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Optimisation
(really “amelioration”!)

• Smaller

• Faster

• Cheaper (e.g. lower power consumption)

Good humans write simple, maintainable, general code.

Compilers should then remove unused generality,
and hence hopefully make the code:



Optimisation 
=

Analysis
+

Transformation



Analysis + Transformation

• Transformation does something dangerous.

• Analysis determines whether it’s safe.



Analysis + Transformation

• An analysis shows that your program has 
some property...

• ...and the transformation is designed to 
be safe for all programs with that 
property...

• ...so it’s safe to do the transformation.



int main(void) 
{ 
 return 42; 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation



int main(void) 
{ 
 return 42; 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation

✓



int main(void) 
{ 
 return f(21); 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation



int main(void) 
{ 
 return f(21); 
} 

int f(int x) 
{ 
 return x * 2; 
}

Analysis + Transformation

✗



while (i <= k*2) { 
 j = j * i; 
 i = i + 1; 
}

Analysis + Transformation



int t = k * 2; 
while (i <= t) { 
 j = j * i; 
 i = i + 1; 
}

✓

Analysis + Transformation



while (i <= k*2) { 
 k = k - i; 
 i = i + 1; 
}

Analysis + Transformation



int t = k * 2; 
while (i <= t) { 
 k = k - i; 
 i = i + 1; 
}

✗

Analysis + Transformation



Stack-oriented code
iload 0 
iload 1 
iadd 
iload 2 
iload 3 
iadd 
imul 
ireturn

?



3-address code
MOV t32,arg1 
MOV t33,arg2 
ADD t34,t32,t33 
MOV t35,arg3 
MOV t36,arg4 
ADD t37,t35,t36 
MUL res1,t34,t37 
EXIT



int fact (int n) { 
 if (n == 0) { 
  return 1; 
 } else { 
  return n * fact(n-1); 
 } 
}

C into 3-address code



C into 3-address code
     ENTRY fact 
     MOV t32,arg1 
     CMPEQ t32,#0,lab1 
     SUB arg1,t32,#1 
     CALL fact 
     MUL res1,t32,res1 
     EXIT 
lab1: MOV res1,#1 
     EXIT



Flowgraphs

Part A: Classical ‘Dataflow’ Optimisations

1 Introduction

Recall the structure of a simple non-optimising compiler (e.g. from CST Part Ib).
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In such a compiler “intermediate code” is typically a stack-oriented abstract machine code
(e.g. OCODE in the BCPL compiler or JVM for Java). Note that stages ‘lex’, ‘syn’ and ‘trn’
are in principle source language-dependent, but not target architecture-dependent whereas
stage ‘gen’ is target dependent but not language dependent.

To ease optimisation (really ‘amelioration’ !) we need an intermediate code which makes
inter-instruction dependencies explicit to ease moving computations around. Typically we
use 3-address code (sometimes called ‘quadruples’). This is also near to modern RISC archi-
tectures and so facilitates target-dependent stage ‘gen’. This intermediate code is stored in
a flowgraph G—a graph whose nodes are labelled with 3-address instructions (or later ‘basic
blocks’). We write

pred(n) = {n� | (n�, n) ⇥ edges(G)}
succ(n) = {n� | (n, n�) ⇥ edges(G)}

for the sets of predecessor and successor nodes of a given node; we assume common graph
theory notions like path and cycle.

Forms of 3-address instructions (a, b, c are operands, f is a procedure name, and lab is a
label):

• ENTRY f : no predecessors;

• EXIT: no successors;

• ALU a, b, c: one successor (ADD, MUL, . . . );

• CMP⇧cond⌃ a, b, lab: two successors (CMPNE, CMPEQ, . . . ) — in straight-line code these
instructions take a label argument (and fall through to the next instruction if the branch
doesn’t occur), whereas in a flowgraph they have two successor edges.

Multi-way branches (e.g. case) can be considered for this course as a cascade of CMP in-
structions. Procedure calls (CALL f) and indirect calls (CALLI a) are treated as atomic
instructions like ALU a, b, c. Similarly one distinguishes MOV a, b instructions (a special case
of ALU ignoring one operand) from indirect memory reference instructions (LDI a, b and
STI a, b) used to represent pointer dereference including accessing array elements. Indirect
branches (used for local goto ⇧exp⌃) terminate a basic block (see later); their successors must
include all the possible branch targets (see the description of Fortran ASSIGNED GOTO).

4

• A graph representation of a program

• Each node stores 3-address instruction(s) 

• Each edge represents (potential) control flow:



Flowgraphs
ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT



Basic blocks

A maximal sequence of instructions n1, ..., nk which have

• exactly one predecessor (except possibly for n1)

• exactly one successor (except possibly for nk)



Basic blocks
ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT



Basic blocks

ENTRY fact

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

EXIT

MOV res1,#1

EXIT



Basic blocks

MOV t32,arg1

CMPEQ t32,#0

SUB arg1,t32,#1

CALL fact

MUL res1,t32,res1

MOV res1,#1

ENTRY fact

EXIT



Basic blocks

A basic block doesn’t contain any interesting control flow.



Basic blocks

Reduce time and space requirements
for analysis algorithms

by calculating and storing data flow information

once per block
(and recomputing within a block if required)

instead of

once per instruction.



Basic blocks

MOV t32,arg1 
MOV t33,arg2 
ADD t34,t32,t33 
MOV t35,arg3 
MOV t36,arg4 
ADD t37,t35,t36 
MUL res1,t34,t37
?



Basic blocks

?

?

?

?

?



Types of analysis

• Within basic blocks (“local” / “peephole”)

• Between basic blocks (“global” / “intra-procedural”)

• e.g. live variable analysis, available expressions

• Whole program (“inter-procedural”)

• e.g. unreachable-procedure elimination

(and hence optimisation)

Scope:



Peephole optimisation

ADD t32,arg1,#1 
MOV r0,r1 
MOV r1,r0 
MUL t33,r0,t32

ADD t32,arg1,#1 
MOV r0,r1 
MUL t33,r0,t32

matches
MOV x,y 
MOV y,x

with
MOV x,y

replace



Types of analysis

• Control flow

• Discovering control structure (basic blocks, 
loops, calls between procedures)

• Data flow

• Discovering data flow structure (variable uses, 
expression evaluation)

(and hence optimisation)

Type of information:



Finding basic blocks

1. Find all the instructions which are leaders:

• the first instruction is a leader;

• the target of any branch is a leader; and

• any instruction immediately following a 
branch is a leader.

2. For each leader, its basic block consists of 
itself and all instructions up to the next leader.



     ENTRY fact 
     MOV t32,arg1 
     CMPEQ t32,#0,lab1 
     SUB arg1,t32,#1 
     CALL fact 
     MUL res1,t32,res1 
     EXIT 
lab1: MOV res1,#1 
     EXIT

Finding basic blocks



Summary
• Structure of an optimising compiler

• Why optimise?

• Optimisation = Analysis + Transformation

• 3-address code

• Flowgraphs

• Basic blocks

• Types of analysis

• Locating basic blocks
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