe sets as well as operations over
sets?

It is a great idea to define functions with a minimal programming
language — λ-calculus.

4 of 29

Building functions

λ-calculus — a simple notation for functions and application

• β-reduction/function application:

[λx.M](N) −→M [x := N]

• Apply a λ-term to an argument, and get a value.

More online: https://plato.stanford.edu/entries/lambda-calculus/

Example

λ-calculus allows us to build functions in a very convenient way.

• f(x) = x2 ←→ [λx.[x2]]

• f(5) = 25←→ [λx.[x2]](5) = 25

• g(x, y) = x2 + y2 ←→ [λx.[λy.[x2 + y2]]]

• g(2, 1) = 5←→ [λx.[λy.[x2 + y2]]](2)(1) = 5

Challenge: Forms such as f(f(f(f(. . .)))) are annoying.
5 of 29

https://plato.stanford.edu/entries/lambda-calculus/

Simple types

From a nonempty set BasTyp of basic types, the set Typ is the smallest
set such that

• BasTyp ⊆ Typ,

• ⟨σ, τ⟩ ∈ Typ if σ, τ ∈ Typ.

A type of the form ⟨σ, τ⟩ is said to be a functional type.

Example

• Assume e for individuals and t for true/false,

• then ⟨e, t⟩ is the type for unary relations,

• and ⟨⟨e, t⟩, ⟨e, t⟩⟩ is for the type of a function mapping unary relations
into unary relations.

C/C++/Java/Typescript vs Python/Javascript

6 of 29

e, t and e to t

Gottlob Frege

There are only two atomic things, truth values and individuals. All other
things are created by function application.

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

entity e truth value t

λx.politician’(x) : ⟨e, t⟩
λx.lighter’(x) : ⟨e, t⟩
λx.silver’(x) : ⟨e, t⟩
λx.golden’(x) : ⟨e, t⟩

7 of 29

e, t and e to t

Gottlob Frege

There are only two atomic things, truth values and individuals. All other
things are created by function application.

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

entity e truth value t

λx.politician’(x) : ⟨e, t⟩
λx.lighter’(x) : ⟨e, t⟩
λx.silver’(x) : ⟨e, t⟩
λx.golden’(x) : ⟨e, t⟩

7 of 29

Syntactico-semantic composition

S
JVPK(JNPK)
= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
⟨e, t⟩

8 of 29

Syntactico-semantic composition

S
JVPK(JNPK)
= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
⟨e, t⟩

8 of 29

Syntactico-semantic composition

S
JVPK(JNPK)
= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
⟨e, t⟩

8 of 29

Syntactico-semantic composition

S
JVPK(JNPK)
= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
⟨e, t⟩

8 of 29

Compositional semantics

• JJohnson smokesK is not listed in the lexicon.

• But the interpretation of Johnson smokes can still be derived from its
parts along with a syntactic analysis.

• Finite means make infinite interpretation possible.

• This is exactly the point of compositional semantics

• and note that we have remained precise

• This means we can use this thing we just built as a meaning
representation of the kind we wanted in Lecture 1.

9 of 29

Transitive verbs
Johnson kissed Trump

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0

λx.[λy.kiss’(y, x)]
⟨e, ⟨e, t⟩⟩

10 of 29

Transitive verbs
Johnson kissed Trump

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0

λx.[λy.kiss’(y, x)]
⟨e, ⟨e, t⟩⟩

10 of 29

Transitive verbs
Johnson kissed Trump

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0

λx.[λy.kiss’(y, x)]
⟨e, ⟨e, t⟩⟩

10 of 29

Syntactico-semantic composition
S

JVPK(JNPK)
= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

⟨e, t⟩

The type of this VP
is the same as that of
an intransitive verb.

⟨e, ⟨e, t⟩⟩

The type of this V
can be inferred from
the type of the result,

i.e. VP, and
the type of the argument,

i.e. the object.

Function Application

11 of 29

Syntactico-semantic composition
S

JVPK(JNPK)
= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

⟨e, t⟩

The type of this VP
is the same as that of
an intransitive verb.

⟨e, ⟨e, t⟩⟩

The type of this V
can be inferred from
the type of the result,

i.e. VP, and
the type of the argument,

i.e. the object.

Function Application

11 of 29

Syntactico-semantic composition
S

JVPK(JNPK)
= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

⟨e, t⟩

The type of this VP
is the same as that of
an intransitive verb.

⟨e, ⟨e, t⟩⟩

The type of this V
can be inferred from
the type of the result,

i.e. VP, and
the type of the argument,

i.e. the object.

Function Application

11 of 29

Syntactico-semantic composition
S

JVPK(JNPK)
= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

⟨e, t⟩

The type of this VP
is the same as that of
an intransitive verb.

⟨e, ⟨e, t⟩⟩

The type of this V
can be inferred from
the type of the result,

i.e. VP, and
the type of the argument,

i.e. the object.

Function Application

11 of 29

Syntactico-semantic composition
S

JVPK(JNPK)
= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

⟨e, t⟩

The type of this VP
is the same as that of
an intransitive verb.

⟨e, ⟨e, t⟩⟩

The type of this V
can be inferred from
the type of the result,

i.e. VP, and
the type of the argument,

i.e. the object.

Function Application

11 of 29

Syntactico-semantic composition
S

JVPK(JNPK)
= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

⟨e, t⟩

The type of this VP
is the same as that of
an intransitive verb.

⟨e, ⟨e, t⟩⟩

The type of this V
can be inferred from
the type of the result,

i.e. VP, and
the type of the argument,

i.e. the object.

Function Application

11 of 29

What should we know for a lexical entry?

Example

• kissed

• syntactic category: V

• semantic type: ⟨e, ⟨e, t⟩⟩
• semantic interpretation: λx.[λy.kiss’(y, x)]

12 of 29

Truth-Conditions

Meanings as truth conditions

Ludwig Wittgenstein

To know the meaning of a sentence is to know how the world
would have to be for the sentence to be true.

The meaning of words and sentence parts is their contribution to the
truth-conditions of the whole sentence.

13 of 29

The truth-conditional tradition
Consider three different word models: Different people smoke

S
smoke’(i23) = 1

VP
λx.smoke’(x)

V
λx.smoke’(x)

smokes

NP
i23

N
i23

Johnson

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

JsmokesK
Word Model 1

JsmokesK
Word Model 2

JsmokesK
Word Model 3

14 of 29

The truth-conditional tradition
Consider three different word models: Different people smoke

S
smoke’(i23) = 0

VP
λx.smoke’(x)

V
λx.smoke’(x)

smokes

NP
i23

N
i23

Johnson

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

JsmokesK
Word Model 1

JsmokesK
Word Model 2

JsmokesK
Word Model 3

14 of 29

The truth-conditional tradition
Consider three different word models: Different people smoke

S
smoke’(i23) = 1

VP
λx.smoke’(x)

V
λx.smoke’(x)

smokes

NP
i23

N
i23

Johnson

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

JsmokesK
Word Model 1

JsmokesK
Word Model 2

JsmokesK
Word Model 3

14 of 29

First Order Predicate Logic

Reasoning, Syllogism=Syn- + logos

• All men are mortal.

• Socrates is a man.

• Therefore, Socrates is mortal.

• all’: ⟨⟨e, t⟩, ⟨e, t⟩⟩ second-order

• man’: ⟨e, t⟩
• mortal’: ⟨e, t⟩

mortal

man play

M1 socrates mary

15 of 29

FOPL syntax, Alphabet

• Quantifier symbols: ∀, ∃
• Logical connectives: ∧ , ∨ , → , ↔ , ¬
• Infinite set of variables, e.g. x, y, z

• Equality symbol =

• Truth constants ⊤ and ⊥
• Infinite set of n-ary predicate symbols, e.g. P,Q

• Infinite set of n-ary function symbols, e.g. f, g

16 of 29

FOPL syntax, Term

Terms in FOPL are defined as:

• Any variable symbol is a term

• If f is an n-ary function symbol, and t1, . . . , tn are terms, then
f(t1, . . . , tn) is a term.

17 of 29

FOPL syntax, Formula

Formulae in FOPL are defined as follows:

• Predicate symbols. If P is an n-ary predicate symbol and t1,. . . , tn are
terms then P (t1, ..., tn) is a formula.

• Equality. If the equality symbol is considered part of the logic, and t1
and t2 are terms, then t1 = t2 is a formula.

• Negation. If φ is a formula, then ¬φ is a formula.

• Binary connectives. If φ and ψ are formulas, then φ→ ψ is a formula.
Similar rules apply to other binary logical connectives.

• Quantifiers. If φ is a formula and x is a variable, then ∀xφ and ∃xφ are
formulas.

18 of 29

FOPL syntax, notational conventions

• ¬ is evaluated first

• ∧ and ∨ are evaluated next

• Quantifiers are evaluated next

• → is evaluated last.

• (and) can be used to explictly indicate combination orders.

19 of 29

FOPL, Examples

Example: a well-formed formula

∀x∀y(P (f(x))→ ¬(P (x)→ Q(f(y), x, z)))

is a well-formed formula, if f is a unary function symbol, P a unary
predicate symbol, and Q a ternary predicate symbol.

Example: a string of symbols from the alphabet that is not a formula

∀xx→

20 of 29

Universal quantifier

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

21 of 29

Universal quantifier

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

21 of 29

Universal quantifier

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

21 of 29

Universal quantifier

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

smoke

student

teacher

x

21 of 29

Davidsonian Semantics

Davidsonian semantics: Adding event variables

i12

JJohnsonK
i34

i45

i56

i123i234

i345i456

eve12

“smokes”

JJohnson smokesK

What is the type of JgivesK? e — individual.

22 of 29

Davidsonian semantics: Adding event variables

i12

JJohnsonK
i34

i45

i56

i123i234

i345i456

eve12

“smokes”

JJohnson smokesK

What is the type of JgivesK? e — individual.

22 of 29

Davidsonian semantics: Adding event variables

i12

JJohnsonK
i34

i45

i56

i123i234

i345i456

eve12

“smokes”

JJohnson smokesK

What is the type of JgivesK? e — individual.

22 of 29

Ditransitive verb

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456

JgivesK

JT gives J a golden lighterK

What is the type of JgivesK? e — individual.

23 of 29

Ditransitive verb

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456

JgivesK

JT gives J a golden lighterK

What is the type of JgivesK? e — individual.

23 of 29

Neo-Davidsonian semantics: Further decomposition

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456 agent theme recipient

semantic roles

JgivesK

JT gives J a golden lighterK

Further decomposition of the event structure

24 of 29

Neo-Davidsonian semantics: Further decomposition

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456 agent theme recipient

semantic roles

JgivesK

JT gives J a golden lighterK

Further decomposition of the event structure

24 of 29

Lexicalised vs unlexicalised

Before Davidson
• JgivesK(JTrumpK, JJohnsonK, Ja golden lighterK)
• λx.[λy.[λz.give’(z, x, y)]] ⟨e, ⟨e, ⟨e, t⟩⟩⟩
• Lexicalised: the lexical entry contains rich information of arguments.

Davidsonian
• JgivesK(e, JTrumpK, JJohnsonK, Ja golden lighterK)
• Lexicalised

• Now it is easier to handle Mandarin verbal classifiers.

Neo-Davidsonian
• JgivesK(e) ∧ agent(e, JTrumpK) ∧ recipient(e, JJohnsonK) ∧

theme(e, Ja golden lighterK)
• Modularisation of information

• Unlexicalised: the lexical entry doesn’t need to know argument
structure.

25 of 29

Truth of these statements in our world model?

In the world where Trump gave Johnson a golden lighter is true, which one
of the following is true?

• Johnson gave Trump a lighter

• Trump gave Johnson a silver lighter

• Johnson was given a lighter

26 of 29

Truth of these statements in our world model?
Remember the world where Trump gave Johnson a golden lighter? Are the
following statements true in that world?

1 Johnson gave Trump a lighter

2 Trump gave Johnson a silver lighter

3 Johnson was given a lighter

1. Johnson gave Trump a lighter.

∃x((give’(e) ∧ recipient(e, trump’) ∧ agent(e, johnson’)∧
theme(e, x) ∧ lighter’(x)))
→ TRUTH VALUE is 0

2. Trump gave Johnson a silver lighter
∃x((give’(e) ∧ agent(e, trump’) ∧ recipient(e, johnson’)∧

theme(e, x) ∧ lighter’(x) ∧ silver’(x)))
→ TRUTH VALUE is 0

3. Johnson was given a lighter
∃x((give’(e) ∧ recipient(e, johnson’) ∧ theme(e, x) ∧ lighter’(x)))

→ TRUTH VALUE is 1

27 of 29

Truth of these statements in our world model?
Remember the world where Trump gave Johnson a golden lighter? Are the
following statements true in that world?

1 Johnson gave Trump a lighter

2 Trump gave Johnson a silver lighter

3 Johnson was given a lighter

1. Johnson gave Trump a lighter.
∃x((give’(e) ∧ recipient(e, trump’) ∧ agent(e, johnson’)∧

theme(e, x) ∧ lighter’(x)))
→ TRUTH VALUE is 0

2. Trump gave Johnson a silver lighter
∃x((give’(e) ∧ agent(e, trump’) ∧ recipient(e, johnson’)∧

theme(e, x) ∧ lighter’(x) ∧ silver’(x)))
→ TRUTH VALUE is 0

3. Johnson was given a lighter
∃x((give’(e) ∧ recipient(e, johnson’) ∧ theme(e, x) ∧ lighter’(x)))

→ TRUTH VALUE is 1

27 of 29

Truth of these statements in our world model?
Remember the world where Trump gave Johnson a golden lighter? Are the
following statements true in that world?

1 Johnson gave Trump a lighter

2 Trump gave Johnson a silver lighter

3 Johnson was given a lighter

1. Johnson gave Trump a lighter.
∃x((give’(e) ∧ recipient(e, trump’) ∧ agent(e, johnson’)∧

theme(e, x) ∧ lighter’(x)))
→ TRUTH VALUE is 0

2. Trump gave Johnson a silver lighter
∃x((give’(e) ∧ agent(e, trump’) ∧ recipient(e, johnson’)∧

theme(e, x) ∧ lighter’(x) ∧ silver’(x)))
→ TRUTH VALUE is 0

3. Johnson was given a lighter
∃x((give’(e) ∧ recipient(e, johnson’) ∧ theme(e, x) ∧ lighter’(x)))

→ TRUTH VALUE is 1

27 of 29

Truth of these statements in our world model?
Remember the world where Trump gave Johnson a golden lighter? Are the
following statements true in that world?

1 Johnson gave Trump a lighter

2 Trump gave Johnson a silver lighter

3 Johnson was given a lighter

1. Johnson gave Trump a lighter.
∃x((give’(e) ∧ recipient(e, trump’) ∧ agent(e, johnson’)∧

theme(e, x) ∧ lighter’(x)))
→ TRUTH VALUE is 0

2. Trump gave Johnson a silver lighter
∃x((give’(e) ∧ agent(e, trump’) ∧ recipient(e, johnson’)∧

theme(e, x) ∧ lighter’(x) ∧ silver’(x)))
→ TRUTH VALUE is 0

3. Johnson was given a lighter
∃x((give’(e) ∧ recipient(e, johnson’) ∧ theme(e, x) ∧ lighter’(x)))

→ TRUTH VALUE is 1

27 of 29

Pros: Precise; support composition; support reasoning

natural language sentences sentence

formal language formulas formula

models properties property

real world facts fact

representation

entail

follow

truth conditions truth condition

representation

formal semantics
(logic)

logic

from Yanjing Wang

28 of 29

Pros: Precise; support composition; support reasoning

natural language sentences sentence

formal language formulas formula

models properties property

real world facts fact

representation

entail

follow

truth conditions truth condition

representation

formal semantics
(logic)

logic

from Yanjing Wang

28 of 29

Pros: Precise; support composition; support reasoning

natural language sentences sentence

formal language formulas formula

models properties property

real world facts fact

representation

entail

follow

truth conditions truth condition

representation

formal semantics
(logic)

logic

from Yanjing Wang

28 of 29

Pros: Precise; support composition; support reasoning

natural language sentences sentence

formal language formulas formula

models properties property

real world facts fact

representation

entail

follow

truth conditions truth condition

representation

formal semantics
(logic)

logic

from Yanjing Wang

28 of 29

Reading

• Heim and Kratzer. Semantics in Generative Grammar . Chapter 1–3.

29 of 29

	Functions and s
	Truth-Conditions
	First Order Predicate Logic
	Davidsonian Semantics

