
P79: Cryptography and Protocol

Engineering
University of Cambridge

MPhil in Advanced Computer Science / Computer Science
Tripos, Part III

Lent term 2024/25
https://www.cl.cam.ac.uk/teaching/2425/P79/

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

https://www.cl.cam.ac.uk/teaching/2425/P79/

P79: Cryptography and
Protocol Engineering

https://www.cl.cam.ac.uk/teaching/2425/P79/

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

University of Cambridge
Part III/MPhil in Advanced Computer Science

This work is published under a
Creative Commons BY-SA license.

https://www.cl.cam.ac.uk/teaching/2425/P79/
https://creativecommons.org/licenses/by-sa/4.0/

Motivation

▶ The Internet (and hence,
the modern world) would
not function without
cryptography

▶ Cryptography has a
reputation of being
somehow magic

▶ Not magic! But complex
and easy to get wrong

▶ This module aims to
demystify modern
cryptography

About this module

▶ Running first time in 2024/25
▶ Thank you for being our guinea pigs :)
▶ Sorry for teething troubles!

▶ Practical orientation: focus on you writing code
▶ Theory (e.g. security proofs) is very important too
▶ Implementation + formalisation would be too much for

one module
▶ Plenty of engineering challenges in implementation

▶ Assessed by lab reports + code submissions
▶ Don’t just write the code, also reflect on it critically
▶ Code need not be production-quality, but you should

explain what would be required to make it so

“Don’t roll your own crypto!”

▶ Cryptography implementations are very prone to subtle
flaws that completely break the intended security
properties

▶ Production software (where harm could result if it’s
broken) should use expert-audited, preferably formally
verified code
▶ And those expert audits are not cheap

▶ But if you want to become one of those experts yourself,
reading and writing crypto code is a part of the journey

▶ If you put your code on GitHub, please add a big
warning label!

Module objectives

By the end of this module, you should hopefully. . .

▶ appreciate real-world cryptography

▶ know the mathematical notation and concepts used in
crypto protocols

▶ be able to understand and implement research papers and
crypto standards

▶ use crypto libraries correctly

▶ have tried some attacks on crypto protocols

▶ got a glimpse into recent research

▶ got better at technical writing (through lab reports)

Assessment

▶ Three lab report + code submissions:

1. Elliptic curve cryptography (10 17 Feb 2025)
2. Authenticated key exchange (3 Mar 2025)
3. Private information retrieval (24 Mar 2025)

▶ The worst of the 3 marks will be discarded; the remaining
2 marks count equally

▶ Discussions with others are allowed, but code and lab
report must be your individual work

▶ We’re happy to answer your questions – please ask!

▶ We aim to get you feedback on one report before the
next is due, so you can take it on board

Code: what you will implement

We will focus on implementing asymmetric cryptography:

▶ For hash functions (e.g. SHA-3) and symmetric ciphers
(e.g. AES), just use a library

▶ For big integer arithmetic, use Python’s built-in integers
▶ NOTE: this is not constant-time

▶ Everything else (e.g. elliptic curves) you will implement
from scratch

▶ Write suitable tests to catch bugs

▶ Tolerate maliciously generated input from the network

▶ Simulate the network within a single process (no need for
real networking, but do encode/decode to bytes)

▶ Don’t bother building user interfaces

Code: how to submit

▶ We provide you with a template for Python

▶ You can use another language (e.g. Rust), but we won’t
be able to help you with it

▶ Submit as a .zip archive that includes at least:
▶ Your code
▶ A Dockerfile that runs your code and tests
▶ A run.sh that builds and starts your Dockerfile
▶ Your lab report

At the end of today’s lecture, we will set up a sample
project together.

Code: what we look for

▶ Correctness ≫ robustness ≫ performance
▶ Make it easy for us to verify this by including tests with

known input output pairs

▶ Tests

▶ Design of your API: typing, error handling, naming,
consistency

▶ Documentation: high-level picture, do not comment
every line, make meaningful comments, API language
should be self-documenting

▶ Well-motivated extensions and comparisons:
benchmarking, interesting testing approaches,
compatibility with other libraries, extra hardening,
side-channel resistance, . . .

Lab reports

Remember, kids: the only difference between screwing
around and science is writing it down.
– Adam Savage

2,000 words, explaining key aspects of your code:

▶ How it works

▶ Why it’s correct

▶ Any findings from your work (e.g. limitations or trade-offs
you found)

▶ What you’d need to change to make it production-quality

▶ Other insights, e.g. how it compares with other
implementations (performance or otherwise)

Opportunity for your critical insights and creativity!

https://www.youtube.com/watch?v=BSUMBBFjxrY

Lab report requirements

Written in LaTeX

No fixed structure, but should contain:

▶ Explanation of core ideas behind your code

▶ How do you know that it is correct?
▶ Minimum acceptable: “I copied it from the RFC”
▶ Better: tests, types, derived formulas yourself
▶ Ideal (but not required for this module): formal proof

▶ References to relevant literature
(citations not included in word limit)

Assessment criteria:

▶ Correctness and clarity of explanations

▶ Critical reflection

▶ High marks require significant creative insight

Recommended reading

We don’t know of a textbook that covers the material in this
module.

No required reading, but if you want a bit more background
(earlier editions are fine too; check the library):

▶ More practical: Jean-Philippe Aumasson. Serious
Cryptography, 2nd Edition. No Starch Press, 2024.

▶ More formal: Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography, 3rd edition. CRC
Press, 2020.

▶ On elliptic curves: Darrel Hankerson, Alfred Menezes,
and Scott Vanstone. Guide to Elliptic Curve
Cryptography. Springer, 2004.

▶ References in the lecture notes

Basic cryptography recap

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

University of Cambridge
Part III/MPhil in Advanced Computer Science

Basic cryptography recap

Hope you already know (roughly) what SHA-256, AES-GCM,
and Diffie-Hellman are. . .

▶ Let’s quickly recap the core primitives and their security
properties.

▶ Let’s also get you writing code that uses those primitives
(provided by crypto libraries).

▶ We will use PyNaCl (Python wrapper for libsodium).

▶ PyCryptodome is also popular

Setup for the code examples:

brew install python # or equivalent on your OS

python3 -m venv .venv # creates subdirectory ".venv"

source .venv/bin/activate

pip install pynacl

Hash functions

H(x) takes an arbitrary-length bit string x and returns a
fixed-length bit string

▶ e.g. SHA-256, SHA-3, BLAKE2/3

▶ Preimage resistance: given H(x) you can only find x
by trying all possible values of x

▶ Collision resistance: computationally infeasible to find
x ̸= y such that H(x) = H(y)

▶ Birthday paradox: need O(
√
2n) = O(2n/2)

computation to find a collision in an n-bit hash function

from hashlib import sha256 # Python standard library

in_bytes = 'Hello'.encode('utf-8')

print(sha256(in_bytes).hexdigest())

185f8db32271fe25f561a6fc938b2e...

Symmetric encryption

▶ key ← Gen() generates a key

▶ c← Enc(key ,msg) returns ciphertext c

▶ msg ← Dec(key , c) decrypts c, returns msg or error

▶ Generally want authenticated encryption: ensures that
if c is manipulated, Dec returns error

▶ Block/stream cipher + Msg Authentication Code (MAC)

▶ AEAD: Authenticated Encryption with Associated Data
(AD is unencrypted but authenticated)

▶ e.g. AES-GCM, ChaCha20-Poly1305, XSalsa20-Poly1305

from nacl.secret import SecretBox

from nacl.utils import random

key = random(SecretBox.KEY_SIZE)

ciphertext = SecretBox(key).encrypt(b'Hello')

print(SecretBox(key).decrypt(ciphertext))

Security definition for encryption
We normally require authenticated encryption to provide
indistinguishability under adaptive chosen ciphertext
attack (IND-CCA2)

A game between challenger and adversary:

▶ Challenger generates secret key

▶ Adversary may ask challenger to encrypt/decrypt any
number of messages (“oracle”)

▶ Adversary chooses two plaintexts m0, m1 of equal length

▶ Challenger encrypts one of them, chosen randomly, and
returns ciphertext c to adversary

▶ Adversary may continue to request any number of
encryptions/decryptions (but not decryption of c)

▶ Adversary guesses which one of m0, m1 was encrypted

▶ Adversary can’t do better than random guess (50/50)

Asymmetric (public key) cryptography

Hash functions, symmetric ciphers

▶ Lots of bit shifts, XORs, lookup tables

▶ Not much underlying mathematical structure

Asymmetric cryptography:

▶ Number theory, algebraic objects (groups, finite fields. . .)

▶ Based on computational hardness assumptions
▶ Multiplying numbers vs. factoring
▶ Computing exponentials vs. discrete logarithms
▶ Vector/matrix arithmetic vs. solving linear equations

with random noise

▶ Many protocols rely on using asymmetric crypto in
creative ways

▶ Focus of this module

Diffie-Hellman
Let g be a generator of a group of order p in which discrete
logarithms are hard (we’ll explain this later).

Alice Bob

private: x ∈ Zp

public: gx
private: y ∈ Zp

public: gy

compute (gy)x = gxy

c← Enc(H(gxy),msg)
compute (gx)y = gxy

msg ← Dec(H(gxy), c)

gx gy

c

Diffie-Hellman

▶ sk = private (secret) key, pk = public key

▶ DH(skA, pkB) = DH(skB, pkA)

▶ Constructed as DH(sk , pk) = pk sk , pk = gsk (mod p)

▶ Use hash of DH() output as key for symmetric encryption

▶ Discrete log: given g and gsk , hard to compute sk

▶ Not authenticated: network adversary could swap your
public key for their own

from nacl.public import PrivateKey, Box

alice_sk = PrivateKey.generate()

bob_sk = PrivateKey.generate()

alice_pk = alice_sk.public_key

bob_pk = bob_sk.public_key

print(Box(bob_sk, alice_pk).shared_key().hex())

print(Box(alice_sk, bob_pk).shared_key().hex())

Asymmetric (public key) encryption

▶ (pk , sk)← Gen() generates keypair (pk public, sk secret)

▶ c← Enc(pk ,msg) returns ciphertext c

▶ msg ← Dec(sk , c) decrypts c, returns msg or error

▶ Unauthenticated: anyone who knows pk can encrypt

▶ e.g. RSAES-OAEP, Hybrid Public Key Encryption

▶ Often use Diffie-Hellman to compute shared key, then use
authenticated encryption for the actual message

▶ IND-CCA2 like symmetric case, but adversary is given pk

from nacl.public import PrivateKey, SealedBox

private = PrivateKey.generate()

public = private.public_key

ciphertext = SealedBox(public).encrypt(b'Hello')

print(SealedBox(private).decrypt(ciphertext))

Public key encryption from Diffie-Hellman

Alice Bob

sample y ∈ Zp

compute gy

sample x ∈ Zp

c← Enc(H((gy)x),msg)

msg ← Dec(H((gx)y), c)

gy

(gx, c)

Digital signatures

▶ (pk , sk)← Gen() generates keypair (pk public, sk secret)

▶ sig ← Sign(sk ,msg) returns signature

▶ ok ← Verify(pk ,msg , sig) returns true or false

▶ e.g. DSA, ECDSA, EdDSA

▶ ≈ a MAC, but asymmetric

▶ Security definition: existential unforgeability against
chosen-message attack (EUF-CMA). Cannot forge a
signature on a message that the key owner didn’t sign

from nacl.signing import SigningKey, VerifyKey

private = SigningKey.generate()

public = VerifyKey(private.verify_key.encode())

message = 'Hello'.encode('utf-8')

signed_msg = private.sign(message)

print(public.verify(signed_msg)) # b'Hello'

Security parameter

Most cryptography is breakable, given sufficient resources!

Want brute-force to be sufficiently hard that breaking it on a
human timescale would be cost-prohibitive.

Generally we aim for 128-bit security:

▶ On the order of 2128 computational steps required

▶ Finding the key for a 128-bit symmetric cipher

▶ Finding a collision in a 256-bit hash function

▶ Factoring a 3,072-bit RSA modulus

▶ Computing discrete log on an 256-bit elliptic curve

Sufficiently large quantum computers could efficiently factorise
(break RSA) and compute discrete logs (break elliptic curves).

Can make symmetric ciphers quantum-safe by doubling key
length (256 bits); quantum-safe hash is 384 bits

Lab time

▶ Clone the sample code: git clone

https://github.com/lambdapioneer/p79-sample.git

▶ Install Python 3.12 and Docker

▶ Run everything: ./run.sh

▶ Fix the tests

▶ . . .

▶ Critique!

Elliptic Curve Cryptography (ECC)

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

University of Cambridge
Part III/MPhil in Advanced Computer Science

Introducing Elliptic Curve Cryptography

▶ Very widely used – protects majority of Internet traffic

▶ Key agreement: Elliptic Curve Diffie Hellman (ECDH)

▶ Digital signatures: Elliptic Curve Digital Signature
Algorithm (ECDSA) or Edwards Curve Digital Signature
Algorithm (EdDSA)

▶ Lots of funky advanced stuff also possible

▶ Faster than RSA, DSA; smaller keys and signatures (at
same security level)

In this module:

▶ We will use ECC for the first two assignments

▶ You need to implement it from scratch, using only
Python’s built-in primitives

▶ Suggested reading: Martin’s Curve25519 tutorial

(Abelian) Groups

A set E and an operation • such that:

additive multiplicative

closed:
∀a, b ∈ E. a • b ∈ E

a+ b ∈ E ab ∈ E

commutative:
∀a, b ∈ E. a • b = b • a

a+ b = b+ a ab = ba

associative: ∀a, b, c ∈ E.
(a • b) • c = a • (b • c)

(a + b) + c =
a+ (b+ c)

(ab)c = a(bc)

identity exists:
∃id ∈ E. ∀a ∈ E. a • id = a

a+ 0 = a a · 1 = a

inverse exists:
∀a ∈ E. ∃b ∈ E. a • b = id

a+ (−a) = 0 a · a−1 = 1

Groups of integers modulo n
Zn: Additive group of integers modulo n

▶ Zn = {0, 1, . . . , n− 1}
▶ Operator is addition mod n. Python: (a + b) % n

▶ Inverse is −a = n− a

Z∗n: Multiplicative group of integers modulo n

▶ When n is prime, Z∗n = {1, 2, . . . , n− 1}
▶ Operator is multiplication mod n. Python: (a * b) % n

▶ Inverse of a exists when gcd(a, n) = 1

▶ For prime n, compute inverse by Fermat’s little theorem:

an−1 = a · an−2 ≡ 1 (mod n)

so an−2 (mod n) is the multiplicative inverse of a
p = 2**255 - 19; a = 42 # p is prime

a_inv = pow(a, p - 2, p)

print((a * a_inv) % p) # 1

Fields
A set E and two operations +, · such that:

▶ (E,+) is an abelian group with identity 0

▶ (E \ {0}, ·) is an abelian group with identity 1

▶ Distributive: a · (b+ c) = ab+ ac

For convenience we will write:

▶ a− b = a+ (−b) where −b is the additive inverse

▶ a
b
= a · b−1 where b−1 is the multiplicative inverse

Arithmetic works like what you learnt in secondary school.

Finite field (Galois field) uses a finite set:

▶ We’ll use Fp: integers modulo p where order p is prime

▶ Also written GF (p)

▶ Fields Fn also exist when n = pk, p prime, k > 1

Implementing finite fields
For elliptic curves we will use the field Fp for a large prime p

▶ In particular, p = 2255 − 19 =
0x7fffffffffffffffffffffffffffffff

ffffffffffffffffffffffffffffffed (255 bits long)

▶ Python integers have no fixed size: 255-bit (or bigger)
ints are no problem
▶ Addition (a + b) % p is fine
▶ Subtraction (a - b) % p is fine
▶ Multiplication (a * b) % p is fine

▶ Most CPUs natively have max. 64-bit arithmetic =⇒
need to break down big ints into several smaller ones

▶ Python int arithmetic and most bignum libraries are
not constant-time (not suitable for production code)

▶ Python division operators a / b and a // b do not
work for finite fields – need to use multiplicative inverse

Montgomery curves (a family of elliptic curves)

x

y

For now we will use Curve25519, the
elliptic curve

y2 = x3 + ax2 + x

over the field Fp where p = 2255 − 19
and a = 486662 (params chosen to
make the curve cryptographically useful).

A point (x, y) is on the curve if it
satisfies the curve equation.

Plot shows what it would look like over
R with a = −1.9.

Constructing a group from a curve

x

y

P

Q

R

−R = P +Q

We will now define a group whose
elements E are points on the curve
(plus one special element ∞ called
“point at infinity”).

E = {(x, y) | y2 = x3 + ax2 + x}∪ {∞}

Define identity element as ∞
Define inverse as: −(x, y) = (x,−y)
The + operator combines two points
P,Q ∈ E to produce a new point:

▶ Draw straight line through P and Q

▶ It intersects the curve at R

▶ Mirror R by x axis to get P +Q

Adding a point to itself (doubling)

x

y

P
R

−R = P + P

The definition on the last slide works
when P ̸= Q and P ̸= −Q.

To add P ∈ E to itself (P + P = 2P):

▶ Draw a tangent to the curve at P

▶ It intersects the curve at R

▶ Mirror R by x axis to get P + P

Handling vertical lines

x

y

P

−P

The final case we need to handle is
P +Q where Q = −P (i.e. P and Q
have the same x coordinate, but
different y coordinates).

In this case the line through P and Q is
vertical, and there is no (finite) third
intersection point.

Define P +Q =∞ if P = −Q.

Fits with definition of −P as inverse of
P , and ∞ as identity element.

(By definition, ∀P ∈ E. P +∞ = P)

Constructing a group from a curve
Amazingly, that definition results in an abelian group (E,+)

(Closed, identity exists, and inverse exists by definition; easy to
see that it’s commutative. Proving associativity is harder.)

Group law for Montgomery curves (y2 = x3 + ax2 + x):

Point addition: P +Q = (x1, y1) + (x2, y2) = (x3, y3) where

x3 =

(
y2 − y1
x2 − x1

)2

− a− x1 − x2

y3 =
(2x1 + x2 + a)(y2 − y1)

x2 − x1
−
(
y2 − y1
x2 − x1

)3

− y1

Point doubling: 2P = (x1, y1) + (x1, y1) = (x3, y3) where

x3 =

(
3x2

1 + 2ax1 + 1

2y1

)2

− a− 2x1

y3 =
(3x1 + a)(3x2

1 + 2ax1 + 1)

2y1
−

(
3x2

1 + 2ax1 + 1

2y1

)3

− y1

Elliptic curve over a finite field

x

y

P

Q

P +Q

Curve over R
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2

P3

P1+P 2 3

Curve over F11

Image by Markus Kuhn

Repeated addition of a point to itself

x

y

P

2P

Define scalar multiplication of a point
P ∈ E as:

kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

If you look at the sequence of points
P, 2P, 3P, . . . , it “jumps around” all
over the curve.

For a suitably chosen P , this sequence
repeats only for very large k.

Given P and kP , it’s hard to determine
k (try all possible values!)

Multiplying a point by a number

Because the group operator + is associative we have:

j(kP) = (P + · · ·+ P︸ ︷︷ ︸
k times

) + · · ·+ (P + · · ·+ P︸ ︷︷ ︸
k times

)︸ ︷︷ ︸
j times

= P + · · ·+ P︸ ︷︷ ︸
j · k times

= (jk)P

Double-and-add algorithm to compute the scalar product:

kP =

P if k = 1

2(k
2
P) if k is even

2(k−1
2
P) + P if k is odd and k > 1

Computes kP with O(log k) point additions/doublings

Generator of a group

|E| (the number of elements in the group) is its order.

Curve parameters determine |E|; prime if possible.

In Curve25519 (p = 2255 − 19, a = 486662), we have |E| = 8q
where q is a large (252-bit) prime.

Given P ∈ E, consider the series P , 2P , 3P , . . .

If it repeats after m steps, we say |P | = m is the order of P .

⟨P ⟩ = {iP | i ∈ N} is the set generated by P . |⟨P ⟩| = |P |

If ⟨P ⟩ = E, then P is a generator of E with |E| = |⟨P ⟩|.
If ⟨P ⟩ ⊂ E, then ⟨P ⟩ is a subgroup of E.

We choose a base point P for which |P | is a large prime (q).

Additive vs. multiplicative group notation
Crypto literature has two ways of writing the same thing:

additive (used
in ECC papers)

multiplicative
(used in protocols)

generator base point B generator g

group operator P +Q a · b or ab
scalar multiplication kB gk (exponentiation)

inverse −P a−1

The problem

▶ compute k given kB and B

▶ compute k given gk and g

is called discrete logarithm, even in additive notation

Discrete log on (selected) EC groups believed to be hard

Elliptic Curve Diffie-Hellman (ECDH)

Public parameter: base point B ∈ E with order q

Alice Bob

sample y ∈ Zq

compute gy yB

sample x ∈ Zq

key = (gy)x x(yB)
c← Enc(H(key),msg)

key = (gx)y y(xB)
msg ← Dec(H(key), c)

yB

(xB, c)

X25519: Diffie-Hellman using Curve25519

One of the supported EC groups in TLS 1.3.

▶ X25519(skA, base) = pkA
▶ X25519(skA, pkB) = X25519(skB, pkA)

▶ Private keys are 32 bytes, public keys also 32 bytes

▶ Designed to have simple constant-time implementation

▶ Fast: only computes x coordinate, not y coordinate

▶ Allows use of Montgomery ladder instead of group law

▶ No need to validate whether byte string is a valid curve
point (which other protocols require)

▶ Secure even though underlying curve is not prime-order

X25519 algorithm
▶ Private key: start with 32 random bytes

▶ interpret bytes as little-endian integer, then do clamping:
▶ set 3 least-significant bits to 0 (make it a multiple of 8)
▶ set most significant bit to 0 (make it < 2255)
▶ set second-most significant bit to 1 (make it ≥ 2254)

▶ Public key: 32 bytes received from the network
▶ interpret bytes as little-endian integer
▶ set most significant bit to 0, then reduce mod p
▶ result is the coordinate x ∈ Fp of a curve point

▶ Base point: x = 9, y =
√
x3 + 486662x2 + x

▶ X25519 function:
▶ Input private and public key (or private key and base)
▶ Compute scalar product of private key (scalar) and the

public key (group element)
▶ Output x coordinate of the resulting group element

▶ Hash the result before using it as symmetric key

Assignment 1, Task 1

Implement X25519 from scratch, relying only on bignums
for field arithmetic.

Do it two ways and check they agree:

▶ Using the Montgomery curve group law and a
double-and-add algorithm for scalar multiplication

▶ Using the Montgomery ladder. See Bernstein’s paper;
RFC 7748 (Python code); Martin’s ECC tutorial (C code)

You can find test vectors in RFC 7748.

Hope you have fun!

Twisted Edwards Curves

x

y

x2 + y2 = 1− 300x2y2

plotted over R

Edwards25519 is the twisted Edwards
curve

−x2 + y2 = 1 + dx2y2

with x, y ∈ Fp, p = 2255 − 19, and
d = −121665

121666
.

There is a 1:1 mapping (“birational
equivalence”) between points on this
curve and Curve25519.

Advantage over elliptic curve: the group
law is simpler ⇒ faster to compute
(with same security properties).

Group law on twisted Edwards curve

Point addition for curve −x2 + y2 = 1 + dx2y2:

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1
1 + dx1x2y1y2

,
x1x2 + y1y2

1− dx1x2y1y2

)
Complete: no need for seperate doubling formulas since the
denominators are always non-zero. (Helps with constant-time)

Define scalar multiplication like on elliptic curve, using
double-and-add.

Faster scalar product by working in extended homogeneous
(projective) coordinates: instead of (x, y) use (X,Y, Z, T)
where x = X/Z, y = Y/Z, xy = T/Z. See RFC 8032.

Compute the inverse of Z only at the end of scalar product,
not for every point addition.

Point compression
For X25519, we could get away with only using x coordinates.

For signatures, we need the y coordinate as well. But: sending
both x and y coordinates doubles data size (32→ 64 bytes).

For a given x coordinate there are at most two possible values
±y such that (x, y) lies on the curve.

Point compression: encode the x coordinate along with one
bit to say which y value is used (“sign bit”).

When x ∈ Fp for p = 2255 − 19, x fits in 255 bits ⇒ use the
256th bit for the sign of y, still fits in 32 bytes.

(Actually Ed25519 encodes y coordinate and the sign of x.)

Define y to be positive if even, negative if odd.
Note −y ≡ p− y (mod p), so y is even iff −y is odd.

Then the “sign bit” is simply the least significant bit of y.

Point decompression

Point decompression: take the low 255 bits (little-endian)
as x, error if it’s ≥ p. Then

y = ±
√

1 + x2

1− dx2
using + or − according to sign bit.

How to compute square root modulo p = 2255 − 19:

√
a =

a(p+3)/8 if (a(p+3)/8)2 = a

a(p+3)/8
√
−1 if (a(p+3)/8)2 = −a where

√
−1 = 2(p−1)/4

error otherwise

See RFC 8032, Tonelli–Shanks algorithm.

This also ensures that (x, y) is a valid point on the curve.

The Ed25519 signature scheme

▶ EdDSA: general algorithm;
Ed25519: EdDSA over Edwards25519 curve

▶ Very widely used, e.g. TLS 1.3, SSH, Signal

▶ sk 32 bytes, pk 32 bytes, signature 64 bytes

▶ Deterministic: signing requires no randomness, no nonce
▶ Whereas ECDSA requires nonce per signature
▶ Nonce reuse in ECDSA is catastrophic
▶ Ed25519 computes r from hash of private key and

message ⇒ safer to use

▶ Variant of Schnorr signatures

▶ B is base point with order q, where |E| = 8q is group
order (different from field order p)

Ed25519 signing

msgsk (sbits ∥ prefix)← SHA512(sk)

sbits ← first 256 bits prefix ← last 256 bits

s← clamping(sbits)

pk ← compress(sB)

r ← SHA512(prefix ∥ msg) (mod q)

R← compress(rB)

k ← SHA512(R ∥ pk ∥ msg) (mod q)

t← r + ks (mod q) sig ← R ∥ t

Ed25519 signature verification

sig = Rbits ∥ tbits

msg

pk

t← tbits (mod q)

R← uncompress(Rbits)

k ← SHA512(Rbits ∥ pk ∥ msg) (mod q)

A← uncompress(pk) valid: tB
?
= R+ kA

tbits ← last 256 bits

Rbits ← first 256 bits

Assignment 1, Task 2

Implement Ed25519 from scratch, relying only on bignums
for field arithmetic.

You can find example code and test vectors in RFC 8032.

Due date for code and lab report: 10 17 Feb 2025

Software Engineering for Cryptography

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

University of Cambridge
Part III/MPhil in Advanced Computer Science

Why Do We Have Standards?

▶ Standards are important for interoperability
▶ Different implementations need to work together
▶ Writing it in text requires that everything is specified

▶ Standards are important for security
▶ Well-reviewed specifications
▶ Clear security requirements and properties

Major Standardization Bodies

IETF typically protocols

▶ TLS 1.3 (RFC 8446)
▶ COSE (RFC 8152)

NIST typically algorithms

▶ AES (FIPS 197)
▶ SHA-3 (FIPS 202)

IEEE typically hardware/protocols

▶ IEEE 802.11i (WPA2/WPA3)

Reading RFCs

▶ Example: RFC 5869 - HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)

▶ Let’s walk through how to read and understand an RFC

▶ They are available at
https://datatracker.ietf.org/doc/html/rfc5869

https://datatracker.ietf.org/doc/html/rfc5869

RFC Formats - Text

RFC Formats - PDF

RFC Formats - HTML

RFC Header (RFC 5869)

RFC Categories

▶ Standards Track
▶ Proposed Standard: Initial standardization
▶ Internet Standard: Proven, stable standard

▶ Informational: Background information, guidelines

▶ Experimental: Experimental protocols

Introduction (RFC 5869)

Notation (RFC 5869)

Notation

Key words (defined in RFC 2119):

▶ MUST=SHALL (= is required to)

▶ SHOULD (= strongly recommended)

▶ MAY (= optional)

▶ SHOULD NOT (= not recommended)

▶ MUST NOT=SHALL NOT (= prohibited)

“MUST This word, or the terms REQUIRED or
SHALL, mean that the definition is an absolute re-
quirement of the specification.”

Notation

Key words (defined in RFC 2119):

▶ MUST=SHALL (= is required to)

▶ SHOULD (= strongly recommended)

▶ MAY (= optional)

▶ SHOULD NOT (= not recommended)

▶ MUST NOT=SHALL NOT (= prohibited)

“SHOULD This word, or the adjective RECOM-
MENDED, mean that there may exist valid reasons in
particular circumstances to ignore a particular item,
but the full implications must be understood and care-
fully weighed before choosing a different course.”

Algorithm (RFC 5869)

Algorithm Section (RFC 5869)

▶ Contains detailed technical specification

▶ Describes the protocol/algorithm step by step

▶ Often includes:
▶ Input/output parameters
▶ Processing steps
▶ Implementation requirements
▶ Pay attention to the allowed parameter ranges

▶ Typically does not include error handling

▶ May contain pseudocode or formal specifications

Test Vectors

References

Errata

How NIST Competitions Work

▶ Open call for submissions from the cryptographic
community

▶ Multiple rounds of evaluation:
▶ Security analysis by cryptographers worldwide
▶ Performance benchmarking across platforms
▶ Implementation characteristics and complexity
▶ Public feedback and discussion

▶ Candidates may be eliminated due to:
▶ Security vulnerabilities discovered
▶ Poor performance characteristics
▶ Implementation difficulties

▶ Final selection based on balance of security, performance,
and practicality

NIST Post-Quantum Cryptography Standardization

▶ Started in 2016 to standardize quantum-resistant
cryptographic algorithms

▶ Goal: Protect against both classical and quantum
computer attacks

▶ Focus on:
▶ Key-establishment mechanisms
▶ Digital signatures

Selection Process Timeline

▶ Round 1 (2017): 69 candidates accepted
▶ 14 published attacks
▶ 9 submissions withdrawn

▶ Round 2 (2019): 26 candidates selected

▶ Round 3 (2020): 7 finalists + 8 alternates

▶ Round 4 (2022-2023):
▶ Selected CRYSTALS-Kyber for key encapsulation
▶ Selected CRYSTALS-Dilithium, FALCON, and

SPHINCS+ for digital signatures

Case Study: Dual EC DRBG

▶ NIST SP 800-90A standardized Dual EC DRBG in 2006

▶ Concerns raised about potential backdoor:
▶ Outputs “too many” bits
▶ Unclear choice of parameters P and Q
▶ Observer might learn internal state of RNG

▶ Snowden leaks in 2013 suggested NSA involvement

▶ NIST withdrew the standard in 2014

Case Study: Choice of p in X25519

“I chose my prime 2255 − 19 according to the fol-
lowing criteria: primes as close as possible to a power
of 2 save time in field operations (as in, e.g, [9]),
with no effect on (conjectured) security level; primes
slightly below 32k bits, for some k, allow public keys
to be easily transmitted in 32-bit words, with no seri-
ous concerns regarding wasted space; k = 8 provides
a comfortable security level. I considered the primes
2255 + 95, 2255 − 19, 2255 − 31, 2254 + 79, 2253 + 51,
and 2253 + 39, and selected 2255 − 19 because 19 is
smaller than 31, 39, 51, 79, 95”

Bernstein 2006, p. 13

Case Study: Choice of A in X25519

“To protect against various attacks discussed in
Section 3, I rejected choices of A whose curve and
twist orders were not {4 · prime, 8 · prime}; here 4,
8 are minimal since p ∈ 1 + 4Z. The smallest pos-
itive choices for A are 358990, 464586, and 486662.
I rejected A = 358990 because one of its primes is
slightly smaller than 2252, raising the question of how
standards and implementations should handle the the-
oretical possibility of a user’s secret key matching the
prime; discussing this question is more difficult than
switching to another A. I rejected 464586 for the
same reason. So I ended up with A = 486662.”

Bernstein 2006, p. 14f

Error handling

▶ Error handling is crucial for production software

▶ Still, development is often focussed on the happy path

▶ In cryptographic software, we need to handle errors
carefully
▶ Indicate benign failures (e.g. out-of-memory)
▶ Indicate malicious interference (e.g. invalid signature)

Approaches to error handling

I introduce three main paradigms for error handling that you
will encounter in different languages:

▶ Return values (C, C++, . . .)

▶ Exceptions (Java, Python, . . .)

▶ Result types (Rust, Go, . . .)

These interact a lot with the language’s type system as well.
And we will discuss these aspects in more detail later.

C-style error handling

Declared as such:
int decrypt_aes_gcm(

uint8_t* key,

uint8_t* ciphertext, size_t ciphertext_len,

uint8_t* plaintext, size_t plaintext_len

);

Used as such:
plaintext = malloc(...)
if (decrypt_aes_gcm(&key, &ciphertext, &plaintext)) {

// do something here

}

C-style error handling

However, it’s error prone:
plaintext = malloc(...)
decrypt_aes_gcm(&key, &ciphertext, &plaintext)

// do something here

C-style error handling

int random_key(uint8_t* key)

uint8_t* key;

random_key(&key)

//

uint8_t* ciphertext = malloc(...);

if(aes_gcm_encrypt(&key, &plaintext, &ciphertext)) {

// send ciphertext over the internet

}

C-style error handling

int random_key(uint8_t* key)

uint8_t* key;

if (!random_key(&key)) {

// handle error

return

}

//

uint8_t* ciphertext = malloc(...);

if(aes_gcm_encrypt(&key, &plaintext, &ciphertext)) {

// send ciphertext over the internet

}

C-style error handling: lessons learned

▶ Making error checking optional is dangerous

▶ Relying on humans to follow patterns is infeasible

▶ We need help from our tools!
▶ Static analysis (e.g. -Wunused-result)
▶ Linting (e.g. clang-tidy)
▶ Or, maybe using better paradigms. . .

Before we look at modern paradigms, let’s see how we can
deal with this in C in our call sites.

C-style error handling: writing better call sites

int decryptProtocolMessage(...) {
if (checkSignature(&otherPublicKey, &ciphertext)) {

uint8_t key = malloc(16);
if (dh(&privateKey, &otherPublicKey, &key)) {

if (decrypt(&key, &ciphertext, &plaintext)) {
free(key)
return OK

} else {
free(key)
return ERR_DECRYPTION_FAILED

}
} else {

free(key)
return ERR_DH_FAILED

}
} else {

return ERR_SIGNATURE_CHECK_FAILED
}

}

C-style error handling: writing better call sites

int decryptProtocolMessage(...) {
if (!checkSignature(&otherPublicKey, &ciphertext)) {

return ERR_SIGNATURE_CHECK_FAILED
}

byte[] key = malloc(16);
if (!dh(&privateKey, &otherPublicKey, &key)) {

free(key)
return ERR_DH_FAILED

}

if (!decrypt(&key, &ciphertext, &plaintext)) {
free(key)
return ERR_DECRYPTION_FAILED

}

free(key)
result = &plaintext
return OK

}

C-style error handling: writing better call sites

int decryptProtocolMessage(...) {
int err = -1
byte* key = NULL
byte* plaintext = NULL

if ((err = checkSignature(&otherPublicKey, &ciphertext)) != 0)
goto fail;

key = malloc(16);
if ((err = dh(&privateKey, &otherPublicKey, &key)) != 0)

goto fail;

if ((err = decrypt(&key, &ciphertext, &plaintext)) != 0)
goto fail;

fail:
if (key) free(key)

done:
return err

}

Case study: goto fail (CVE-2014-1266)

static OSStatus
SSLVerifySignedServerKeyExchange(/* ...*/)
{

OSStatus err;
/* ... */
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

/* ... */
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

Exception-based error handling

Declared as such:
byte[] decrypt(byte[] key, byte[] ciphertext)
throws DecryptionFailedException {

// ...

}

Used as such:
int doSomething() {

try {

plaintext = AesGcm.decrypt(key, ciphertext)

// do something

} catch (DecryptionFailedException e) {

// handle error

}

}

Exception-based error handling

int doSomething() {
try {

plaintext = AesGcm.decrypt(key, ciphertext)

doSomethingWithPlaintext(plaintext)

andSomeOtherThings(plaintext)

} catch (DecryptionFailedException e) {

// handle error

} catch (OtherException e) {

// handle error

} catch (AndAnotherException e) {

// handle error

}

}

Exception-based error handling

int doSomething() {
try {

plaintext = AesGcm.decrypt(key, ciphertext)

doSomethingWithPlaintext(plaintext)

andSomeOtherThings(plaintext)

} catch (Exception e) {

// super defensive!!11

}

}

Exception-based error handling

int doSomething() throws Exception {
plaintext = AesGcm.decrypt(key, ciphertext)

doSomethingWithPlaintext(plaintext)

}

int main() throws Exception {
try {

doSomething();

} catch (Exception e) {

// handle error

// - but what exactly should we do?

// - benign or malicious error?

}

}

Result types for error handling

Declared as such:
fn decrypt_aes_gcm(key: &[u8], ciphertext: &[u8])

-> Result<Vec<u8>, DecryptionError>

Used as such:
fn do_something(&self) -> Result<(), Error> {

let maybe_text = decrypt_aes_gcm(&key, &ciphertext);

match maybe_text {

Ok(text) => { /* do something */ ; Ok(()) },

Err(err) => Err(Error::from(err, "aes gcm failed"))

}

}

Result types for error handling (ergonomics)

Using let-else for error handling:
fn do_something(&self) -> Result<(), Error> {

if let Ok(text) = decrypt_aes_gcm(&key, &ciphertext) else {

return Err(MyDecryptionError::DecryptionFailed);

}

/* do something */ ;

Ok(())

}

Using anyhow for error handling:
fn do_something(&self) -> anyhow::Result<()> {

let text = decrypt_aes_gcm(&key, &ciphertext)?;

/* do something */ ;

Ok(()) // No need for return keyword

}

Error messages

Consider the following code:
cipher = AesGcm.create(key)
plaintext = cipher.decrypt(ciphertext)

do something with the plaintext

Let’s assume the library is generally following a
exception-based error handling approach. What behaviors
would be good? Helpful? Unhelpful? Dangerous?

Error messages: be helpful

▶ decryption failed

▶ No information about what went wrong
▶ No guidance on how to fix it

▶ decryption failed: bad key length

▶ Indicates the specific issue
▶ Still lacks guidance on how to fix it

▶ decryption failed: key must be 16 or 32
bytes, but was 128 bytes

▶ Clearly states what went wrong
▶ Provides exact requirements
▶ Shows the actual problematic value

Error messages: but not too helpful

decryption failed: key must be 16 or 32 bytes,

got value "secretkey" which is 9 bytes long

▶ This leads us to our next topic: leaky implementations

Leaky implementations

Idealised formal world:

▶ Operations are solely defined by their mathematical
properties

▶ Perfect black boxes

▶ Often assuming infinite resources

Real world:

▶ Implementations are not perfect

▶ Adversary can learn exact hardware/software steps

▶ Work against a finite set of resources

Side-channels

▶ Timing side-channels

▶ Error messages

▶ Memory access patterns

▶ Energy consumption

▶ Electromagnetic emissions

▶ . . .

Every bit of information can be used by an adversary.
Especially if accessible in a repeated manner with
adversary-controlled input.

Timing side-channels

▶ If the execution time of an algorithm depends on a secret
value, measuring the time may leak that value, e.g.
private key (timing side-channel)

▶ Memory access patterns can be revealed by timing (cache
hits/misses)

Implementations should be constant-time to avoid this:

▶ No branches (if/else, break, . . .) conditional on a secret

▶ No memory access (array lookups) dependent on a secret

▶ Individual CPU instructions (e.g. multiplying two 32-bit
numbers) typically assumed to be constant-time

Code you write in this module need not be constant-time.
However, your lab report should discuss how you could make it
constant-time.

Padding oracle attack

▶ Assume AES-CBC with PKCS#7 padding
▶ Padding pattern: ?? ?? ?? ?? 04 04 04 04
▶ Decryption: Pi = DK(Ci)⊕ Ci−1 and C0 = IV

▶ Server returns either nothing or PADDING ERR

Figure: Wikipedia, public domain.

https://en.wikipedia.org/wiki/Padding_oracle_attack#/media/File:CBC_decryption.svg

Padding oracle attacks in the real-world

▶ Initial attack in 1998 by Bleichenbacher against RSA →
fixed

▶ More efficient attack against CBC-mode AES in 2002 by
Vaudenay → fixed

▶ Lucky Thirteen attack against TLS in 2013 (AlFardan
and Paterson) by using the same technique but with a
timing side-channel → fixed

▶ This introduced another timing side-channel
CVE-2016-2107 → fixed

▶ to be continued. . .

Not leaking information in Internet-connected services really is
a hard problem!

What is a secret key actually?

Let’s return to our X25519 secret key: x ∈ Fp. But what
exactly is x in the real world?

▶ A number in the set Fp?

▶ The binary representation of that number?

▶ A Python object?

▶ The serialized bytes?

▶ Also the logic to interpret the bytes?

▶ . . .

Example: X25519 key

x: int

▶ Simple

▶ Confusion possible with different keys

▶ Unclear how to turn into/from bytes
▶ This process is often called serializing or marshalling

Example: X25519 key

x: bytes

▶ Relatively simple

▶ Still able to confuse with different keys

▶ Might be too short/long

Slightly better in languages, e.g. Rust, with fixed-sized arrays:
x: [u8; 32]

Example: X25519 key

@dataclass

class X25519SecretKey:

x: int

▶ Strong type avoids mixing up different keys

▶ Can have extra functionality, e.g. comparison

▶ Can have extra checks, e.g. avoid uninitialized value

Going past one type

This sounds great at first. However, it becomes tricky when
integrating multiple components, e.g. asymmetric key
agreement and symmetric encryption.

def enc(

x: X25519SecretKey, gy: X25519PublicKey,

message: bytes,

) -> bytes:

shared = x.dh(gy) # probably just bytes

aes_key = CipherLib.AESKey(shared)

encrypt message and return

Going past one type

We might want to use more types to describe these
boundaries. For example:

▶ DerivedSecret: result from a DH operation

▶ SecureRandom: anything that gives us high-entropy
random numbers

KeyMaterial = DerivedSecret | SecureRandom

class AesKey:

def __init__(self, key: KeyMaterial):

self.key = key

Going past one type

This comes with challenges:

▶ Cross-library interfaces require widely accepted
types/patterns.

▶ Imperfect representations of all cryptographic properties.

▶ At some point, types become too bothersome
▶ Developers go back to raw byte[] arrays

It’s not an exact science.
Don’t be too clever.
Empathy and pragmatism win.

More complex types

Consider an encrypted AEAD message. It typically contains:

▶ A nonce or IV

▶ Associated data

▶ Encrypted data

▶ A tag

Strong types help here, as they ensure elements are not
accidentally mixed up. But does the callee actually need to
know about this? High-level API ↔ low-level API

Static Type Checking with mypy

▶ mypy is a static type checker for Python

▶ Helps catch type errors before runtime

▶ Popular alternatives:
▶ Pyright (from Microsoft)
▶ Pyre (from Meta/Facebook)
▶ Pytype (from Google)

▶ Easy to install and configure:

Install mypy:

pip install mypy

Run mypy:

mypy your_file.py

mypy your_code/

Basic Type Annotations

▶ Start with built-in types

▶ Use generic types from the typing module

▶ Type checking works with nested types

from typing import List

def sum_numbers(numbers: List[int]) -> int:

total: int = 0

for num in numbers:

total += num

return total

OK

result = sum_numbers([1, 2, 3])

type error: List[str] not assignable to List[int]

bad_result = sum_numbers(["1", "2", "3"])

Runtime Type Checking

▶ Type hints are not automatically checked at runtime

▶ Use assertions for runtime checks

from typing import List
import typing

def sum_numbers(numbers: List[int]) -> int:

assert isinstance(numbers, list),\

"numbers must be a list"

assert all(isinstance(x, int) for x in numbers),\

"all elements must be integers"

total: int = 0

for num in numbers:

total += num

return total

Advanced Type Features

▶ TypeAlias: Create aliases for complex types

▶ Union: Allow multiple types

▶ Modern Python also supports | syntax for unions

from typing import TypeAlias, Union, List

Matrix: TypeAlias = List[List[float]]

Number: TypeAlias = Union[int, float]

def add_constant(matrix: Matrix, c: Number) -> Matrix:

return [[x + c for x in row] for row in matrix]

Both valid

result1 = add_constant([[1.0, 2.0]], 1) # [[2.0, 3.0]]

result2 = add_constant([[1.0, 2.0]], 0.5) # [[1.5, 2.5]]

Self-referential Types
▶ Self type for methods returning instances

▶ Useful for creation methods and operations

from typing import Self

class Matrix:

def add(self, other: Self) -> Self:

return Matrix([

[self.data[i][j] + other.data[i][j]

for j in range(self.cols)]

for i in range(self.rows)

])

@classmethod

def zeros(cls, rows: int, cols: int) -> Self:

return cls([[0.0] * cols for _ in range(rows)])

m1 = Matrix.zeros(2, 2)

m2 = m1.add(m1)

Pattern: type state (1, motivating example)
struct AkeClient {

x: Secret,

k: Option<DerivedKey>,

has_verified_server: bool,

}

impl AkeClient {

fn handle_server_response(

&mut self,

response: ServerHelloResponse,

) -> Result<()> {

if self.has_verified_server {

bail!("already verified server");

}

// verify server response ...

self.has_verified_server = true;

self.k = Some(derive_key(&self.x, response));

Ok(())

}

}

Pattern: type state (2)

struct AkeClientInitialized {x: Secret}
struct AkeClientWaiting {x: Secret}

struct AkeClientVerified {k: DerivedKey}

impl AkeClientWaiting {

fn handle_server_response(

self, response: ServerHelloResponse

) -> Result<AkeClientVerified> {

// verify server response ...

// derive key ...

let k = derive_key(&self.x, response);

Ok(AkeClientVerified {k})

}

}

Pattern: type state (3)

struct AkeClient<S> { state: S }

trait AkeClientState {}

impl AkeClientState for AkeClientInitialized {}

impl AkeClientState for AkeClientWaiting {}

impl AkeClientState for AkeClientVerified {}

impl AkeClient<AkeClientWaiting> {

fn handle_server_response(

self, response: ServerHelloResponse

) -> Result<AkeClient<AkeClientVerified>> {

// verify server response ...

// derive key ...

let k = derive_key(&self.state.x, response);

Ok(AkeClient {state: AkeClientVerified {k}})

}

}

Pattern: type state (4)

struct SharedState {debug_log: Vec<ProtocolLogEntry>}
struct AkeClient<S> {

state: S,

shared: Box<SharedState>,

}

impl<S> AkeClient<S> where S: AkeClientState {

fn log(&mut self, entry: ProtocolLogEntry) {

self.shared.debug_log.push(entry);

}

}

Pattern: type state (5)
Benefits:

▶ Move important logic to compile time (or type checker)

▶ Improves IDE ergonomics

▶ Easier reasoning about state

For cryptography in particular:

▶ Clear management of secret life times

▶ Protections against accidental secret reuse

More examples for constraints that can be modelled:

▶ We can only access API methods after authentication

▶ Once a connection has been terminated, we cannot call
any send/receive methods

▶ After A, both B and C have been called (in any order),
before D can be called

Pattern: type promotions

struct UnverifiedKey { bytes: [u8; 16]}
struct VerifiedKey { bytes: [u8; 16]}

fn load_root_of_trust(

path_buf: &PathBuf,

trusted_digests: &[u8]

) -> RootOfTrust {

// check: date constraints && matches trusted digests

return ...

}

fn verify_key(

key: UnverifiedKey,

certificate: &Certificate,

root_of_trust: &RootOfTrust

) -> Result<VerifiedKey> {

// check: date constraints && chained signature

return ...

}

Pattern: scoped secrets

struct ScopedUnverifiedKey<Role>
{ bytes: [u8; 16], _role: PhantomData<Role> }

struct ScopedVerifiedKey<Role>

{ bytes: [u8; 16], _role: PhantomData<Role> }

fn verify_key_for_role<S>(

root_of_trust: &RootOfTrust,

certificate: &ScopedCertificate<S>,

key: &ScopedUnverifiedKey<S>

) -> Result<ScopedVerifiedKey<S>> where S:Role {

// ...

}

fn sign_message_to_server(

key: &ScopedVerifiedKey<Client>, msg: &[u8]

) -> Vec<u8> {

// ...

}

Authenticated key exchange

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

University of Cambridge
Part III/MPhil in Advanced Computer Science

Cryptographic protocols

We’ve seen cryptographic primitives: symmetric encryption,
hashes, Diffie-Hellman, signatures.

Now let’s look at protocols: interactive communication
between two or more parties, sending messages over a network.

Threat model: assume what each party may do / not do,
and what the network may do / not do

Common assumption: Dolev–Yao model. The adversary. . .

▶ sees everything sent over the network (eavesdropping)

▶ chooses if and when messages are delivered

▶ can inject fake messages, replay old messages (active)

▶ sees multiple protocol runs between different parties

Reasonable model if you’re on a coffee shop wifi!

Unauthenticated Diffie-Hellman

Alice Eve (adversary) Bob

private: x ∈ Zq

public: gx
private: y ∈ Zq

public: gy
z ∈ Zq

k1 ← H((gx)z)
k2 ← H((gy)z)

k1 ← H((gz)x)
c← Enc(k1,m)

k2 ← H((gz)y)

m← Dec(k1, c)
c′ ← Enc(k2,m)

m← Dec(k2, c
′)

gx gy

gz gz

c
c′

Mutual authentication in protocols

How do two communicating parties convince each other that
they are genuine?

Two usual forms of mutual authentication:

▶ Authenticated Key Exchange (AKE):
each party has a private key; other party knows the
corresponding public key

▶ Password-Authenticated Key Exchange (PAKE):
the two parties share a (low-entropy) password; prove
they know it without revealing it (e.g. wifi password)

On the web it’s usually asymmetric:

1. Server authenticates itself to client using public key

2. Client authenticates itself to server by sending
password over encrypted+authenticated connection

Public Key Infrastructure (PKI)

But how does each party find out the other party’s public key?

▶ Web (WebPKI):
▶ Certificate is (domain name, pubkey, validity dates)
▶ Certificate is signed by a certificate authority (CA)
▶ Several CAs’ public keys are built into the web browser
▶ New website: CA checks via HTTP request or DNS

whether you own the domain

▶ Secure messaging (Signal, WhatsApp, iMessage, . . .)
▶ Key directory: database of phone number → pubkey
▶ Identity of key directory is built into messaging app
▶ User registration: directory sends SMS to phone number

Can check whether CA/directory is honest using certificate
transparency (and other transparency logs)

Simple server authentication

Let cert = (“bob.com”, pkB, startDate, endDate)

Let sig = Sign(skCA, cert) and assume Alice knows pkCA

Alice bob.com

(domain, pkB, start , end)← cert

if domain = “bob.com” ∧
Verify(pkCA, cert , sig) ∧
start < now < end :

c← Enc(pkB,msg)

msg ← Dec(skB, c)

cert , s
ig

c

Including key compromise in the threat model

A simple scheme:

▶ Server sends its certificate to client, client checks it

▶ Client samples a random session key, encrypts it under
server’s public key (using a public key encryption scheme)

▶ Server decrypts session key

▶ Encrypt+authenticate communication using session key

If the server’s private key is ever compromised, all
communication ever with that server can be decrypted!

Adversary could record all ciphertexts now and hope to
compromise key in the future (“store now, decrypt later”)

We should try to handle key compromise as well as possible

Forward secrecy
Forward secrecy (aka perfect forward secrecy):
If adversary learns private keys, they cannot decrypt any
communication prior to compromise

Considered essential in many modern protocols
TLS since 1.3 always offers forward secrecy

▶ Use ephemeral keys (i.e. new keys for every connection)

▶ Keep generating new keys from old ones (ratchet)

▶ Diffie-Hellman with ephemeral keys is forward secure. . .

▶ . . . if we can authenticate it correctly!

What about communication after compromise?

▶ Can still offer post-compromise security against
passive eavesdropping

▶ Refresh keys from time to time, e.g. with new DH

▶ Can’t prevent active impersonation by adversary

Requirements for authenticated key exchange

For secure two-party communication, establish a session key
for use with an authenticated symmetric encryption scheme
with the following properties:

▶ Confidentiality: when two honest parties communicate,
the adversary learns nothing about the session key

▶ Authentication: each party can verify the identity of the
other party; adversary cannot impersonate

▶ Consistency: if A thinks it’s communicating with B,
then B thinks it’s communicating with A
▶ Violation is called identity misbinding attack

▶ Forward secrecy: if adversary compromises a party’s
private state, past session keys remain confidential

There are also group key exchange protocols for more than
two parties (beyond scope of this module)

Badly Authenticated Diffie-Hellman (1)

Alice Eve (adversary) Bob

sample x ∈ Zq

σA ← Sign(skA, g
x)

sample y ∈ Zq

σB ← Sign(skB, g
y)

σE ← Sign(skE, g
x)

Verify(pkB, g
y, σB)

k ← H((gy)x)

Verify(pkE, g
x, σE)

k ← H((gx)y)

gy, pkB, σB

gx, pkA, σA

gx, pkE, σE

Alice is talking to Bob, but Bob thinks he’s talking to Eve

Badly Authenticated Diffie-Hellman (2)
Alice Eve (adversary) Bob

sample x ∈ Zq

sample y ∈ Zq

σB ← Sign(skB, g
x ∥ gy)

Verify(pkB, g
x ∥ gy, σB)

σA ← Sign(skA, g
x ∥ gy)

k ← H((gy)x)

σE ← Sign(skE, g
x ∥ gy)

Verify(pkE, g
x ∥ gy, σE)

k ← H((gx)y)

gx

gy, pkB, σB

pkA, σA pkE, σE

Again Bob thinks he’s talking to Eve

Message Authentication Code (MAC)

MAC(key ,msg) takes a symmetric key key and byte string
msg , returns a fixed-length authentication tag

▶ Security definition: existential unforgeability against
chosen-message attack (EUF-CMA). Cannot forge a tag
on some message without knowing key, even knowing
tags for other messages

▶ Proof that a message was constructed by someone who
knows key , and that the message was not altered

▶ To check, recompute MAC(key ,msg) and check whether
you get the same result

▶ Use a constant-time comparison, otherwise timing allows
adversary to guess the right tag!

▶ Implementations based on hash (HMAC), block cipher
(CBC-MAC), or polynomial (Carter-Wegman, GCM)

Hash-based MAC (HMAC) – RFC 2104

▶ H(key ∥ msg) is not a secure MAC when H is SHA-256:
length extension attacks!

▶ HMAC(key ,msg) =
H((key ⊕ outerPad) ∥ H((key ⊕ innerPad) ∥ msg))
where ∥ is concatenation, ⊕ is bit-wise XOR

▶ Some hash functions (e.g. BLAKE2/3) have a keyed
mode, which can be used as a MAC directly

import hmac

import secrets

key, msg = secrets.token_bytes(16), b'hello'

tag1 = hmac.new(key, msg, 'sha256').digest()

tag2 = hmac.new(key, msg, 'sha256').digest()

print(hmac.compare_digest(tag1, tag2))

MAC variant of STS protocol

Alice Bob

sample x ∈ Zq

sample y ∈ Zq

k ← H((gx)y)
σB ← Sign(skB, g

x ∥ gy)
µB ← MAC(k, σB)k ← H((gy)x)

MAC(k, σB)
?
= µB

Verify(pkB, g
x ∥ gy, σB)

σA ← Sign(skA, g
x ∥ gy)

µA ← MAC(k, σA)
return k if all ok

MAC(k, σA)
?
= µA

Verify(pkA, g
x ∥ gy, σA)

return k if all ok

gx

gy, pkB,
σB, µB

pkA, σA, µA

Weaknesses in the STS protocol
1. The same k is used as MAC and as session key

▶ Violates single-purpose principle

2. Identifies the public key of the other side, but not the
human-readable name
▶ Could Eve take Alice’s public key pkA and register

(“Eve”, pkA) with the PKI?
▶ If so, we have an identity misbinding attack again
▶ To prevent, PKI must check whether Eve knows skA

3. Adversary might be able to create a new keypair
(sknew, pknew) such that signature σA = Sign(skA,m)
validates with pknew, i.e. Verify(pknew,m, σA) = true
▶ Then Eve registers pknew with PKI and replaces pkA

with pknew in last message
▶ Depends on signature scheme
▶ Existential unforgeability says you can’t make a new

valid signature for a given key; it doesn’t say you can’t
make a new key that validates an existing signature!

SIGMA protocol
Let cA = (“Alice”, pkB, start , end) + PKI signature; cB similar.
Let g be a generator of a group with prime order |g| = q.

Alice Bob

sample x ∈ Zq

sample y ∈ Zq

kM ← H((gx)y ∥ “MAC”)
kS ← H((gx)y ∥ “session”)
σB ← Sign(skB, g

x ∥ gy)
µB ← MAC(kM, cB)

kM ← H((gy)x ∥ “MAC”)
kS ← H((gy)x ∥ “session”)
MAC(kM, cB)

?
= µB

Verify(pkB, g
x ∥ gy, σB)

σA ← Sign(skA, g
x ∥ gy)

µA ← MAC(kM, cA)
return kS if all ok MAC(kM, cA)

?
= µA

Verify(pkA, g
x ∥ gy, σA)

return kS if all ok

gx

gy, cB,
σB, µB

cA, σA, µA

Finally secure?!

TLS handshake, simplified

Let cS = (“example.com”, pkS, start , end) + PKI signature

Client Server

sample x ∈ Zq

hC ← (ciphersSupported , gx)
sample y ∈ Zq

hS ← (ciphersSupported , gy)
kC ← HKDF(“Client”, (gx)y)
kS ← HKDF(“Server”, (gx)y)
kM ← HKDF(“Master”, (gx)y)
σS ← Sign(skS, hC∥hS∥cS)
µS ← MAC(kS, hC∥hS∥cS∥σS)

kC ← HKDF(“Client”, (gy)x)
kS ← HKDF(“Server”, (gy)x)
kM ← HKDF(“Master”, (gy)x)

MAC(kS, hC∥hS∥cS∥σS)
?
= µS

Verify(pkS, hC∥hS∥cS, σS)
Verify PKI signature on cS
µC ← MAC(kC, hC∥hS∥cS∥σS∥µS)
return kM if all ok

MAC(kC, hC∥hS∥cS∥σS∥µS)
?
= µC

return kM if all ok

hC

hS, cS,
σS, µS

µC

More on authenticated key exchange
Now just use the session key with an authenticated symmetric
encryption scheme, and that’s the core that makes most secure
communications (TLS, secure messaging, VPNs, . . .) work!

Lots of extensions to that core:
▶ Identity protection: encrypt public keys + identifiers so

that eavesdropper can’t see who is communicating
▶ e.g. Great Firewall of China blocks websites based on

hostname in TLS handshake

▶ Ratchet: for long-running sessions, periodically refresh
keys (for forward secrecy + post-compromise security)

▶ From two-party to group communication
▶ including adding and removing group members

▶ Managing trust in the PKI (transparency logs, . . .)

▶ Some protocols (e.g. OTR, Signal’s X3DH) offer
deniability (no cryptographic proof of communication)

Assignment 2, Task 1
Implement the SIGMA protocol using X25519, Ed25519,
and HMAC.

▶ There’s no RFC, so you need to define the format of the
messages yourself (and justify it in your lab report)

▶ Use it to build a basic two-party secure messaging
protocol (use a library for hashes and symmetric crypto)

▶ As PKI, implement a basic CA that issues certificates
(signed using Ed25519), and include certificate validation
in your protocol implementation
▶ X.509 certificates are complicated; make your own

simple format
▶ Omit check whether user controls the phone

number/email address/domain name

▶ Identity protection, ratcheting, etc. are not required

▶ Simulate the network in a single process

Password-Authenticated Key Exchange (PAKE)

Authenticated Key Exchange requires knowing the other
party’s public key. In most cases that means trusting a PKI
(CA or key directory) for global name → pubkey mapping.

Can we manage without a PKI?

PAKE: no global names, no pubkeys, just a shared password

▶ e.g. wifi router: password is printed on the box

▶ e.g. device pairing: one device displays a code, type it
into the other (or scan a QR code)

▶ e.g. link shared via secure messaging/video call/email

Password should be short enough that you can sensibly type it
(i.e. much less than 128 bits entropy), and PAKE should
upgrade this to a strong shared secret

Passwords on the web: Not a PAKE

Let certS = (“example.com”, pkS, start , end) + PKI signature

Client Server

validate certS
kM ← session key

kM ← session key

c← Enc(kM, passwd) H(Dec(kM, c))
?
=

hashedPassword

certS

TLS handshake

c

Doesn’t work without a PKI: client wouldn’t know who it’s
sending the password to

An insecure PAKE

Say Alice knows a password pwdA and Bob knows pwdB. We
want them to agree on a shared secret k if pwdA = pwdB.

Alice Bob

sample x ∈ Zq

hA ← H(gx ∥ pwdA)
sample y ∈ Zq

hA
?
= H(gx ∥ pwdB)

hB ← H(gx ∥ gy ∥ pwdB)
k ← H((gx)y) if okhB

?
= H(gx ∥ gy ∥ pwdA)

k ← H((gy)x) if ok

gx, hA

gy, hB

Problem: adversary who has intercepted gx and hA can run
an offline brute-force search, trying many passwords p until
they find one such that H(gx ∥ p) = hA

The SPAKE2 protocol
Let E be a group of order |E| = hq. Let g ∈ E be a generator of prime
order |g| = q. Let M,N ∈ E be elements whose discrete log is unknown.

Alice Bob

sample x ∈ Zq

w ← H(pwdA) (mod q)
πA ← gxMw

sample y ∈ Zq

w ← H(pwdB) (mod q)
πB ← gyNw

K ← (πBN
−w)hx

T ← “A”∥“B”∥πA∥πB∥K∥w
Ke∥Ka ← H(T)
KcA∥KcB ← HKDF(Ka)
µA ← HMAC(KcA, T)

K ← (πAM
−w)hy

T ← “A”∥“B”∥πA∥πB∥K∥w
Ke∥Ka ← H(T)
KcA∥KcB ← HKDF(Ka)
µB ← HMAC(KcB, T)

µB
?
= HMAC(KcB, T)

return Ke if ok
µA

?
= HMAC(KcA, T)

return Ke if ok

πA πB

µA µB

SPAKE2: Why it works

▶ πA = gxMw =⇒ (πAM
−w)hy = (gxMwM−w)hy = ghxy

▶ πA and πB are uniform random group elements =⇒ leak
no information about password
▶ gxMH(pwd) essentially encrypts gx with the password
▶ Intentionally unauthenticated! Authentication would

enable offline brute-force

▶ The MAC µA allows the party that generated πB to verify
whether the passwords were equal (similarly with µB and
πA), but not an eavesdropper

▶ In any run of the protocol, adversary can talk to Alice,
pretend to be Bob, and guess some password pwdB.
▶ If it succeeds (MAC is correct), guess was correct
▶ If it fails, adversary only learns that password was wrong
▶ =⇒ adversary gets one password guess per protocol run
▶ =⇒ limit protocol retries based on password entropy

SPAKE2: Trusted setup
If adversary knows discrete log n such that N = gn:

▶ Adversary pretends to be Bob, sets πB = gy, receives
πA = gxMw and µA from Alice

▶ Alice computes K = (πBN
−w)hx = (gyg−nw)hx =

(gx)(y−nw)h = (πAM
−w)(y−nw)h

▶ Adversary knows πA, M , y, n, h; just not w
▶ Adversary can now guess w = H(pwd) (mod q),

compute K, hence compute KcA and the MAC
▶ If the MAC matches µA from Alice, pwd guess is correct
▶ Adversary can now run offline brute-force search

Attack is prevented if nobody knows n.

Requires trusted setup: whoever generates M and N must
convince others that their discrete log is unknown.

Assignment 2, Task 2

Implement the SPAKE2 protocol using Edwards25519.

▶ Same curve as for Ed25519 – you can use your
implementation from assignment 1 (but don’t have to)

▶ RFC 9382 contains M and N values you can use (given
using compressed point encoding)

▶ The RFC contains some ambiguities; you’ll need to decide
on some details yourself

▶ Deadline: 3 Mar 2025

Software Engineering for Cryptography –
Part II

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

University of Cambridge
Part III/MPhil in Advanced Computer Science

Randomness

▶ Cryptography requires random inputs
▶ Key generation
▶ Nonce generation
▶ Tokens
▶ ...

▶ Building strong random number generators is not trivial

LAB: build your own PRNG (10min)

Hidden from the published slides.

LAB: collect (5min)

Hidden from the published slides.

Real-world entropy

Instead of relying on deterministic algorithms, we can use
real-world entropy sources.

▶ Interrupts (e.g. from user input)

▶ Hardware sources (e.g. electrical noise, nuclear decay,
. . .)

▶ Observation of physical phenomena

▶ Lava lamps

▶ . . .

Lava lamps

Image from Wikipedia (CC-BY 2.0 Dean Hochman)

Real-world entropy

Instead of relying on deterministic algorithms, we can use
real-world entropy sources.

▶ Interrupts (e.g. from user input)

▶ Hardware sources (e.g. electrical noise, nuclear decay,
. . .)

▶ Observation of physical phenomena

▶ Lava lamps

▶ . . .

Problem:

▶ Not uniformly distributed

▶ Slow entropy sources

▶ Might be temporarily unavailable

Cryptographically secure PRNGs (CSPRNGs)

PRNGs are not suitable for cryptographic applications. We
need a CSPRNG with strong guarantees:

▶ Next-bit test: given all previous i output bits, predicting
the next bit is computationally infeasible

▶ Forward security: if an adversary learns the state of the
PRNG, they cannot use it to predict previous outputs

▶ Recovery: after compromise of the state, new entropy
can be added

Measuring entropy

Entropy is the amount of uncertainty in a source, i.e. “how
surprising is the next event?”.

The entropy H of a discrete random variable X with possible
values {x1, . . . , xn} and probability mass function P (X) is
defined as:

H(X) = −
n∑

i=1

P (xi) log2 P (xi)

Example: A fair coin has an entropy of 1 bit per toss (we
assume it will not land on its edge). A sequence of four fair
coin tosses has an entropy of 4 bits.

LAB: compare (10min)

Hidden from the published slides.

Randomness tests

The NIST Statistical Test Suite is a collection of tests that
can be used to evaluate the quality of a random number
generator.

▶ Frequency test

▶ Block frequency test

▶ Runs test

▶ Compression tests

▶ ...

The Linux CSPRNG design

Image from [BSI, 2022].

CSPRNGs in practice

Linux:

▶ Read from /dev/urandom or /dev/random1

▶ getrandom() system call

Python:

▶ Preferred method: secrets module

▶ Still common: os.urandom(...)

1The only difference is that /dev/random blocks if the entropy pool is
empty, e.g. early during boot. You can read the available entropy from
/proc/sys/kernel/random/entropy avail.

Case study: Debian OpenSSL Predictable PRNG

(CVE-2008-0166)

▶ OpenSSL collects entropy from many different sources
(/dev/urandom, time, . . .)

▶ Read method tried to be clever and includes also
uninitialized parts of a buffer

int RAND_load_file(const char *file, long bytes) {
/* ... */

i=fread(buf, 1, n, in);

if (i <= 0) break;

/* even if n != i, use the full array */

RAND_add(buf, n, double(i));

/* ... */

}

Case study: Debian OpenSSL Predictable PRNG

(CVE-2008-0166)

▶ Down-stream developers (Debian) saw Valgrind warnings

▶ Remove two lines that adds these uninitialized buffers

▶ The only remaining source of entropy was the PID. . .

▶ Keyspace |K| = 32 768

Take-aways:

▶ Low entropy can be more dangerous than no entropy at
all

▶ Avoid user-level CSPRNGs. Use the kernel-level CSPRNG
instead.

Dealing with imperfect randomness

Often we deal with randomness that is not perfect, e.g. biased
and not uniformly distributed. We can capture these
conditions with the following definition:

A probability distribution X has min-entropy (at least) m if
for all a in the support of X and for random variable X drawn
according to X :

Prob(X = a) ≤ 2−m

We cannot use these sources directly as input for our
cryptographic primitives that require uniform randomness.
This includes pseudo-random functions (PRFs) that are the
basis of many constructions.

Key derivation functions (KDFs)

We can use a KDF to generate cryptographically strong keys
from a source with min-entropy m:

▶ The initial extraction step also relies on a secret salt

▶ HKDF [Krawczyk, 2010] is a popular KDF with an
HMAC-based extract-and-expand construction

As such we can expand a short random seed into a larger
number of pseudorandom bytes. In addition, extra info
parameters enable domain separation for keys.

Indistinguishability

Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N
are computationally indistinguishable if for every
probabilistic polynomial-time distinguisher D there exists a
negligible function negl such that:

|Pr
x

$←Xn
[D(x) = 1]− Pr

y
$←Yn

[D(y) = 1]| ≤ negl(n)

The distinguisher D would output 0 if it thinks its input is
sampled from X ∈ X and 1 if it thinks its input is sampled
from Y ∈ Y .

Testing and correctness

“Testing security is pretty much impossible. It’s
hard to know if you’re ever done.”

– Daniel Rohrer, VP of Software Security at NVIDIA

Approaching correctness

▶ It is really really hard to convince ourselves that our code
is always, always correct and secure

▶ In fact, it is already hard to precisely define what this
means
▶ Edge cases and error handling
▶ Side-channels
▶ Abstraction: source code, binary file, execution, . . .
▶ Assumptions about the compiler, hardware model, . . .

Testing strategies

▶ Bottom-up: testing individual operation thoroughly across
their specification range

▶ Top-down: economic testing of overall functionality and
compatibility

▶ Edge cases and error handling

▶ Randomized tests
▶ Against another implementation
▶ Fuzzing (later slides)

Formal approaches
For serious real-world implementations, it is helpful to ground
the implementation strategy in a formal approach.

▶ Derive implementation step-by-step from specification
▶ That is most-likely the best approach for your lab reports
▶ Scope: a few days

▶ Prove all implementation steps
▶ Requires model of the underlying system (compiler,

hardware, ...)
▶ Scope: an MPhil thesis

▶ Derive implementation from formal description &
hardware model
▶ Requires detailed model of hardware
▶ Scope: a PhD thesis or research group

Test-driven development (TDD)

▶ Popularized by Kent Beck

▶ Write test first, then write code

▶ Some advantages
▶ Understanding of edge cases
▶ View point of the callsite
▶ Motivates testable APIs (mocking)
▶ Psychological: gamification, avoiding

write-then-challenge

Test vectors

▶ The bread and butter of testing cryptographic
implementations

▶ As a very basic minimum requirement, each library should
pass the test vectors provided in the specification

▶ Good tests:
▶ check intermediate values
▶ generate additional test vectors for edge cases
▶ strategically build coverage

▶ Project Wycheproof collects “tricky” test vectors

Advanced test vector patterns

Test vectors are also a great way to test compatibility of
different implementations.

Example: server written in Go and an Android app in Kotlin

▶ Server adds new test vectors as part of CI

▶ Android app tested in CI against vectors

▶ ensures spatial compatibility

Can be extended with persisted vectors

▶ continuously add test vectors from committed versions

▶ test new versions against existing vectors

▶ ensures temporal/backwards compatibility

Fuzzing

Automated testing of programs using randomized input.

Initial population:

▶ Test vectors

▶ State from previous runs

▶ Samples from production code

Classic fuzzing loop:

▶ Add new candidates (bit flips, dictionaries, . . .)

▶ Measure “coverage” (basic blocks, edges, . . .)

▶ Trim population

Fuzzing

▶ Traditionally focused on C-style bugs
▶ but can be applied to logic bugs itself given reference

▶ Particularly valuable for anything that parses
adversary-controlled input
▶ Deserialization code
▶ File formats
▶ Network protocols
▶ ...

▶ Continuous fuzzing as part of CI/CD strategy (e.g. OSS
Fuzz)

Fuzzing road-blocks

Some code is easier to fuzz than other. Tricky conditions that
are unlikely to pass with random guessing are often referred to
as “road blocks”.

def handle_packet(pkt: Packet):

tag = pkt[32:40]

if hash(pkt[:32]) == tag:

parse_packet(pkt[:32])

Countermeasures:

▶ Allow fuzzer to disable/skip checks

▶ Symbolic execution, back-propagation

▶ Additional entry points

Performance optimizations

▶ Write a correct (näıve) implementation first. Celebrate.

▶ Make all tests pass

▶ Add benchmarks and ensure they are solid

▶ Do small step-by-step improvements
▶ The tests give you confidence
▶ Benchmarks help you to evaluate changes as you go

Benchmarking with timeit

import timeit
x = setup(...)

ts = timeit.repeat(

'your_function(x)',

globals=globals(),

repeat=5, number=5

)

▶ Minimize the lines under test

▶ Consider mean, media, p90, p99, ...

▶ Reduce noise (GC, dynamic frequency, ...)

▶ “Warm-up” the code

Profiling with cProfile

import cProfile, pstats
with cProfile.Profile() as pr:

x25519(alice_sk, bob_pk)

pr.disable()

pstats.Stats(pr) \

.strip_dirs() \

.sort_stats('cumulative') \

.print_stats(5)

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 0.007 0.007 curve25519.py:102(x25519)

1276 0.001 0.000 0.002 0.000 field.py:77(__mul__)
1021 0.001 0.000 0.002 0.000 field.py:96(__pow__)
4596 0.001 0.000 0.002 0.000 field.py:8(__init__)
1020 0.001 0.000 0.001 0.000 field.py:49(__add__)

Profiling with cProfile (Flamegraph)

import cProfile, pstats
with cProfile.Profile() as pr:

x25519(alice_sk, bob_pk)

pr.disable()

pr.dump_stats('x25519.prof')

Profiling with cProfile (Flamegraph)

x25519

__add__

__init__

<built-in method builtins

<built-in method built

__sub__

__init__

<built-in method builtin

<built-in method builti

__mul__

__init__

<built-in method builtins

<built-in method builti

__rmul__

__init__

<built-in method built

__truediv__

inverse

__pow__

__init__<built-in method builti

__pow__

__init__

<built-in method builtins

<built-in method builti<built-in method builtins.pow>

x25519 __init__

__add__

x25519

__sub__

x25519

__mul__

x25519

__rmul__

x25519

__pow__

x25519

__add__

x25519

__sub__

x25519

__mul__

x25519

__rmul__

x25519

__pow__

x25519 inverse

__truediv__

x25519

<built-in method builtins.isinstance>

__init__

__add__

x25519

__sub__

x25519

__mul__

x25519

__rmul__

x25519

__pow__

x25519

__add__

x25519

__sub__

x25519

__mul__

x25519

__pow__

x25519

<built-in method builtins.pow>

__pow__

x25519 inverse

__truediv__

x25519

Serialization/marshaling/...

▶ We already translated the ideal mathematical objects into
some representation in our programming language

▶ Representing them as byte streams
▶ Storage on disk
▶ Transport over network
▶ ...

▶ In both cases, there will be two parties: the writer and
the reader
▶ Could be temporally separate (store now, load later)
▶ Could be spatially separate (send over network)

Python’s pickle is not great

▶ A very simple mechanism

▶ Requires both parties to have (roughly) the same class
definitions

▶ Allows to customize the serialization/deserialization
process
▶ Making sure to only store what’s needed
▶ A wide attack surface

Pickle example (1)

import pickle

class Foo:

def __init__(self, name):

self.name = name

foo = Foo('good')

with open('foo.pkl', 'wb') as f:

pickle.dump(foo, f)

Pickle example (2)

import pickle

class Foo: pass

with open('foo.pkl', 'rb') as f:

foo = pickle.load(f)

Pickle example (3)

import pickle

class EvilFoo:

def __reduce__(self):

return (

exec,

('import os; os.system("uname -r")',)

)

with open('evil.pkl', 'wb') as f:

pickle.dump(EvilFoo(), f)

Pickle example (4)

$ xxd -c8 evil.pkl
00000000: 8004 9538 0000 0000 ...8....

00000008: 0000 008c 0862 7569bui

00000010: 6c74 696e 7394 8c04 ltins...

00000018: 6578 6563 9493 948c exec....

00000020: 1c69 6d70 6f72 7420 .import

00000028: 6f73 3b20 6f73 2e73 os; os.s

00000030: 7973 7465 6d28 2268 ystem("h

00000038: 746f 7022 2994 8594 top")...

00000040: 5294 2e R..

Pickle example (5)

import pickle

class Foo: pass

with open('evil.pkl', 'rb') as f:

foo = pickle.load(f) # Boom

Do not use Python’s pickle!

▶ If you have to, make sure that nobody can tamper with
the files (using a MAC, . . .)

▶ The AI/ML community is rediscovering this
▶ model = torch.load(PATH, weights only=False)
▶ Still an on-going issue

Case study: Log4J

▶ Log4Shell (CVE-2021-44228) is considered one of the
most serious vulnerabilities of the last years

▶ Messages could contain special tags ${type:arg} to
enhance the message

▶ Log4J allowed plugin-like behaviour with ${jndi:url}

▶ Faults
▶ Trusting untrusted user-controlled input
▶ Message parsing leads to code loading and execution
▶ JRE allows downloading code during runtime by default

Better choices: length-encoding, protobuf, JSON

▶ Protobuf:
▶ Describe types and messages
▶ Compiler generates language bindings

▶ JSON
▶ Simple and human readable
▶ Type differences between languages (date format, ...)

▶ Custom formats (e.g. length encoded)

Serde example (1)

use serde::{Deserialize, Serialize};

#[derive(Serialize, Deserialize)]

enum Message {

Ok,

Text{msg: String},

}

Serde example (2)

serde_json::to_string(&msg)?;

// json: {"Text":{"msg":"Hello world!"}}

Serde example (3)

rmp_serde::to_vec(&msg)?;

// msgp: 81A45465787491AC

// 48656C6C6F20776F

// 726C6421

Serde example (4)

#[derive(Serialize, Deserialize)]

#[serde(tag = "type")]

enum Message {

Ok,

Text{msg: String},

}

// json: {"type":"Text","msg":"Hello world!"}

// msgp: 92A454657874AC48

// 656C6C6F20776F72

// 6C6421

Serde example (5)

#[derive(Serialize, Deserialize)]

#[serde(untagged)]

enum Message {

Ok,

Text{msg: String},

}

// json: {"msg":"Hello world!"}

// msgp: 91AC48656C6C6F20

// 776F726C6421

What we want from serialization tools

▶ Simple (complexity is danger)

▶ Expressive (avoids writing custom sub-parsers)

▶ Cross-platform and cross-language type agreement

▶ Backwards compatibility (new code)

▶ Streamable parsing

▶ Pluggable

Postel’s law

“2.10 Robustness principle: [. . .] be conservative in
what you do, be liberal in what you accept from oth-
ers.”

— RFC 761, Transmission Control Protocol

▶ Great idea for making systems work together

▶ Often bad for cryptographic systems

▶ Example: YAML v1.1
▶ name: peter is a string
▶ name: yes is a boolean
▶ Requires very careful parsing and generating

YAML’s country surprise

countries-iso:

- SE

- NO

- FI

ASN.1

▶ Abstract Syntax Notation One (ASN.1) is an interface
description language
▶ Independent of used computer architecture and language

▶ Used in many specifications such as X.509, LDAP, ...

▶ Many features handy for cryptography such as constraints
on values and arbitrary-precision integers

▶ Supports different encodings
▶ Basic Encoding Rules (BER)
▶ Distinguished Encoding Rules (DER, subset of BER)
▶ XML Encoding Rules

ASN.1 example (1)

MyModule DEFINITIONS ::= BEGIN

Message ::= CHOICE {

ok OKMessage,

text TextMessage

}

OKMessage ::= NULL

TextMessage ::= SEQUENCE {

message UTF8String (SIZE(0..1024))

}

END

ASN.1 example (2)

import asn1tools

for codec in ('der', 'xer', 'jer'):

mod = asn1tools.compile_files('module.asn', codec)

msg = mod.encode(

'Message',

('text', {'message': 'Hello'})

)

with open(f"message.{codec}", 'wb') as f:

f.write(msg)

ASN.1 example (3)

$ xxd -c9 message.der

00000000: 3007 0c05 4865 6c6c 6f 0...Hello

<Message>

<text><message>Hello</message></text>

</Message>

{"text": {"message": "Hello"}}

Popular serialization formats

JSON
▶ Human readable and flexible

▶ Few built-in types (no support for, e.g. dates)

MessagePack
▶ “Binary JSON encoding” (concise and fast)

▶ Compact encoding and less ambigious encoding

protobuf
▶ Efficient binary format by Google

▶ Schema required (compiled)

ASN.1

▶ Complex standard for telecom/crypto

▶ Multiple encodings (BER, DER, etc.)

▶ Platform independent

CBOR
▶ Concise and fast

▶ Extensible without schema

Other deserialization challenges

▶ Protection against resource exhaustion and Denial of
Service (DoS) attacks

▶ Defense against ZIP bombs (e.g. compressed long,
repetitive strings or recursive archives)
▶ Limit expansion and deny nested compression
▶ Less of a problem with streaming processing

▶ Handling recursive encodings and references
▶ Avoid formats that allow clever references
▶ Detect cycles and/or limit stack size

PSA: Universally Unique Identifier (UUID)

d37b6a75-0419-11f0-9ba1-f875a40a2c42

▶ Created to uniquely identify objects (128 bits) and
designed to avoid conflicts.

▶ Different versions exist:
▶ V1: 48-bit MAC address + 60-bit timestamp
▶ V4: 6-bit version + 122-bit random number
▶ V7: 6-bit version + 48-bit timestamp + 74-bit

counter/random

▶ Do not assume that a UUID is a valid cryptographic
secret! For instance, it is not uniformly random and
subsequent UUIDs can be predicted.

Password-based key derivation functions

▶ We cannot use the passphrase directly as a key, as it is
not uniformly random. However, we can fix that using a
KDF.

▶ Problem: the min-entropy is low and hence passwords are
vulnerable to brute-force attacks

▶ Solutions:
▶ Generate high-entropy passphrases for the user
▶ Making the password derivation step intentionally

expensive

Generating high-entropy passphrases (EFF)

▶ EFF word list: |L| = 65 = 7776 words
▶ Also called “dice list”
▶ Chosen to avoid pairs of words that are similar (e.g.

“build” and “built”)

▶ Single word provides: log2(6
5) = 12.92 bits

▶ For 128-bit security we need 10 words:

“snowfield enamel subtext awkward viscous yippee hardly
clamshell deploy anew”

Generating high-entropy passphrases (BIP 39)

▶ BIP 39 word list: |L| = 2048 words
▶ Each word uniquely identified by its first 4 letters

▶ Single word provides: log2(2048) = 11 bits

▶ For 128-bit security we need 12 words:

“wild artefact gossip float pelican novel toddler salute dish
agent actor figure”

“wild arte goss floa peli nove todd salu dish agen acto figu”

Let us make things slower

▶ Hash function H(pw): 10,000s of millions per second

▶ PBKDF1: H(H(...H(pw)))

▶ PBKDF2: combine intermediate results using XOR and
allow for variable output length
▶ Single guess cannot be parallelized
▶ However, multiple guesses can be parallelized using

GPUs / ASICs

▶ Adversary scales with computation speed

Adversary with compute power (cloud GPU)

Assume:

▶ GPU computes 100 GHash/s (NVidia H100)

▶ Adversary rents 1,000 GPUs

In one day the adversary can make:

▶ ≈ 8.6 quintillion guesses (≈ 63 bits)

LAB: Design a memory hard function

Challenge: design a function that is memory hard! It should
take a password and have the following requirements:

▶ Easy to compute if you have 100MiB space

▶ Hard to compute if you have much less than that

5min to think about it and then we’ll gather and discuss
solutions

Argon2 (RFC 9106)
▶ Parameters: memory, number of iterations, parallelization

▶ 2+1 version: Argon2d, Argon2i, Argon2id

▶ Optimized for multi-core and assembly

Graphic from https://www.password-hashing.net/argon2-specs.pdf

https://www.password-hashing.net/argon2-specs.pdf

Why optimize an intentionally slow step?

▶ Hardness relies on difficulty of the underlying problem.
Not our implementation!

▶ Making it faster allows us to choose harder parameter
within our acceptable bounds

→ We work against an adversary which has the fastest
possible computation

Cambridge HPC

Assume:

▶ Cambridge HPC: ∼500 PiB memory

▶ 10ms per guess, limited only by memory

▶ Set Argon2 memory parameter: 256MiB

In one day the adversary can make:

▶ ≈ 104 billion guesses (≈ 36 bits)

Using generated passphrases

▶ Adversary makes can guess up to 236 passphrases per day

▶ We want to protect for at least 1,000 years

▶ Hence, we need log2(2
36 · 1000 · 365) ≥ 55 bit

▶ BIP 39 word list → 5 words

“primary boil army core robust”

Forcing strict rate limits

▶ Using a third-party for evaluation of the hash (e.g.
OPAQUE)
▶ Not suitable for local encryption (e.g. full disk

encryption)
▶ Or where the scheme needs to work offline

▶ Alternative: use a “built-in third party”
▶ Secure Element part of most modern devices (especially

smartphones)
▶ Resist local attacks

Modern hash functions (SHA-3)

▶ Part of Keccak, published by NIST, 2015

▶ Based on a sponge construction
▶ Different to Merkle–Damg̊ard in SHA-1 and SHA-2

▶ Large (hidden) internal state prevents length extension

Modern hash functions (BLAKE2)

▶ Faster than SHA-3, based on ChaCha

▶ Prevents length-extension attacks by compressing the last
block differently

▶ Argon2 uses the variant BLAKE2b

Nonces and IVs

▶ IVs generally assumed to be unpredictable (though not
secret)

▶ Nonce only need to be unique, e.g. 0, 1, 2, . . .

▶ Nonce re-use is typically “catastrophic”, i.e. allows an
attacker to break the encryption

Example: if nonces are random, for AES-GCM (96-bit nonce)
and m = 232 messages the chance of collision is:

p ≈ m2

2 · n
=

22·32

2 · 296
= 2−33

Approach 1: counting per direction

▶ Party A counts 0, 2, 4, ... and party B counts 1, 3, 5, ...

▶ Choose A to be the one with the lexicographical lower
DH input

▶ Simple and collision free

▶ Difficult to use with n > 2 parties and in decentralized
settings

▶ Storage and retry mechanism go into security scope!

The Noise protocol uses 64-bit nonces (to differentiate from
random and for compatibility with some ciphers)

Approach 2: nonce-reuse resistant modes

▶ Using a synthetic initialization vector (SIV) which
depends on the nonce and the message

▶ Example: AES-GCM-SIV (RFC 8452)

▶ In case of nonce reuse, it is only revealed whether two
messages are the same or not.

▶ Needs two passes over text (no streaming)

▶ “Collisions” after 232 messages

Approach 3: extended nonces

▶ Make the nonce space very large so that collisions are
unlikely

▶ Typically 192-bit, e.g. XChaCha20-Poly1305,
XAES-256-GCM

▶ Increasingly popular, especially when trying to make
misuse-safe APIs

Example: for XAES-256-GCM (192-bit nonce) and 264

messages the chance of collision is:

p ≈ 22·64

2 · 2192
= 2−64

LAB: Library design reflections

Topic: What third-party cryptography libraries have you
worked with?

▶ Good aspects?

▶ “Interesting” aspects?

▶ Dangerous patterns or APIs?

Collect your thoughts for a few minutes and then we’ll discuss!

Cryptographic agility

▶ Idea: allow upgrading the underlying cipher suites
▶ Phase out old algorithms
▶ Upgrade to new algorithms (e.g. PQC)

▶ Challenges:
▶ Backwards compatibility prevents us from removing old

algorithms, see e.g. SHA-1 in TLS
▶ Negotiation happens early, i.e. before we establish

authenticity.
▶ New schemes might require larger underlying changes,

e.g. allowed message size
▶ Complexity! Specification, implementation, proofs, . . .

Case study: JSON Web Token (RFC 7519)

▶ Given out to clients after authentication

▶ JOSE Header {"typ":"JWT", "alg":"HS256"} + claim

▶ HS256: HMAC using SHA-256

“To support use cases in which the JWT content is
secured by a means [. . .] using the ”alg” Header Pa-
rameter value ”none” and with the empty string for
its JWS Signature value” – RFC7519

▶ In 2020 researchers found that many libraries “correctly”
accepted none in production systems. . .

Authoritative versioning

▶ Idea: Each API/protocol endpoint only supports one
version

▶ Advantages:
▶ Reduces complexity by having separate endpoints → we

can actually delete code!
▶ No negotiation required

▶ Migration strategies:
▶ Shadow traffic
▶ Brown-outs

Opinionated libraries

▶ Avoid user misconfiguration and wrong usage
▶ Limited choice
▶ Secure defaults
▶ High-level abstractions

▶ You have seen a few:
▶ LibNacl, LibSodium, LibHydrogen
▶ Noise protocol
▶ Many Rust libraries
▶ . . .

Pure functions

▶ All information and state are explicitly passed
▶ Input/output parameters
▶ Environment: file system, time, ...

▶ On embedded systems this might include
▶ Memory allocation
▶ Secure random generator

▶ Added benefit: drastically simplifies testing!

Managing secret life times

▶ We want to minimize the lifetime of secrets in memory
▶ Quickly transform into derived secrets
▶ “Erase” memory

▶ Have the language help us with this
▶ Rust: Drop handler
▶ C++: RAII pattern
▶ Java: AutoCloseable, finalize
▶ . . .

▶ Difficult in user interfaces which are often not under our
control
▶ Also, side-channels such as keyboard predictions

Rust

▶ Drop handler can automatically erase memory

▶ Non trivial: making sure the compiler does not optimize
this step away

use zeroize::{Zeroize, ZeroizeOnDrop};

#[derive(ZeroizeOnDrop)]

struct SessionKey { bytes: [u8; 16] }

This is harder in non-native languages

▶ Java/... do not provide direct access to memory

▶ The GC might inadvertely copy our secrets

pw = byte[16];

read_pw(pw);

// do work

Arrays.fill(pw, 0);

This is harder in non-native languages

▶ Use ByteBuffer or equivalent to manage directly
allocated memory

pw = ByteBuffer.allocateDirect(16);

read_pw(pw);

// do work

pw.rewind();

pw.put(new byte[16]);

This is harder in non-native languages

Add safety by using finalize method which is (supposed to
be) called just before an object is garbage collected.

▶ Variant A: perform the operation for the user (might be
delayed or unreliable)

▶ Variant B: cause crashes in debug builds (see e.g.
Android’s strict mode)

Locking memory

▶ Prevent swapping out to disk
▶ Extra motivation why swap should always be encrypted

▶ On Linux we have to simple call mlock and munlock

int mlock(const void *addr, size t len);

int munlock(const void *addr, size t len);

Case study: crash dump leak (MS STORM-0558)

▶ Microsoft has an isolated production environment for
signing final artifacts

▶ A crash dump from this environment was exported for
investigation
▶ Usually, secrets are filtered out from crash dumps (this

was broken)
▶ Usually, secrets would be detected and revoked by other

systems (this was broken)

▶ Attackers had access to the investigation machine which
was outside the isolated environment

▶ Libraries did not automatically validate the key scope

▶ Result: attackers were able to access enterprise emails
using forged tokens.

Homomorphic Encryption and Private
Information Retrieval

Dr. Martin Kleppmann and Dr. Daniel Hugenroth
{mk428,dh623}@cst.cam.ac.uk

University of Cambridge
Part III/MPhil in Advanced Computer Science

Post-quantum security

▶ A post-quantum computer promises efficient solutions to
problems underlying classical public-key cryptography
using Shor’s algorithm
▶ Factorize number N in O(poly(logN))
▶ Solve discrete logarithm in O(poly(logN))
▶ Adversary can then “quite easily” break encryption

techniques (RSA and X25519) relying on these problems

▶ Symmetric algorithms (AES, SHA-3, . . .) and hash
functions are believed to be mostly unaffected
▶ Grover’s algorithm only provides a quadratic speed-up
▶ Can be countered by doubling the key size

Post-quantum world

We Adversary

Classic Classic Today’s world

Quantum Quantum Quantum key distribution, . . .

Quantum Classic

Classic Quantum Post-quantum crypto

Harvest now & decrypt later: an adversary might record
interesting data now and await the advent of a practical
quantum computer.

Quantum status-quo

21 = 3 × 7

Quantum readiness

▶ Favouring symmetric schemes
▶ Out-of-band key exchanges (e.g. in person, over phone,

. . .)
▶ One-time-pads
▶ . . .

▶ Ensure data structures can handle larger key and
signature sizes
▶ e.g. tree-based log

▶ Adopting new algorithms
▶ e.g. Kyber KEM, Signal’s PQXDH, hash-based

signatures
▶ Often in a hybrid mode with established techniques

▶ Allowing key rotation also for long-term storage

Learning without errors (1)

Let’s consider the following (overdetermined) equation system
over Z:

1x+ 2y + 3z = 16
2x+ 3y + 4z = 27
3x+ 4y + 5z = 35
4x+ 5y + 6z = 43

Learning without errors (2)

We can also write it using Matrix-Vector notation and use
Gaussian elimination to solve it:

1 2 3
2 3 4
3 4 5
4 5 6

× s =

16
27
35
43

→ s = (1, 3, 4)⊤

where A ∈ Z4×3 and s ∈ Z3

Learning without errors (3)

The same works perfectly fine in Zq (the ring of integers
modulo q). For example q = 7:

1 2 3
2 3 4
3 4 5
4 5 6

× s =

2
6
0
1

→ s = (1, 3, 4)⊤

where A ∈ Z4×3
7 and s ∈ Z3

7

Learning with errors (LWE)

However, adding even a little bit of noise e ∈ χ4, i.e. a vector
with four independent samples from the random distribution
χ, turns this into a tricky problem for which there is no simple
solution s.

1 2 3
2 3 4
3 4 5
4 5 6

× s =

2
6
0
1

+

+0.2
−0.2
+0.0
+0.2

 =

2.2
5.8
0.0
1.2

Learning with errors (LWE)

Let Zq be the ring of integers modulo q. Let n and m be
positive integers that we choose depending on our security
parameter. Let χ be an error distribution over Zq with values
[−B,B], where B is much smaller than q.

The decisional Learning With Errors (LWE) problem is to
distinguish between the following two distributions:

▶ (A,A · s+ e) where A ∈ Zm×n
q , s ∈ Zn

q , and e ∈ χm

▶ (A,U) where A ∈ Zm×n
q and U ∈ Zm

q uniformly random

Notation: we use c = A · s+ e to denote the “LWE sample”.

LWE: symmetric encryption (one-bit message)
Let’s consider the message spaceM = {0, 1}, i.e. a single bit
message and therefore we set m = 1. We want to build a
symmetric encryption scheme (Gen, Enc, Dec) to encrypt the
message b ∈M.

▶ Let s ∈ Zn
q be the secret key

▶ Let A ∈ Zn×1
q be the public matrix

▶ Let e ∈ χ1 be the error vector with B < ⌊q/4⌋

We define encryption and decryption as:

Encs(b) = (A,A · s+ e+ b · ⌊q/2⌋)

Decs(c) =

{
1 if ⌊q/4⌋ ≤ c− A · s < 3 · ⌊q/4⌋
0 otherwise

LWE: symmetric encryption

We can extend this scheme to encrypt multi-bit messages by
using a matrix A with m columns, where m is the bit length
of the message.

▶ Let s ∈ Zn
q be the secret key

▶ Let A ∈ Zn×m
q be the public matrix

▶ Let e ∈ χm be the error vector with B < ⌊q/4⌋

We define encryption and decryption as:

Encs(b) = (A,A · s+ e+ b · ⌊q/2⌋)

Decs(c)i =

{
1 if ⌊q/4⌋ ≤ ci − (A · s)i < 3 · ⌊q/4⌋
0 otherwise

Homomorphic encryption

A public-key encryption scheme (Gen, Enc, Dec) is
homomorphic if for all (pk, sk), it is possible to define groups
M, C (depending on pk only), with group operators ⊕ and ⊗
respectively, such that:

▶ The message space isM and all ciphertexts output by
Encpk are elements of C

▶ For any m1,m2 ∈M and c1 ← Encpk(m1),
c2 ← Encpk(m2) it holds that:

Decsk(c1 ⊗ c2) = m1 ⊕m2

▶ The distribution of all ciphertexts obtained by applying ⊗
to any ciphertexts Encpk(m1), Encpk(m2) is identical to
the distribution of Encpk(m1 +m2)

Symmetric LWE is homomorphic
LWE is homomorphic under addition, i.e.

Dec(s, Enc(m1) + Enc(m2)) = m1 ⊕m2

We can convince ourselves of this by looking at the definition
of encryption:

Enc(m1) = (A,A · s+ e1 +m1 · ⌊q/2⌋)
Enc(m2) = (A,A · s+ e2 +m2 · ⌊q/2⌋)

Enc(m1) + Enc(m2) =

(A+ A, (A+ A) · s+ (e1 + e2) + (m1 +m2) · ⌊q/2⌋)

Note: the noise in the ciphertext grows (doubles) with each
operation: enew = e1 + e2

Private information retrieval (PIR)

We want to build a protocol for private information retrieval
(PIR).

Problem:

▶ Server has a database D ∈ {0, 1}N with N one-bit entries

▶ Client wants to retrieve the item at index i ∈ [N]

Requirements:

▶ Correctness: Client should learn Di

▶ Privacy: Server does not learn which i was requested

▶ Minimal communication: They must not exchange more
than N bits

PIR using LWE (näıve)
Alice wants to retrieve the i-th entry from a database D ∈ {0, 1}N where
i ∈ [N].

Client Server

v ∈ ZN
2 with vx =

{
1 if x = i

0 otherwise

s ∈ ZN
q

A ∈ ZN×N
q , e ∈ χN

c = A · s+ e+ v⌊q/2⌋
A′ = 0N , c′ = 0
for i ∈ [N] :
if Di = 1 :
A′ = A′ +Ai

c′ = c′ + ci
r = c′ −A′ · s
Output 1 if r ∈ [⌊q/4⌋, 3 · ⌊q/4⌋]

(A, c)

(A′, c′)

PIR using LWE (näıve)

▶ Privacy: the server only ever sees the LWE sample
(A, c) ∈ ZN×N

q × ZN
q . Reduction to the LWE assumption

shows that it does not learn i

▶ Correctness:
▶ We add ci where Di = 1
▶ Only one of the ci encrypts 1, hence we only “add”
⌊q/2⌋ in that case

▶ The result c′ contains the noise N · e
▶ Minimal communication:

▶ |A| = N2 log2 q bits
▶ |c| = N log2 q bits
▶ Let’s improve this!

PIR using LWE (square-root)
Alice wants to retrieve the (i, j)-th entry from a database

D ∈ {0, 1}
√
N×

√
N where i, j ∈ [

√
N].

Client Server

v ∈ Z
√
N

2 with vx =

{
1 if x = j

0 otherwise

s ∈ Z
√
N

q

A ∈ Z
√
N×

√
N

q , e ∈ χ
√
N

c = A · s+ e+ v⌊q/2⌋

A′ = D ·A
c′ = D · c

r = c′ −A′ · s
Output 1 if ri ∈ [⌊q/4⌋, 3 · ⌊q/4⌋]

(A, c)

(A′, c′)

PIR using LWE (square-root)

▶ Privacy: the server only sees the blinded LWE sample
(A′, c′)

▶ Correctness:
▶ The unit vector v effectively “selects” the i-th column
▶ The response vector c′ has one entry per entry of the

i-th column of D
▶ Each element of the response c′ contains noise

√
N · e

▶ Minimal communication:
▶ |A| =

√
N

2
log2 q = N log2 q bits

▶ |c| =
√
N log2 q bits

▶ Better, but not great yet. . .

PIR using LWE: improvements

We can make a few observations that allow us to improve the
scheme:

▶ Since A is already transmitted in the clear, we can use it
for multiple queries without having to re-transmit it.

▶ Similarly, the server can pre-compute A′ = D · A.
▶ And in turn A′ can be distributed to clients ahead of time

(barring any updates to D)

PIR using LWE (optimized square-root)
Alice wants to retrieve the (i, j)-th entry from a database

D ∈ {0, 1}
√
N×

√
N where i, j ∈ [

√
N]. Both have pre-computed and

shared A and A′ = D ·A.

Client Server

v ∈ Z
√
N

2 with vx =

{
1 if x = j

0 otherwise

s ∈ Z
√
N

q , e ∈ χ
√
N

c = A · s+ e+ v⌊q/2⌋

c′ = D · c

r = c′ −A′ · s
Output 1 if ri ∈ [⌊q/4⌋, 3 · ⌊q/4⌋]

c

c′

Assignment 3

Implement a PIR scheme using symmetric LWE encryption.

▶ Users should be able to query 1-bit fields from a database
with more than 1,000 entries

▶ Simulate the network by exchanging serialized messages

▶ Note: to our knowledge, there are no relevant
standards/specifications. You will have to make your own
decisions.

▶ Deadline: 24 Mar 2025

LWE Public-key Encryption (1)

We recall our example from the previous slides and represent it
as an augmented m× (n+ 1) matrix P :

P = (A | A · s+ e) =

1 2 3 2.2
2 3 4 5.8
3 4 5 0.0
4 5 6 1.2

LWE Public-key Encryption (2)

We sample a random vector r ∈ {0, 1}m and compute r · P .

r · P =
(
0 1 0 1

)
1 2 3 2.2
2 3 4 5.8
3 4 5 0.0
4 5 6 1.2

 =
(
6 8 10 7

)

With s we can distinguish the ciphertext c from a random
vector:

(r ·P) ·

s0
...

sn−1
−1

 =
(
6 8 10 7

)
1
3
4
−1

 = 63 ≡ 0 (mod q)

LWE Public-key Encryption (3)

Let x ∈ {0, 1} and r ∈ {0, 1}m. We can then define the
encryption of x as:

c = r · P + (0, . . . , 0, x · ⌊q/2⌋)

The recipient can then use their secret key s to decrypt the
ciphertext by computing:

Dec(P, s, c) =

{
1 if ⌊q/4⌋ ≤ c− (P · ŝ) < 3 · ⌊q/4⌋
0 otherwise

where ŝ = (sT | −1)T i.e. the column vector s augmented with
−1 in the last position.

LWE Public-key Encryption Parameters

Let λ be our security parameter. Then let n = λ and
m = Θ(n · log q). Let χ be a discrete Gaussian distribution
bounded to [−B,B] such that B ·m < q/4. Then the scheme
from the previous slide is a semantically secure public-key
encryption scheme.

▶ A typical choice for q is 216

▶ For 128-bit security, we choose n = 27

▶ With m = 2n · log2 q we get m = 211

▶ Remains to choose B such that B ·m < q/4
▶ Higher B gives better security but the noise growth is

higher
▶ Lower B gives less security and we might need to

increase n

Improving LWE Public-key Encryption

Problem: The resulting public key P is large: n ·m elements
in Zq. The ciphertexts c has n elements.

▶ Derive the matrix A pseudorandomly from a short seed.
▶ Generate the entries using H(seed ∥ i ∥ j).

▶ Pack more bits into each ciphertext by usingM = Zp

with p > 2
▶ Encode m ∈M as m · (q/p)
▶ During decryption, find nearest multiple of (q/p)

▶ Use the LWE over rings assumption (RLWE)
▶ Reduces key and ciphertext sizes
▶ Also reduces required computation
▶ Used in practical schemes

	Introduction
	About this module
	Basic cryptography recap

	Elliptic Curve Cryptography
	Groups and Fields
	Elliptic Curve Groups
	Scalar Multiplication and X25519
	Digital signatures and Ed25519

	Software Engineering
	Cryptography standards
	Error handling
	Leaky implementations
	Types

	Authenticated key exchange
	Requirements for authenticated key exchange
	Implementing a secure AKE protocol
	Password-authenticated key exchange

	Software Engineering II
	Randomness
	Testing
	Serialization and marshaling
	Randomness II
	API Design

	Homomorphic Encryption and Private Information Retrieval
	Post-quantum security
	Learning with errors
	Homomorphic encryption
	Private information retrieval
	Public-key encryption based on LWE

