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Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same
piece have, on average, more connections among each other than with
vertices in other clusters

Let us for simplicity focus on the case of two clusters!
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Conductance

Let G = (V ,E) be a d-regular and undirected graph and ∅ 6= S ( V .
The conductance (edge expansion) of S is

φ(S) :=
e(S,Sc)

d · |S|

Moreover, the conductance (edge expansion) of the graph G is

φ(G) := min
S⊆V : 1≤|S|≤n/2

φ(S)

Conductance

NP-hard to compute!
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φ(G) ∈ [0, 1] and φ(G) = 0 iff G is
disconnected

If G is a complete graph, then
e(S,V \ S) = |S| · (n − |S|) and
φ(G) ≈ 1/2.
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λ2 versus Conductance (1/2)

1

2 3

4 5

7 6

φ(G) = 0 ⇔ G is disconnected ⇔ λ2(G) = 0

What is the relationship between φ(G)
and λ2(G) for connected graphs?
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λ2 versus Conductance (2/2)

1D Grid (Path)

λ2 ∼ n−2

φ ∼ n−1

2D Grid

λ2 ∼ n−1

φ ∼ n−1/2

3D Grid

λ2 ∼ n−2/3

φ ∼ n−1/3

Binary Tree

λ2 ∼ n−1

φ ∼ n−1

Random Graph (Expanders)

λ2 = Θ(1)

φ = Θ(1)

Hypercube

λ2 ∼ (log n)−1

φ ∼ (log n)−1
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Relating λ2 and Conductance

Let G be a d-regular undirected graph and λ1 ≤ · · · ≤ λn be the eigenval-
ues of its Laplacian matrix. Then,

λ2

2
≤ φ(G) ≤

√
2λ2.

Cheeger’s inequality

Spectral Clustering:
1. Compute the eigenvector x corresponding to λ2

2. Order the vertices so that x1 ≤ x2 ≤ · · · ≤ xn (embed V on R)

3. Try all n − 1 sweep cuts of the form ({1, 2, . . . , k}, {k + 1, . . . , n})
and return the one with smallest conductance

It returns cluster S ⊆ V such that φ(S) ≤
√

2λ2 ≤ 2
√
φ(G)

no constant factor worst-case guarantee, but usually works well in
practice (see examples later!)

very fast: can be implemented in O(|E | log |E |) time
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):
By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).

12. Clustering © T. Sauerwald Conductance, Cheeger’s Inequality and Spectral Clustering 8



Outline
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Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Appendix: Relating Spectrum to Mixing Times (non-examinable)
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Illustration on a small Example

A =




0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0




L =




1 0 − 1
3 − 1

3 0 0 − 1
3 0

0 1 0 0 − 1
3 − 1

3 − 1
3 0

− 1
3 0 1 − 1

3 0 0 0 − 1
3

− 1
3 0 − 1

3 1 0 0 − 1
3 0

0 − 1
3 0 0 1 − 1

3 0 − 1
3

0 − 1
3 0 0 − 1

3 1 0 − 1
3

− 1
3 − 1

3 0 − 1
3 0 0 1 0

0 0 − 1
3 0 − 1

3 − 1
3 0 1




1

2
3

4

5

6
7

8

λ2 = 1−
√

5/3 ≈ 0.25

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)T

4 7

2 51 3

8 6

x−0.425−0.263 0 +0.263+0.425

1

4

3

7

52

8 6
Sweep: 4

Conductance: 0.166
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Physical Interpretation of the Minimisation Problem

For each edge {u, v} ∈ E(G), add spring between pins at xu and xv

The potential energy at each spring is (xu − xv )2

Courant-Fisher characterisation:

λ2 = min
x∈Rn\{0}

x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

‖x‖2
2=1,x⊥1

(xu − xv )2

In our example, we found out that λ2 ≈ 0.25

The eigenvector x on the last slide is normalised (i.e., ‖x‖2
2 = 1). Hence,

λ2 =
1
3
·
(

(x1 − x3)2 + (x1 − x4)2 + (x1 − x7)2 + · · ·+ (x6 − x8)2
)
≈ 0.25

4 7

2 51 3

8 6
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Let us now look at an example of a non-regular graph!
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The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of G = (V ,E ,w) is the n by n matrix

L = I− D−1/2AD−1/2

where D is a diagonal n × n matrix such that Duu = deg(u) =∑
v : {u,v}∈E w(u, v), and A is the weighted adjacency matrix of G.

1 2

34

16

9

7

9
L =




1 −16/25 0 −9/20
−16/25 1 −9/20 0

0 −9/20 1 −7/16
−9/20 0 −7/16 1




Luv = − w(u,v)√
dudv

for u 6= v

L is symmetric

If G is d-regular, L = I− 1
d · A.
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Conductance and Spectral Clustering (General Version)

Let G = (V ,E ,w) and ∅ ( S ( V . The conductance (edge expansion)
of S is

φ(S) :=
w(S,Sc)

min{vol(S), vol(Sc)} ,

where w(S,Sc) :=
∑

u∈S,v∈Sc w(u, v) and vol(S) :=
∑

u∈S d(u).
Moreover, the conductance (edge expansion) of G is

φ(G) := min
∅6=S(V

φ(S).

Conductance (General Version)

Spectral Clustering (General Version):
1. Compute the eigenvector x corresponding to λ2 and y = D−1/2x .

2. Order the vertices so that y1 ≤ y2 ≤ · · · ≤ yn (embed V on R)

3. Try all n − 1 sweep cuts of the form ({1, 2, . . . , k}, {k + 1, . . . , n})
and return the one with smallest conductance
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Stochastic Block Model and 1D-Embedding

G = (V ,E) with clusters S1,S2 ⊆ V , 0 ≤ q < p ≤ 1

P [ {u, v} ∈ E ] =

{
p if u, v ∈ Si ,
q if u ∈ Si , v ∈ Sj , i 6= j .

Stochastic Block Model Here:

|S1| = 80,
|S2| = 120

p = 0.08

q = 0.01

Number of Vertices: 200
Number of Edges: 919
Eigenvalue 1 : -1.1968431479565368e-16
Eigenvalue 2 : 0.1543784937248489
Eigenvalue 3 : 0.37049909753568877
Eigenvalue 4 : 0.39770640242147404
Eigenvalue 5 : 0.4316114413430584
Eigenvalue 6 : 0.44379221120189777
Eigenvalue 7 : 0.4564011652684181
Eigenvalue 8 : 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue 10 : 0.4814019607292904

0
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Drawing the 2D-Embedding
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Best Solution found by Spectral Clustering

For the complete animation, see the full slides.

Step
0 100 200

1

0.5

0

Φ Cut Edges

300

200

100

• Step: 78

• Threshold: −0.0336

• Partition Sizes: 78/122

• Cut Edges: 84

• Conductance: 0.1448

(0, 0)
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Clustering induced by Blocks

• Step: –

• Threshold: –

• Partition Sizes: 80/120

• Cut Edges: 88

• Conductance: 0.1486

(0, 0)
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Additional Example: Stochastic Block Models with 3 Clusters

Graph G = (V ,E) with clusters
S1,S2,S3 ⊆ V ; 0 ≤ q < p ≤ 1

P [ {u, v} ∈ E ] =

{
p u, v ∈ Si

q u ∈ Si , v ∈ Sj , i 6= j

|V | = 300, |Si | = 100
p = 0.08, q = 0.01.

Spectral embedding Output of Spectral Clustering
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How to Choose the Cluster Number k

If k is unknown:
small λk means there exist k sparsely connected subsets in the graph
(recall: λ1 = . . . = λk = 0 means there are k connected components)
large λk+1 means all these k subsets have “good” inner-connectivity
properties (cannot be divided further)

⇒ choose smallest k ≥ 2 so that the spectral gap λk+1 − λk is “large”

In the latter example λ = {0, 0.20, 0.22, 0.43, 0.45, . . . } =⇒ k = 3.

In the former example λ = {0, 0.15, 0.37, 0.40, 0.43, . . . } =⇒ k = 2.

For k = 2 use sweep-cut extract clusters. For k ≥ 3 use embedding in
k -dimensional space and apply k -means (geometric clustering)
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Another Example

(many thanks to Kalina Jasinska)

nodes represent math topics taught within 4 weeks of a Mathcamp

node colours represent to the week in which they thought

teachers were asked to assign weights in 0− 10 indicating how closely
related two classes are
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Summary: Spectral Clustering

Illustration on a (very) small Example

A =

0
BBBBBBBBBB@

0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0

1
CCCCCCCCCCA

M =

0
BBBBBBBBBB@

0 0 1
3

1
3 0 0 1

3 0
0 0 0 0 1

3
1
3

1
3 0

1
3 0 0 1

3 0 0 0 1
3

1
3 0 1

3 0 0 0 1
3 0

0 1
3 0 0 0 1

3 0 1
3

0 1
3 0 0 1

3 0 0 1
3

1
3

1
3 0 1

3 0 0 0 0
0 0 1

3 0 1
3

1
3 0 0

1
CCCCCCCCCCA

1

2
3

4

5

6
7

8

�2 =
p

5/3 ⇡ 0.75

v = (�0.425, +0.263,�0.263,�0.425, +0.425, +0.425,�0.263, +0.263)T

4 7

2 51 3

8 6

x�0.425�0.263 0 +0.263+0.425

1

4

3

7

52

8 6
Sweep: 2

Edge Expansion: 0.666

Clustering Demos T.S. 2

Clustering Demos T.S. 6

A Larger Example: Sweep Cut

Threshold: 0.00
Partition Sizes: 201 / 200
Cut Edges / Total Edges: 53 / 2601
Edge Expansion: 0.021

Clustering Demos T.S. 7

Spectral Embedding onto Line
Compute Sweep Cuts

Given any graph (adjacency matrix)
Graph Spectrum (computable in poly-time)

λ2 (relates to connectivity)
λn (relates to bipartiteness)
. . .

Cheeger’s Inequality
relates λ2 to conductance
unbounded approximation ratio
effective in practice

minx∈Rn\{0}
x⊥1

∑
u∼v (xu−xv )

2∑
u x2

u

12. Clustering © T. Sauerwald Illustrations of Spectral Clustering and Extension to Non-Regular Graphs 20



Outline

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs
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Relation between Clustering and Mixing (non-examinable)

Which graph has a “cluster-structure”?

Which graph mixes faster?
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Convergence of Random Walk (non-examinable)

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution π = (1/n, . . . , 1/n), which satisfies πP = π.

Here all vector multiplications (including eigenvectors) will always be from the left!

Consider a random walk on a connected, undirected and d-regular
graph. Then for any initial distribution x ,

∥∥∥xPt − π
∥∥∥

2
≤ λt ,

with 1 = λ1 > · · · ≥ λn as eigenvalues of P and λ := max{|λ2|, |λn|}.
⇒ This implies for t = O

(
log n

log(1/λ)

)
= O

(
log n
1−λ

)
,

∥∥∥xPt − π
∥∥∥

tv
≤ 1

4
.

Lemma

for lazy random walks, λn ≥ 0
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Proof of Lemma (non-examinable)

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2 ≤ λ

2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1
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Some References on Spectral Graph Theory and Clustering

Fan R.K. Chung.
Graph Theory in the Information Age.
Notices of the AMS, vol. 57, no. 6, pages 726–732, 2010.

Fan R.K. Chung.
Spectral Graph Theory.
Volume 92 of CBMS Regional Conference Series in Mathematics, 1997.

S. Hoory, N. Linial and A. Widgerson.
Expander Graphs and their Applications.
Bulletin of the AMS, vol. 43, no. 4, pages 439–561, 2006.

Daniel Spielman.
Chapter 16, Spectral Graph Theory
Combinatorial Scientific Computing, 2010.

Luca Trevisan.
Lectures Notes on Graph Partitioning, Expanders and Spectral Methods,
2017.
https://lucatrevisan.github.io/books/expanders-2016.pdf
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The End...

Thank you and Best Wishes for the Exam!

I’m very interested to hear your feedback about the slides and
the course more generally. You can use the student feedback
form or send me an email during or after the course
(tms41@cam.ac.uk).
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