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Lecture 5: Graph-Based Meaning Representations

1. From logical forms to semantic graphs

2. String to graph parsing

3. Factorisation-based approach



From Logical Forms to Semantic Graphs



Different representations of logical forms

• Every desk has a computer more in later lecture on scope

• ∀x(desk’(x) → (∃y(computer’(y) ∧ have’(e, x, y))))

• every’(x, desk’(x), a’(y, computer’(y), have’(e, x, y)))

ARG0 identifies the word that “introduces” a variable, which corresponds to

discourse referent.

Every desk has a computer

BV ARG1

ARG2

BV
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Bi-lexical semantic dependency graphs

• Projecting “concept nodes” to “words”.

• Relations between “concepts” ⇒ bi-lexical semantic dependencies

• Reasonably good though not as expressive as conceptual graphs.

Weakness of bi-lexical semantic dependency graphs

What are the triggers of concepts?

• MWE:
Cambridge University

MWE

Modification

fake gun
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String-to-Graph Parsing



String to Graph parsing

• String to Graph parsing is the task of turning a string into a semantic
graph

• We always need to solve two main subtasks:
• Task 1: Concept Identification
• Task 2: Relation Extraction

• For some semantic graphs such as EDS we additionally need to do
concept-to-word alignment (task 0).
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String to Graph parsing: TASKS 1 and 2

• There are two methods for performing tasks 1 and 2.
• One is based on Factorisation

• Make some global analysis
• eg. for Task1, use sequence-labelling for concept identification
• For task 2, use Maximum Subgraph Parsing for relation detection

(bilinearity can be applied)
• This is the classic approach for AMR parsing, but any semantic graph

can be parsed this way, even MRS.

• The other is based on Composition
• local
• judge quality of each composition step
• computation is by classification over rules
• Tasks 1 and 2 are performed in parallel
• This is the classic approach for MRS.
• With some limitations, can also be applied to AMR.
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the drug was introduced in West Germany this year
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Task 0: Concept-to-word Alignment

Task 1: Concept Identification

Task 2: Relation Detection

The three sub-tasks should be done ((explicitly or implicitly) and (directly
or indirectly))
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Factorisation-Based Approach
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Concept Identification

The drug was introduced in West Germany this year

the q drug n 1 ∅ introduce v to in p named("W") named("G") this q dem year n 1

proper q proper q

compound loc nonsp

Almost Sequence Labeling

• Some nodes are linked to sub-words.

• Some nodes are linked to multiple words.

Solutions
• Preprocessing: every node is assigned to a single word
• Chunking: joint segmentation and tagging

• B-x: begin of x
• I-x: inside x
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Neural Tagging

Almost Sequence Labeling

• Preprocessing: every node is assigned to a single word

• Chunking: joint segmentation and tagging

Challenge

Like POS tagging but with thousands of labels.

Delexicalization

The drug introduced in West Germany this year

the q drug n 1 introduce v to in p named("W") named("G") this q dem year n 1

compound proper q loc nonsp

proper q

* q * n 1 * v to * p named named * q dem * n 1

compound proper q loc nonsp

proper q
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Relation detection and maximum subgraph

?

Maximum Subgraph Parsing

• Start from a directed graph G = (V,E) that corresponds to the input
sentence and a score function that evaluates the goodness of a graph.

• Search for a good subgraph G′ = (V,E′ ⊆ E):

G′ = arg max
G∗=(V,E∗⊆E)

Score(G∗)

First-order factorization

G′ = arg max
G∗=(V,E∗⊆E)

∑
e∈E∗

ScorePart(e)
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Use the inner product space

Bilinearity

• f(α1 + α2, β) = f(α1, β) + f(α2, β), f(kα, β) = kf(α, β)

• f(α, β1 + β2) = f(α, β1) + f(α, β2), f(α, kβ) = kf(α, β)

If {e1, e2, ...en} is a basis, then f(ei, ej) (∀i, j : 1 ≤ i, j ≤ n) identifies f .

Inner product ⟨α, β⟩
A positive-definite symmetric bilinear function

• positive-definite: ∀α ̸= 0 : f(α, α) > 0

• symmetric: f(α, β) = f(β, α)

Geometric intuitions

Inner product can be viewed as a generalisation of dot product. Inner
products allow us to discuss angles and lengths.

|α| =
√

⟨α, α⟩ cos(α, β) = ⟨α,β⟩
|α|·|β|
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Biaffine parsing

on whiteboard
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Readings

• Bender, E.M., Flickinger, D., Oepen, S., Packard, W. and Copestake,
A. Layers of interpretation: On grammar and compositionality. ICWS
2015.

• T. Dozat and C. Manning. Deep Biaffine Attention for Neural
Dependency Parsing.

• S. Oepen, A. Koller and W. Sun. ACL Tutorial on Graph-Based
Meaning Representations: Design and Processing.
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