
Optimising Compilers
Computer Science Tripos Part II

Timothy Jones

Lecture 1
Introduction

A non-optimising compiler

intermediate code

parse tree

token stream

character stream

target code

lexing

parsing

translation

code generation

An optimising compiler

intermediate code

parse tree

token stream

character stream

target code

lexing

parsing

translation

code generation

optimisation

optimisation

optimisation

decompilation

Optimisation
(really “amelioration”!)

• Smaller

• Faster

• Cheaper (e.g. lower power consumption)

Good humans write simple, maintainable, general code.

Compilers should then remove unused generality,
and hence hopefully make the code:

Optimisation
=

Analysis
+

Transformation

Analysis + Transformation

• Transformation does something dangerous.

• Analysis determines whether it’s safe.

Analysis + Transformation

• An analysis shows that your program has
some property...

• ...and the transformation is designed to
be safe for all programs with that
property...

• ...so it’s safe to do the transformation.

int main(void)
{
 return 42;
}

int f(int x)
{
 return x * 2;
}

Analysis + Transformation

int main(void)
{
 return 42;
}

int f(int x)
{
 return x * 2;
}

Analysis + Transformation

✓

int main(void)
{
 return f(21);
}

int f(int x)
{
 return x * 2;
}

Analysis + Transformation

int main(void)
{
 return f(21);
}

int f(int x)
{
 return x * 2;
}

Analysis + Transformation

✗

while (i <= k*2) {
 j = j * i;
 i = i + 1;
}

Analysis + Transformation

int t = k * 2;
while (i <= t) {
 j = j * i;
 i = i + 1;
}

✓

Analysis + Transformation

while (i <= k*2) {
 k = k - i;
 i = i + 1;
}

Analysis + Transformation

int t = k * 2;
while (i <= t) {
 k = k - i;
 i = i + 1;
}

✗

Analysis + Transformation

Stack-oriented code
iload 0
iload 1
iadd
iload 2
iload 3
iadd
imul
ireturn

?

3-address code
MOV t32,arg1
MOV t33,arg2
ADD t34,t32,t33
MOV t35,arg3
MOV t36,arg4
ADD t37,t35,t36
MUL res1,t34,t37
EXIT

int fact (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n-1);
 }
}

C into 3-address code

C into 3-address code
 ENTRY fact
 MOV t32,arg1
 CMPEQ t32,#0,lab1
 SUB arg1,t32,#1
 CALL fact
 MUL res1,t32,res1
 EXIT
lab1: MOV res1,#1
 EXIT

Flowgraphs

Part A: Classical ‘Dataflow’ Optimisations

1 Introduction

Recall the structure of a simple non-optimising compiler (e.g. from CST Part Ib).

⌅
⇤

�
⇥character

stream
�

lex

⌅
⇤

�
⇥token

stream
�

syn

⌅
⇤

�
⇥

parse
tree

�

trn

⌅
⇤

�
⇥intermediate

code
�

gen

⌅
⇤

�
⇥

target
code

In such a compiler “intermediate code” is typically a stack-oriented abstract machine code
(e.g. OCODE in the BCPL compiler or JVM for Java). Note that stages ‘lex’, ‘syn’ and ‘trn’
are in principle source language-dependent, but not target architecture-dependent whereas
stage ‘gen’ is target dependent but not language dependent.

To ease optimisation (really ‘amelioration’ !) we need an intermediate code which makes
inter-instruction dependencies explicit to ease moving computations around. Typically we
use 3-address code (sometimes called ‘quadruples’). This is also near to modern RISC archi-
tectures and so facilitates target-dependent stage ‘gen’. This intermediate code is stored in
a flowgraph G—a graph whose nodes are labelled with 3-address instructions (or later ‘basic
blocks’). We write

pred(n) = {n� | (n�, n) ⇥ edges(G)}
succ(n) = {n� | (n, n�) ⇥ edges(G)}

for the sets of predecessor and successor nodes of a given node; we assume common graph
theory notions like path and cycle.

Forms of 3-address instructions (a, b, c are operands, f is a procedure name, and lab is a
label):

• ENTRY f : no predecessors;

• EXIT: no successors;

• ALU a, b, c: one successor (ADD, MUL, . . .);

• CMP⇧cond⌃ a, b, lab: two successors (CMPNE, CMPEQ, . . .) — in straight-line code these
instructions take a label argument (and fall through to the next instruction if the branch
doesn’t occur), whereas in a flowgraph they have two successor edges.

Multi-way branches (e.g. case) can be considered for this course as a cascade of CMP in-
structions. Procedure calls (CALL f) and indirect calls (CALLI a) are treated as atomic
instructions like ALU a, b, c. Similarly one distinguishes MOV a, b instructions (a special case
of ALU ignoring one operand) from indirect memory reference instructions (LDI a, b and
STI a, b) used to represent pointer dereference including accessing array elements. Indirect
branches (used for local goto ⇧exp⌃) terminate a basic block (see later); their successors must
include all the possible branch targets (see the description of Fortran ASSIGNED GOTO).

4

• A graph representation of a program

• Each node stores 3-address instruction(s)

• Each edge represents (potential) control flow:

Flowgraphs
ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT

Basic blocks

A maximal sequence of instructions n1, ..., nk which have

• exactly one predecessor (except possibly for n1)

• exactly one successor (except possibly for nk)

Basic blocks
ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT

Basic blocks

ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT

Basic blocks

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

MOV res1,#1

ENTRY fact

EXIT

Basic blocks

A basic block doesn’t contain any interesting control flow.

Basic blocks

Reduce time and space requirements
for analysis algorithms

by calculating and storing data flow information

once per block
(and recomputing within a block if required)

instead of

once per instruction.

Basic blocks

MOV t32,arg1
MOV t33,arg2
ADD t34,t32,t33
MOV t35,arg3
MOV t36,arg4
ADD t37,t35,t36
MUL res1,t34,t37
?

Basic blocks

?

?

?

?

?

Types of analysis

• Within basic blocks (“local” / “peephole”)

• Between basic blocks (“global” / “intra-procedural”)

• e.g. live variable analysis, available expressions

• Whole program (“inter-procedural”)

• e.g. unreachable-procedure elimination

(and hence optimisation)

Scope:

Peephole optimisation

ADD t32,arg1,#1
MOV r0,r1
MOV r1,r0
MUL t33,r0,t32

ADD t32,arg1,#1
MOV r0,r1
MUL t33,r0,t32

matches
MOV x,y
MOV y,x

with
MOV x,y

replace

Types of analysis

• Control flow

• Discovering control structure (basic blocks,
loops, calls between procedures)

• Data flow

• Discovering data flow structure (variable uses,
expression evaluation)

(and hence optimisation)

Type of information:

Finding basic blocks

1. Find all the instructions which are leaders:

• the first instruction is a leader;

• the target of any branch is a leader; and

• any instruction immediately following a
branch is a leader.

2. For each leader, its basic block consists of
itself and all instructions up to the next leader.

 ENTRY fact
 MOV t32,arg1
 CMPEQ t32,#0,lab1
 SUB arg1,t32,#1
 CALL fact
 MUL res1,t32,res1
 EXIT
lab1: MOV res1,#1
 EXIT

Finding basic blocks

Summary
• Structure of an optimising compiler

• Why optimise?

• Optimisation = Analysis + Transformation

• 3-address code

• Flowgraphs

• Basic blocks

• Types of analysis

• Locating basic blocks

	Lecture 1 short
	Lecture 2 short
	Lecture 3 short
	Lecture 4 short
	Lecture 5 short
	Lecture 6 short
	Lecture 7 short
	Lecture 8 short
	Lecture 9 short
	Lecture 10 short
	Lecture 11 short
	Lecture 12 short
	Lecture 13 short
	Lecture 14 short
	Lecture 15 short
	Lecture 16 short

