
Overview of Natural Language Processing
Part II & ACS L390

Gradient Descent and Neural Nets

Weiwei Sun

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024/25



some yinkish dripners blorked quastofically into nindin with the pidibs

det adj noun verb adv prep noun prep det noun

Gradient Descent and Neural Nets

1. Gradient Descent

2. Feedforward Neural Networks



Gradient Descent



Supervised learning

Assume there is a good annotated corpus

D =
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(l), y(l))

}
How can we get a good parameter vector?

Maximum-Likelihood Estimation

θ̂ = argmaxL(θ)

where L(θ) is the log-likelihood of observing the data D:

L(θ) =

l∑
i=1

log p(y(i)|x(i); θ)

2 of 16



Gradient Descent/Ascent

In general, finding a minimum/maximum is hard .

However, a simple idea that often works:

• Initialise θ with some value

• Iteratively improve θ

The derivative tells us whether to increase or decrease
(but doesn’t tell us how much to increase/decrease by):

θ[t+1] = θ[t] + β
dL

dθ
(θ[t])

3 of 16



Gradient Descent for the Log-Linear Model

Assume we have a parameter vector θ.

p(y|x; θ) = exp(θ⊤f(x, y))∑
y′∈Y exp(θ⊤f(x, y′))

i.e.
p(y|x; θ) ∝ exp(θ⊤f(x, y))

L(θ) =

l∑
i=1

log p(y(i)|x(i); θ)

=

l∑
i=1

θ⊤f(x(i), y(i))− log
∑
y′∈Y

exp(θ⊤f(x(i), y′))



4 of 16



Gradient Descent for the Log-Linear Model

L(θ) =

l∑
i=1

θ⊤f(x(i), y(i))− log
∑
y′∈Y

exp(θ⊤f(x(i), y′))


Calculating gradients (chain rule)

dL

dθk
=

l∑
i=1

(
fk(x

(i), y(i))−
∑

y′∈Y
(
exp(θ⊤f(x(i), y′))fk(x

(i), y′)
)∑

y∗∈Y exp(θ⊤f(x(i), y∗))

)

=

l∑
i=1

fk(x
(i), y(i))−

l∑
i=1

∑
y′∈Y

fk(x
(i), y′)

exp(θ⊤f(x(i), y′))∑
y∗∈Y exp(θ⊤f(x(i), y∗))

=

l∑
i=1

fk(x
(i), y(i))︸ ︷︷ ︸

empirical counts

−
l∑

i=1

∑
y′∈Y

fk(x
(i), y′)p(y′|x(i); θ)

︸ ︷︷ ︸
expected counts

5 of 16



Gradient Descent for the Log-Linear Model

L(θ) =

l∑
i=1

θ⊤f(x(i), y(i))− log
∑
y′∈Y

exp(θ⊤f(x(i), y′))


Calculating gradients (chain rule)

dL

dθk
=

l∑
i=1

(
fk(x

(i), y(i))−
∑

y′∈Y
(
exp(θ⊤f(x(i), y′))fk(x

(i), y′)
)∑

y∗∈Y exp(θ⊤f(x(i), y∗))

)

=

l∑
i=1

fk(x
(i), y(i))−

l∑
i=1

∑
y′∈Y

fk(x
(i), y′)

exp(θ⊤f(x(i), y′))∑
y∗∈Y exp(θ⊤f(x(i), y∗))

=

l∑
i=1

fk(x
(i), y(i))︸ ︷︷ ︸

empirical counts

−
l∑

i=1

∑
y′∈Y

fk(x
(i), y′)p(y′|x(i); θ)

︸ ︷︷ ︸
expected counts

5 of 16



Gradient Descent: Algorithm
Maximize L(θ) where

dL

dθk
=

l∑
i=1

fk(x
(i), y(i))︸ ︷︷ ︸

empirical counts

−
l∑

i=1

∑
y′∈Y

fk(x
(i), y′)p(y′|x(i); θ)

︸ ︷︷ ︸
expected counts

1 Initialize θ[0] ← 0

2 for t = 1, . . .

3 calculate ∆ = dL(θ[t−1])
dθ

4 calculate β∗ = argmaxβ L(θ + β∆) ▷ line search

5 update θ[t] ← θ[t−1] + β∗∆

Challenges

• Go through every training sample to get ∆;

• Line search is another non-trival optimisation problem

6 of 16



Gradient Descent: Algorithm
Maximize L(θ) where

dL

dθk
=

l∑
i=1

fk(x
(i), y(i))︸ ︷︷ ︸

empirical counts

−
l∑

i=1

∑
y′∈Y

fk(x
(i), y′)p(y′|x(i); θ)

︸ ︷︷ ︸
expected counts

1 Initialize θ[0] ← 0

2 for t = 1, . . .

3 calculate ∆ = dL(θ[t−1])
dθ

4 calculate β∗ = argmaxβ L(θ + β∆) ▷ line search

5 update θ[t] ← θ[t−1] + β∗∆

Challenges

• Go through every training sample to get ∆;

• Line search is another non-trival optimisation problem

6 of 16



Stochastic Gradient Descent

L(θ) =

l∑
i=1

log p(y(i)|x(i); θ)

• Randomly use one or several training samples to get a suboptimal
gradient ∆′;

• Fix β.

7 of 16



Feedforward Neural Networks



Recap: about linear combination

p(y|x; θ) = exp(θ⊤f(x, y))∑
y′∈Y exp(θ⊤f(x, y′))

. . . 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 . . .

f1001: if word−2=some and tag=n

is θ1001 positive large?
vote for yes

θ⊤f(x, y) is a linear combination of θ. That is why a log-linear model is
called a linear classifier.

8 of 16



Questions

Can we automate the design of features?

Is linear combination justified?

9 of 16



f(x)

noun

copy

verb

copy

prep adj adv

f (x, y)

A simple way to define f(x, y) based on f(x) is “copy”. We assumed that
θ and f(x, y) have DK dimensions:

• D – number of input features

• K – number of output classes

So we can also view θ as comprising K vectors with D dimensions:

p(y|x; θ) ∝ exp(θ⊤y f(x))

f(x)

θnoun
θverb

dot
product

× =

nounhood
verbhood

10 of 16



f(x)

noun

copy

verb

copy

prep adj adv

f (x, y)

A simple way to define f(x, y) based on f(x) is “copy”. We assumed that
θ and f(x, y) have DK dimensions:

• D – number of input features

• K – number of output classes

So we can also view θ as comprising K vectors with D dimensions:

p(y|x; θ) ∝ exp(θ⊤y f(x))

f(x)

θnoun
θverb

dot
product

× =

nounhood
verbhood

10 of 16



f(x)

noun

copy

verb

copy

prep adj adv

f (x, y)

A simple way to define f(x, y) based on f(x) is “copy”. We assumed that
θ and f(x, y) have DK dimensions:

• D – number of input features

• K – number of output classes

So we can also view θ as comprising K vectors with D dimensions:

p(y|x; θ) ∝ exp(θ⊤y f(x))

f(x)

θnoun
θverb

dot
product

× =

nounhood
verbhood

10 of 16



Now consider NER after POS tagging

××

Oops! The combined transformation is linear!

Introduce some non-linearity

×exp

×

exp /g is applied component-wise (to each dimension separately)

11 of 16



Now consider NER after POS tagging

××

Oops! The combined transformation is linear!

Introduce some non-linearity

×exp

×

exp /g is applied component-wise (to each dimension separately)

11 of 16



Now consider NER after POS tagging

××

Oops! The combined transformation is linear!

Introduce some non-linearity

×exp

×

exp /g is applied component-wise (to each dimension separately)

11 of 16



Now consider NER after POS tagging

××

Oops! The combined transformation is linear!

Introduce some non-linearity

×g×

exp /g is applied component-wise (to each dimension separately)

11 of 16



Feedforward Neural Networks

Think about multi-class classificaition:

• D – number of features (input)

• K – number of classes (output)

• x – the input feature vector

Think about a particular class, say yk. We describe the “friendship”
between x and yk in the following way:

score function(x, yk) = w0 +

D∑
i=1

wixi

where w measures how much each feature wi contributes to yk.

12 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.
Things will be much more fun if we have a stack of perceptrons. Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing.

Again and again and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.
Things will be much more fun if we have a stack of perceptrons. Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again

and again and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.
Things will be much more fun if we have a stack of perceptrons. Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again

and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.
Things will be much more fun if we have a stack of perceptrons. Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.

Things will be much more fun if we have a stack of perceptrons. Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

w0 +
D∑
i=1

wixi
...

For each class yk, we do the same thing. Again and again and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.
Things will be much more fun if we have a stack of perceptrons.

Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

σ

(
w0 +

D∑
i=1

wixi

)
...

For each class yk, we do the same thing. Again and again and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.
Things will be much more fun if we have a stack of perceptrons. Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication.

Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

Σ σ

+1

x1

x2

x3

xD

w
0

w
1

w2

w3

wD

σ

(
w0 +

D∑
i=1

wixi

)
...

For each class yk, we do the same thing. Again and again and again. This
is called perceptron, which was invented by Frank Rosenblatt in 1958.
Things will be much more fun if we have a stack of perceptrons. Oops,
must add something...
Sigmoid σ(x) = 1

1+e−x

Otherwise, simple matrix multiplication. Now you can do non-linear
classification.

13 of 16



Feedforward Neural Networks

A feedforward neural network is a composition of simple functions:

• 1 layer: exp(W1x) ▷ log-linear model

• 2 layers: exp(W2g(W1x))

• 3 layers: exp(W3g(W2g(W1x)))

• 4 layers: exp(W4g(W3g(W2g(W1x))))

• . . .

Both exp and g are applied component-wise (to each dimension separately)

The activation function g should be non-linear, e.g.:

• Rectified linear unit: ReLU(z) = max(0, z)

• Hyperbolic tangent: tanh(z) = e2z−1
e2z+1

• Sigmoid: σ(z) = 1
1+e−z

14 of 16



Feedforward Neural Networks

A feedforward neural network is a composition of simple functions:

• 1 layer: exp(W1x) ▷ log-linear model

• 2 layers: exp(W2g(W1x))

• 3 layers: exp(W3g(W2g(W1x)))

• 4 layers: exp(W4g(W3g(W2g(W1x))))

• . . .

Both exp and g are applied component-wise (to each dimension separately)

The activation function g should be non-linear, e.g.:

• Rectified linear unit: ReLU(z) = max(0, z)

• Hyperbolic tangent: tanh(z) = e2z−1
e2z+1

• Sigmoid: σ(z) = 1
1+e−z

14 of 16



Gradient Descent for Neural Nets

Assume there is a good annotated corpus:

D =
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(l), y(l))

}
Aim to maximise the log-likelihood (also called “cross entropy”):

L(θ) =

l∑
i=1

log p(y(i)|x(i); θ)

θ now contains parameters from many layers,
but we can still use gradient descent:

• Backpropagation: efficient application of chain rule

• Iterate many times over training set

15 of 16



Gradient Descent for Neural Nets

Assume there is a good annotated corpus:

D =
{
(x(1), y(1)), (x(2), y(2)), . . . , (x(l), y(l))

}
Aim to maximise the log-likelihood (also called “cross entropy”):

L(θ) =

l∑
i=1

log p(y(i)|x(i); θ)

θ now contains parameters from many layers,
but we can still use gradient descent:

• Backpropagation: efficient application of chain rule

• Iterate many times over training set

15 of 16



Reading

• D Jurafsky and J Martin. Speech and Language Processing
Chapter 6. web.stanford.edu/~jurafsky/slp3/6.pdf

* Essence of linear algebra
www.youtube.com/watch?v=fNk_zzaMoSs&list=

PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

16 of 16

web.stanford.edu/~jurafsky/slp3/6.pdf
www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
www.youtube.com/watch?v=fNk_zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

	Gradient Descent
	Feedforward Neural Networks
	Appendix

