
Overview of Natural Language Processing
Part II & ACS L390
Lecture 6: Incrementality

Weiwei Sun

Department of Computer Science and Technology
University of Cambridge

Michaelmas 2024/25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I

convinced her children are noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I convinced

her children are noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I convinced her

children are noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I convinced her children

are noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I convinced her children are

noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I convinced her children are noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I convinced her children are noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Incrementality in human language comprehension

Self-paced reading: you press a button for each word

I convinced her children are noisy.

at which word, do you stop for a significantly longer time?

Linguistic performance

• Left-to-right, word-by-word

• Partially parsed results (history) constrain parsing of subsequent words

Lecture 6: Incrementality

1. Rethink part-of-speech tagging

2. Sequence-to-sequence

3. Recurrent Neural Networks

1 of 25

Rethink Part-of-Speech Tagging

Chomsky Hierarchy

Grammar Languages Production rules

Type-0 Recursively enumerable α→γ
Type-1 Context-sensitive αAβ→αγβ
Type-2 Context-free A→γ
Type-3 Regular A→a

A→aB

a ∈ N ; α, β, γ ∈ (N ∪ Σ)∗

regular

context free

context sensitive

recursively enumerable
a language

2 of 25

An example

Max bit the cat [which chased the mouse [which died]].

A toy grammar

• VP→ bit|chased|. . . DP
• VP→ died

• DP→ the|a|this|. . . NP
• NP→ dog|cat|mouse|. . . RC
• RC→ which|that|. . . VP

VP
⇒ bit DP ⇒ bit the NP ⇒ bit the cat RC
⇒ bit the cat which VP

3 of 25

An example

Max bit the cat [which chased the mouse [which died]].

A toy grammar

• VP→ bit|chased|. . . DP
• VP→ died

• DP→ the|a|this|. . . NP
• NP→ dog|cat|mouse|. . . RC
• RC→ which|that|. . . VP

VP

⇒ bit DP ⇒ bit the NP ⇒ bit the cat RC
⇒ bit the cat which VP

3 of 25

An example

Max bit the cat [which chased the mouse [which died]].

A toy grammar

• VP→ bit|chased|. . . DP
• VP→ died

• DP→ the|a|this|. . . NP
• NP→ dog|cat|mouse|. . . RC
• RC→ which|that|. . . VP

VP
⇒ bit DP

⇒ bit the NP ⇒ bit the cat RC
⇒ bit the cat which VP

3 of 25

An example

Max bit the cat [which chased the mouse [which died]].

A toy grammar

• VP→ bit|chased|. . . DP
• VP→ died

• DP→ the|a|this|. . . NP
• NP→ dog|cat|mouse|. . . RC
• RC→ which|that|. . . VP

VP
⇒ bit DP ⇒ bit the NP

⇒ bit the cat RC
⇒ bit the cat which VP

3 of 25

An example

Max bit the cat [which chased the mouse [which died]].

A toy grammar

• VP→ bit|chased|. . . DP
• VP→ died

• DP→ the|a|this|. . . NP
• NP→ dog|cat|mouse|. . . RC
• RC→ which|that|. . . VP

VP
⇒ bit DP ⇒ bit the NP ⇒ bit the cat RC

⇒ bit the cat which VP

3 of 25

An example

Max bit the cat [which chased the mouse [which died]].

A toy grammar

• VP→ bit|chased|. . . DP
• VP→ died

• DP→ the|a|this|. . . NP
• NP→ dog|cat|mouse|. . . RC
• RC→ which|that|. . . VP

VP
⇒ bit DP ⇒ bit the NP ⇒ bit the cat RC
⇒ bit the cat which VP

3 of 25

Finite state machines?

S

VP

DP

NP

RC

VP

DP

NP

RC

VP

. . .

which

mouse

the

chased

which

cat

the

bit

Max

4 of 25

Finite state machines?

M
ax

S

bit

VP

the

DP

cat

NP

which

RC

chased

VP

the

DP

m
ouse

NP

4 of 25

Word tagging is very powerful

Max

S

bit

VP

the

DP

cat

NP

which

RC

chased

VP

the

DP

mouse

NP

N V DET N PN V DET N

Generative models: Hidden Markov Models and PCFG

• pe(Max|S)× pt(VP|S)
• p(S → Max VP)

5 of 25

Word tagging is very powerful

Max

S

bit

VP

the

DP

cat

NP

which

RC

chased

VP

the

DP

mouse

NP

N V DET N PN V DET N

Generative models: Hidden Markov Models and PCFG

• pe(Max|S)× pt(VP|S)
• p(S → Max VP)

5 of 25

Probabilistic models for sequence pairs

• We have two sequences of random variables: X1, X2, ..., Xn and
S1, S2, ..., Sn

• Intuitively, each Xi corresponds to an observation and each Si

corresponds to an underlying state that generated the observation.
Assume that each Si is in {1, 2, ..., k}, and each Xi is in {1, 2, ..., o}.

• How do we model the joint distribution

P (X1 = x1, ..., Xn = xn, S1 = s1, ..., Sn = sn)

6 of 25

Hidden Markov Models

An HMM takes the following form

p(x1...xn, s1...sn; θ) = pt(s1)

n∏
j=2

pt(sj |sj−1)

n∏
j=1

pe(xj |sj)

Parameters in the model

1 Initial state parameters ϕs for s ∈ {1, 2, ..., k}
2 Transition parameters ϕs′|s for s, s′ ∈ {1, 2, ..., k}
3 Emission parameters ϕe|s for s ∈ {1, 2, ..., k} and e ∈ {1, 2, ..., o}
If we use a specific symbol to denote stop of a sequence: s0 = ∗
• Initial state parameters ϕs|∗
• Just look like transition parameters

7 of 25

Matrix representation for HMM parameters

• on whiteboard

8 of 25

Neural parameterisation

Chiu and Rush (2020) https://arxiv.org/pdf/2011.04640

• Each state has an embedding: Es ∈ R|S|×h

• Each observation has an embedding: Ex ∈ R|X |×h

• Intermediate representations for leaving and entering a state, as well as
emitting a word:

Hout,Hin,Hemit = MLP(Es)

• Hout,Hin,Hemit ∈ R|S|×h

• The HMM distributional parameters:

O ∝ exp(HemitE
⊤
x)

A ∝ exp(HinH
⊤
out)

9 of 25

https://arxiv.org/pdf/2011.04640

Harmonic word order

Morphology

• Postpositional and head-final languages use suffixes and no prefixes.

• Prepositional and head-initial languages use not only prefixes but also
suffixes.

Greenberg’s word order universals

• Universal 3: Languages with dominant VSO order are always
prepositional.

• Universal 4: With overwhelmingly greater than chance frequency,
languages with normal SOV order are postpositional.

• Universal 5: If a language has dominant SOV order and the genitive
follows the governing noun, then the adjective likewise follows the noun.

• Universal 17: With overwhelmingly more than chance frequency,
languages with dominant order VSO have the adjective after the noun.

Empirical data can be found at https://wals.info.

10 of 25

https://wals.info

With a probable perspective

Regular languages

Context-free languages

Context-sensitive languages

Type-0 languages

A probable perspective

11 of 25

Sequence-to-Sequence

Many input tokens; one output token

y

· · ·

x1 x2
· · ·

xn

w1 w2 wn

• Sentiment classification

• Document classification

• Automatic essay scoring

• . . .

12 of 25

Many input tokens; many output token

y1 y2
· · ·

yn

· · ·

x1 x2
· · ·

xn

noun

verb

1

2

3

• POS tagging

• Segmentation and chunking

• Information extraction

• Dependency parsing

• . . .

13 of 25

Many input tokens; many output token

y1 y2
· · ·

ym

· · · · · ·

x1
· · ·

xn

wi
1 wi

n

wo
1 wo

2 wo
m

• Machine translation

• Textual summarization

• ChatBot?

• . . .

14 of 25

One input token; many output tokens

y1 y2 yn

· · ·

x1

wo
1 wo

2 wo
m

• Image captioning

• . . .

15 of 25

Linguistic structure prediction

As a structured prediction problem

• Search space: Is this analysis possible?

• Measurement: Is this analysis good?

• Decode: find the analysis that obtains the highest score

• Parameter estimation: find good parameters

y∗(x; θ) = argmax
y∈Y(x)

Score(x,y)

= argmax
y∈Y(x)

argmax
d:Deriv(d)=y

S∑
s=1

StepScore(x,ds)

generate a structure step by step

16 of 25

Recurrent Neural Networks

y1 y2
· · ·

yn−1 yn

h0

h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

y1 y2
· · ·

yn−1 yn

h0 h1 h2
· · ·

hn−1 hn

x1 x2
· · ·

xn−1 xn

hm = rnn(xm, hm−1)

the same parameters W hx

the same parameters W hh

The context at token m is summarized by a recurrently-updated vector:

hm = g(W hxxm +W hhhm−1 + bh)

A straightforward application to sequence labelling is to score each tag
ym with a log-linear function.

17 of 25

Multiple hidden layers

y1 y2
· · ·

yn

h31 h32
· · ·

h3n

h21 h22
· · ·

h2n

h11 h12
· · ·

h1n

x1 x2
· · ·

xn

18 of 25

Bidirectional RNN

y1 y2
· · ·

yn

hb1 hb2
· · ·

hbn

hf1 hf2
· · ·

hfn

x1 x2
· · ·

xn

• hfi = rnnforward(x, i)

• hbi = rnnbackward(x, i)

• hi = hfi ⊕ hbi

19 of 25

Bidirectional RNN

y1 y2
· · ·

yn

hb1 hb2
· · ·

hbn

hf1 hf2
· · ·

hfn

x1 x2
· · ·

xn

• hfi = rnnforward(x, i)

• hbi = rnnbackward(x, i)

• hi = hfi ⊕ hbi

19 of 25

Bidirectional RNN

y1 y2
· · ·

yn

hb1 hb2
· · ·

hbn

hf1 hf2
· · ·

hfn

x1 x2
· · ·

xn

• hfi = rnnforward(x, i)

• hbi = rnnbackward(x, i)

• hi = hfi ⊕ hbi

19 of 25

Bidirectional RNN

y1 y2
· · ·

yn

hb1 hb2
· · ·

hbn

hf1 hf2
· · ·

hfn

x1 x2
· · ·

xn

• hfi = rnnforward(x, i)

• hbi = rnnbackward(x, i)

• hi = hfi ⊕ hbi

19 of 25

Difficulties
• Despite having access to the entire preceding sequence, the information

encoded in hidden states tends to be fairly local, more relevant to the
most recent parts of the input sequence and recent decisions.

• It is often the case, however, that distant information is critical to many
language applications.

I convinced her children are noisy.
I convinced her children who are noisy are noisy.

• A second difficulty with training simple RNNs arises from the need to
backpropagate the error signal back through time.

• A frequent result of this process is that the gradients are eventually
driven to zero — the so-called vanishing gradients problem.

How can the two problems be solved with syntax?

20 of 25

Difficulties
• Despite having access to the entire preceding sequence, the information

encoded in hidden states tends to be fairly local, more relevant to the
most recent parts of the input sequence and recent decisions.

• It is often the case, however, that distant information is critical to many
language applications.

I convinced her children are noisy.
I convinced her children who are noisy are noisy.

• A second difficulty with training simple RNNs arises from the need to
backpropagate the error signal back through time.

• A frequent result of this process is that the gradients are eventually
driven to zero — the so-called vanishing gradients problem.

How can the two problems be solved with syntax?

20 of 25

Difficulties
• Despite having access to the entire preceding sequence, the information

encoded in hidden states tends to be fairly local, more relevant to the
most recent parts of the input sequence and recent decisions.

• It is often the case, however, that distant information is critical to many
language applications.

I convinced her children are noisy.
I convinced her children who are noisy are noisy.

• A second difficulty with training simple RNNs arises from the need to
backpropagate the error signal back through time.

• A frequent result of this process is that the gradients are eventually
driven to zero — the so-called vanishing gradients problem.

How can the two problems be solved with syntax?

20 of 25

Long Short-Term Memory

• RNNs have short-term memory

• Aim: lengthen the short-term memory

Long short-term memory (LSTM) networks

• remove information no longer needed from the context

• add information likely to be needed for later decision making

The key is to learn how to manage the context rather than hard-coding a
strategy: adding gates to control the flow of information into and out of
the units.

21 of 25

Long Short-Term Memory

• RNNs have short-term memory

• Aim: lengthen the short-term memory

Long short-term memory (LSTM) networks

• remove information no longer needed from the context

• add information likely to be needed for later decision making

The key is to learn how to manage the context rather than hard-coding a
strategy: adding gates to control the flow of information into and out of
the units.

21 of 25

Long Short-Term Memory

• RNNs have short-term memory

• Aim: lengthen the short-term memory

Long short-term memory (LSTM) networks

• remove information no longer needed from the context

• add information likely to be needed for later decision making

The key is to learn how to manage the context rather than hard-coding a
strategy: adding gates to control the flow of information into and out of
the units.

21 of 25

Long Short-Term Memory
basic computation

gi = tanh(W hhhi−1 +W hxxi)

context vector
ci = ji + ki

input gate: select the information to add to the current context.

ii = σ(W i,hhi−1 +W i,xxi)

ji = gi ⊙ ii

forget gate: delete information from the context

fi = σ(W f,hhi−1 +W f,xxi)

ki = ci−1 ⊙ fi

output gate: decide the information for the current hidden state.

oi = σ(W o,hhi−1 +W o,xxi)

hi = oi ⊙ tanh(ci)

22 of 25

rnn = nn.LSTM(10, 20, 2)

input = torch.randn(5, 3, 10)

h0 = torch.randn(2, 3, 20)

c0 = torch.randn(2, 3, 20)

output, (hn, cn) = rnn(input, (h0, c0))

photo idea from Hung-yi Lee

23 of 25

Connection to Finite State Machines

q1 q2 q3

q4

ϵ:# s:s

any:any

any:any

s:s
x:x
z:z

s:s
x:x
z:z

e:#

S b o x e s

q1 q1 q1 q4 q2 q3

24 of 25

Reading

D Jurafsky and J Martin. Speech and Language Processing.

• Chapter 8. RNNs and LSTMs.
https://web.stanford.edu/~jurafsky/slp3/8.pdf

25 of 25

https://web.stanford.edu/~jurafsky/slp3/8.pdf

	Rethink Part-of-Speech Tagging
	Sequence-to-Sequence
	Recurrent Neural Networks
	Appendix

