
Lecture 3
Live variable analysis



Discovering information about how data (i.e. variables and 
their values) may move through a program.

Data-flow analysis
MOV t32,arg1 
MOV t33,arg2 
ADD t34,t32,t33 
MOV t35,arg3 
MOV t36,arg4 
ADD t37,t35,t36 
MUL res1,t34,t37



Motivation
Programs may contain

• code which gets executed but which has no useful 
effect on the program’s overall result;

• occurrences of variables being used before they 
are defined; and

• many variables which need to be allocated 
registers and/or memory locations for compilation.

The concept of variable liveness is useful in 
dealing with all three of these situations.



Liveness

Liveness is a data-flow property of variables: 
“Is the value of this variable needed?” (cf. dead code)

int f(int x, int y) { 
  int z = x * y; 
  ⋮

? ?
?



Liveness
At each instruction, each variable in the program

is either live or dead.

We therefore usually consider liveness from an 
instruction’s perspective: each instruction (or node of the 

flowgraph) has an associated set of live variables.

⋮ 
int z = x * y; 
return s + t;

n: live(n) = { s, t, x, y }



Semantic vs. syntactic

There are two kinds of variable liveness:

• Semantic liveness

• Syntactic liveness



int x = y * z; 
⋮ 
return x; 

Semantic vs. syntactic

A variable x is semantically live at a node n if there is 
some execution sequence starting at n whose (externally 
observable) behaviour can be affected by changing the 

value of x.

x LIVE



x DEADint x = y * z; 
⋮ 
x = a + b; 
⋮ 
return x;

Semantic vs. syntactic

A variable x is semantically live at a node n if there is 
some execution sequence starting at n whose (externally 
observable) behaviour can be affected by changing the 

value of x.



Semantic vs. syntactic

Semantic liveness is concerned with
the execution behaviour of the program.

This is undecidable in general.
(e.g. Control flow may depend upon arithmetic.)



Syntactic liveness is concerned with properties of 
the syntactic structure of the program.

Of course, this is decidable.

Semantic vs. syntactic

A variable is syntactically live at a node if there is a 
path to the exit of the flowgraph along which its 

value may be used before it is redefined. 

So what’s the difference?



int t = x * y; 
if ((x+1)*(x+1) == y) { 
  t = 1; 
} 
if (x*x + 2*x + 1 != y) { 
  t = 2; 
} 
return t;

Semantic vs. syntactic

Semantically: one of the conditions will be true, so on 
every execution path t is redefined before it is returned.
The value assigned by the first instruction is never used.

t DEAD



Semantic vs. syntactic
      MUL t,x,y 
      ADD t32,x,#1 
      MUL t33,t32,t32 
      CMPNE t33,y,lab1 
      MOV t,#1 
lab1: MUL t34,x,x 
      MUL t35,x,#2 
      ADD t36,t34,t35 
      ADD t37,t36,#1 
      CMPEQ t37,y,lab2 
      MOV t,#2 
lab2: MOV res1,t



MOV t,#1

MOV t,#2

Semantic vs. syntactic
MUL  ,x,y 
ADD t32,x,#1 
MUL t33,t32,t32 
CMPNE t33,y

MUL t34,x,x 
MUL t35,x,#2 
ADD t36,t34,t35 
ADD t37,t36,#1 
CMPEQ t37,y

MOV res1,t

MOV t,#1

MOV t,#2

On this path through the 
flowgraph, t is not 

redefined before it’s used, 
so t is syntactically live at 

the first instruction.

Note that this path never 
actually occurs during 

execution.

t LIVE t



Semantic vs. syntactic

So, as we’ve seen before, syntactic liveness 
is a computable approximation of 

semantic liveness.



Semantic vs. syntactic

program variables

semantically
live at n

semantically
dead at n



Semantic vs. syntactic

syntactically live

imprecision

at n



Semantic vs. syntactic

2 Live Variable Analysis—LVA

A variable x is semantically live at node n if there is some execution sequence starting at n
whose I/O behaviour can be a�ected by changing the value of x.

A variable x is syntactically live at node n if there is a path in the flowgraph to a node
n� at which the current value of x may be used (i.e. a path from n to n� which contains no
definition of x and with n� containing a reference to x). Note that such a path may not
actually occur during any execution, e.g.

l1: ; /* is ’t’ live here? */
if ((x+1)*(x+1) == y) t = 1;
if (x*x+2*x+1 != y) t = 2;

l2: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.

sem-live(n) ⇥ syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and |= and also syntactic liveness and ⌅.

From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) =

�

⇤
⇧

s⇥succ(n)

live(s)

⇥

⌅ \ def (n) ⇤ ref (n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry
to node n and out-live(n) for those live on exit. This gives

in-live(n) = out-live(n) \ def (n) ⇤ ref (n)
out-live(n) =

⇧

s⇥succ(n)

in-live(s)

Here def (n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x, y}.

Notes:

• These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

• Any solution of these dataflow equations is safe (w.r.t. semantic liveness).

Problems with address-taken variables—consider:

int x,y,z,t,*p;
x = 1, y = 2, z = 3;
p = &y;
if (...) p = &y;
*p = 7;
if (...) p = &x;
t = *p;
print z+t;

8

Using syntactic methods, we
safely overestimate liveness.



Live variable analysis

int f(int x, int y) { 
  int z = x * y; 
  ⋮

int a = z*2;
print z;

if (z > 5) { 

LVA is a backwards data-flow analysis: usage information 
from future instructions must be propagated backwards 

through the program to discover which variables are live. 



Live variable analysis

Variable liveness flows (backwards) through 
the program in a continuous stream.

Each instruction has an effect on the 
liveness information as it flows past.



Live variable analysis

An instruction makes a variable live 
when it references (uses) it.



print f;

d = e + 1;

a = b * c;

Live variable analysis

a = b * c;

d = e + 1;

print f;

{ }

{ }

{ f }

{ e, f }

REFERENCE f

REFERENCE e

REFERENCE b, c

{ e, f }

{ f }

{ b, c, e, f }



Live variable analysis

An instruction makes a variable dead 
when it defines (assigns to) it.



{ a, b, c }{ a, b }

{ a }

{ a, b }

c = 13;

b = 11;

a = 7;

Live variable analysis

a = 7;

b = 11;

c = 13;

{ a, b, c }

{ a }

DEFINE c

DEFINE b

DEFINE a

{ }



Live variable analysis
We can devise functions ref(n) and def(n) 

which give the sets of variables referenced 
and defined by the instruction at node n.

def( x = x + y ) = { x }

ref( x = x + y ) = { x, y }

def( x = 3 ) = { x } def( print x ) = { }

ref( print x ) = { x }ref( x = 3 ) = { }



Live variable analysis
As liveness flows backwards past an instruction, we 

want to modify the liveness information by adding any 
variables which it references (they become live) and 
removing any which it defines (they become dead).

def( x = 3 ) = { x }ref( print x ) = { x }

{ x, y }

{ y }

{ y }

{ x, y }



Live variable analysis

If an instruction both references and defines variables, 
we must remove the defined variables before adding 

the referenced ones.

x = x + y

{ x, z }

def( x = x + y ) = { x }
{ x, z }

ref( x = x + y ) = { x, y }

{ z }{ x, y, z }



Live variable analysis

So, if we consider in-live(n) and out-live(n), 
the sets of variables which are live 

immediately before and immediately after 
a node, the following equation must hold:

in-live(n) =
(

out-live(n) \ def (n)
)

∪ ref (n)



in-live(n) = (out-live(n) ∖ def(n)) ∪ ref(n)

Live variable analysis

out-live(n) = { x, z }

def(n) = { x }

in-live(n) =
(

out-live(n) \ def (n)
)

∪ ref (n)

x = x + yn:
= { x, y, z }

= ({ x, z } ∖ { x }) ∪ { x, y }
= { z } ∪ { x, y }

ref(n) = { x, y }



in-live(n) = (out-live(n) ∖ def(n)) ∪ ref(n)

Live variable analysis

So we know how to calculate in-live(n) from 
the values of def(n), ref(n) and out-live(n).

But how do we calculate out-live(n)?

out-live(n)

x = x + yn:

= ?



Live variable analysis

In straight-line code each node has a unique 
successor, and the variables live at the exit of a 

node are exactly those variables live at the 
entry of its successor.



in-live(m) = { s, t, x, y }

in-live(n) = { s, t, z }

Live variable analysis

z = x * y;m:

print s + t;n:
out-live(n) = { z }

out-live(m) = { s, t, z }

(out-live(n) ∖ def(n)) ∪ ref(n)

(out-live(m) ∖ def(m)) ∪ ref(m)

l:

o:
in-live(o) = { z }

out-live(l) = { s, t, x, y }

(out-live(o) ∖ def(o)) ∪ ref(o)



Live variable analysis

In general, however, each node has an arbitrary 
number of successors, and the variables live at 
the exit of a node are exactly those variables 

live at the entry of any of its successors.



Live variable analysis

y = 19;n:

s = x * 2;o: t = y + 1;p:

x = 17;m:

{ s, z } { t, z }

{ x, y, z }

{ x, z } { y, z }

{ x, z }

{ x, z }

{ x, z } ∪ { y, z }
= { x, y, z }

{ s, z } { t, z }

?



Live variable analysis

So the following equation must also hold:

out-live(n) =
⋃

s∈succ(n)

in-live(s)



Data-flow equations

out-live(n) =
⋃

s∈succ(n)

in-live(s)

in-live(n) =
(

out-live(n) \ def (n)
)

∪ ref (n)

These are the data-flow equations for live variable 
analysis, and together they tell us everything we 
need to know about how to propagate liveness 

information through a program.



Data-flow equations

Each is expressed in terms of the other, so we can 
combine them to create one overall liveness equation.

live(n) =

⎛

⎝

⎛

⎝

⋃

s∈succ(n)

live(s)

⎞

⎠ \ def (n)

⎞

⎠ ∪ ref (n)



Algorithm

We now have a formal description of liveness, but we 
need an actual algorithm in order to do the analysis.



Algorithm

“Doing the analysis” consists of computing a value 
live(n) for each node n in a flowgraph such that the 

liveness data-flow equations are satisfied.

A simple way to solve the data-flow equations is to 
adopt an iterative strategy.



{ }

{ }

{ }

{ }

{ x, y }

{ x, y, z }

{ y, z }

{ z }

Algorithm
{ }

ref z

ref y

ref x

def x, y

def z

✗



{ }

{ }

{ }

{ }

{ x, y }

{ x, y, z }

{ y, z }

{ z }

{ x, y, z }

Algorithm
{ }

ref z

ref y

ref x

def x, y

def z

✓ { x, y, z }



Algorithm

for i = 1 to n do live[i] := {}
while (live[] changes) do
  for i = 1 to n do

    live[i] := 
⎛

⎝

⎛

⎝

⋃

s∈succ(i)

live[s]

⎞

⎠ \ def (i)

⎞

⎠ ∪ ref (i)



Algorithm

This algorithm is guaranteed to terminate since there 
are a finite number of variables in each program and 

the effect of one iteration is monotonic.

Furthermore, although any solution to the data-flow 
equations is safe, this algorithm is guaranteed to give 
the smallest (and therefore most precise) solution.

(See the Knaster-Tarski theorem if you’re interested.)



Algorithm

• If the program has n variables, we can implement 
each element of live[] as an n-bit value, with 
each bit representing the liveness of one 
variable.

• We can store liveness once per basic block and 
recompute inside a block when necessary. In this 
case, given a basic block n of instructions i1, ..., ik:

Implementation notes:

Here we are unsure whether the assignment *p = 7; assigns to x or y. Similarly we are
uncertain whether the reference t = *p; references x or y (but we are certain that both
reference p). These are ambiguous definitions and references. For safety we treat (for LVA)
an ambiguous reference as referencing any address-taken variable (cf. label variable and pro-
cedure variables—an indirect reference is just a ‘variable’ variable). Similarly an ambiguous
definition is just ignored. Hence in the above, for *p = 7; we have ref = {p} and def = {}
whereas t = *p; has ref = {p, x, y} and def = {t}.

Algorithm (implement live as an array live[]):

for i=1 to N do live[i] := {}
while (live[] changes) do

for i=1 to N do

live[i] :=

�

⇤
⌃

s�succ(i)

live[s]

⇥

⌅ \ def (i) ⌅ ref (i).

Clearly if the algorithm terminates then it results in a solution of the dataflow equation.
Actually the theory of complete partial orders (cpo’s) means that it always terminates with
the least solution, the one with as few variables as possible live consistent with safety. (The
powerset of the set of variables used in the program is a finite lattice and the map from
old-liveness to new-liveness in the loop is continuous.)

Notes:

• we can implement the live[] array as a bit vector using bit k being set to represent
that variable xk (according to a given numbering scheme) is live.

• we can speed execution and reduce store consumption by storing liveness information
only once per basic block and re-computing within a basic block if needed (typically
only during the use of LVA to validate a transformation). In this case the dataflow
equations become:

live(n) =

�

⇤
⌃

s�succ(n)

live(s)

⇥

⌅ \ def (ik) ⌅ ref (ik) · · · \ def (i1) ⌅ ref (i1)

where (i1, . . . , ik) are the instructions in basic block n.

3 Available expressions

Available expressions analysis (AVAIL) has many similarities to LVA. An expression e (typ-
ically the RHS of a 3-address instruction) is available at node n if on every path leading to
n the expression e has been evaluated and not invalidated by an intervening assignment to a
variable occurring in e.

This leads to dataflow equations:

avail(n) =
⇧

p�pred(n) (avail(p) \ kill(p) ⌅ gen(p)) if pred(n) ⇤= {}
avail(n) = {} if pred(n) = {}.

Here gen(n) gives the expressions freshly computed at n: gen(x = y+z) = {y + z}, for exam-
ple; but gen(x = x+z) = {} because, although this instruction does compute x + z, it then

9



Safety of analysis
• Syntactic liveness safely overapproximates semantic 

liveness.

• The usual problem occurs in the presence of 
address-taken variables (cf. labels, procedures): 
ambiguous definitions and references. For safety we 
must 

• overestimate ambiguous references (assume all 
address-taken variables are referenced) and

• underestimate ambiguous definitions (assume no 
variables are defined); this increases the size of the 
smallest solution.



Safety of analysis
MOV x,#1 
MOV y,#2 
MOV z,#3 
MOV t32,#&x 
MOV t33,#&y 
MOV t34,#&z 
⋮ 
STI t35,#7 
⋮ 
LDI t36,t37

m:

n:

def(m) = { }
ref(m) = { t35 }

def(n) = { t36 }
ref(n) = { t37, x, y, z }



Summary
• Data-flow analysis collects information about how 

data moves through a program

• Variable liveness is a data-flow property

• Live variable analysis (LVA) is a backwards data-
flow analysis for determining variable liveness

• LVA may be expressed as a pair of complementary 
data-flow equations, which can be combined

• A simple iterative algorithm can be used to find 
the smallest solution to the LVA data-flow 
equations
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