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I think the deepest property of language
and puzzling property that’s been discovered
is what is sometimes called structure depen-
dence. [...] Linear closeness is an easy com-
putation, but here you’re doing a much more,
what looks like a more complex computation.

Lecture 9: Projection, Dependency and Attention

1. Projection and dependency

2. Mild context-sensitivity

3. Attention and transformer



Projection and dependency
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Mildly Context-Sensitive Languages



Reminder: Chomsky Hierarchy

Grammar Languages Production rules

Type-0 Recursively enumerable α→γ
Type-1 Context-sensitive αAβ→αγβ
Type-2 Context-free A→γ
Type-3 Regular A→a

A→aB

a ∈ N ; α, β ∈ (N ∪ Σ)∗, γ ∈ (N ∪ Σ)+

regular

context free

context sensitive

recursively enumerable
a language

2 of 15



Challenge

Cross-serial dependencies in Swiss German

. . . das mer em Hans es huus hälfed aastriiche

. . . that we HansDat houseAcc help paint

. . . that we helped Hans paint the house

. . . das mer d’chind em Hans es huus lönd hälfe aastriiche

. . . that we the childrenAcc HansDat houseAcc let help paint

. . . that we let the children help Hans paint the house

Cross-serial dependencies in Dutch

. . . dat Wim Jan Marie de kinderen zag helpen leren zwemmen

. . . that Wim Jan Marie the children saw help teach swim

. . . that Wim saw Jan help Marie teach the children to swim
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Cross-serial dependencies

Cross-serial dependencies in Dutch

. . . dat Wim Jan Marie de kinderen zag helpen leren zwemmen

. . . that Wim Jan Marie the children saw help teach swim

. . . that Wim saw Jan help Marie teach the children to swim

dat Wim Jan Marie de kinderen zag helpen leren zwemmen
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Mildly Context-Sensitive Languages

With a possibility perspective

Natural languages are provably non-context-free.
Natural languages = mildly context-sensitive languages?

Regular languages

Context-free languages

Context-sensitive languages

Type-0 languages

Mildly context-sensitive languages

A probable perspective
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Coreference

(1) a. The chicken didn’t cross the street because it was too tired.

b. The chicken didn’t cross the street because it was too wide.
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Attention and Transformer



Key milestones

• Before 2014: RNN/LSTM

• Attention 2015: Bahdanau, Cho and Bengio. Neural machine
translation by joint learning to align and translate.

• Transformer 2017: Google’s “Attention is All Your Need”

• Pre-trained Models 2018–: BERT, GPT, etc.
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Attention
y1 y2
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• We have encoder hidden states hii, . . . , h
i
n ∈ Rh

• On timestep t, we have decoder hidden state hot ∈ Rh

• We get attention scores et for step t:

et = [(hot )
⊤hi1, (h

o
t )

⊤hi2, . . . , (h
o
t )

⊤hin] ∈ Rn

• We get a distribution by applying softmax:

αt = softmax(et)

• A weighted sum of encoder hidden states is then derived:

at =

n∑
k=1

αkh
i
k ∈ Rh

8 of 15



Transformer
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Transformer

Transformer is all about (self)
attention.

Self-attention is encoder-
encoder (or decoder-decoder)
attention where each word
attends to each other word
within the input (or output).
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Multi-head attention
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Self-attention
• For each word xi, calculate its query, key and value:

qi = WQxi; ki = WKxi; vi = W V xi

• Calculate attention score between query and keys:

eij =
qi · kj√

dk

• Apply softmax to normalise attention scores:

αij = softmax(eij)

• Take a weighted sum of values:

oj =
∑
j

αijvj

• All words attend to all words in previous layer.
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As Matrix multiplication
• Packing the input embeddings for the N tokens of the input sequence

into a single matrix: X ∈ RN×d. Each row is the embedding of one
token.

• Key and query matrices (denoted as WK and WQ) are of size d× dk
• Value matrix is of size d× dv

Q = XWQ
K = XWK V = XW V

Attention matrix

A = softmax(
QKT

√
dk

)V

Multi-head attention

headi = SelfAttention(Qi,Ki, V i)

MultiHeadAttention(X) = concat(head1,head2, ...)W
O
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Residual connection and layer normalisation
• Residual connection:
x 7→ f(x) + x.

• LayerNorm is applied to a
single vector in a hidden
layer.

µ =
1

d

d∑
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xi

σ =

√√√√1

d

d∑
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σ

LayerNorm(x) = γx̂+ β
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Reading

D Jurafsky and J Martin. Speech and Language Processing.

• §18.1 and §18.4. Dependency Parsing. Speech and Language
Processing. D Jurafsky and J Martin.
https://web.stanford.edu/~jurafsky/slp3/18.pdf

• Chapter 9. The Transformer.
https://web.stanford.edu/~jurafsky/slp3/9.pdf.
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