
Randomised Algorithms
Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes 2

The Ehrenfest Markov Chain

A simple model for the exchange of molecules
between two boxes

We have d particles labelled 1, 2, . . . , d

At each step a particle is selected uniformly at
random and switches to the other box

If Ω = {0, 1, . . . , d} denotes the number of
particles in the red box, then:

Px,x−1 =
x
d

and Px,x+1 =
d − x

d
.

Ehrenfest Model

P7,6 = 7
10

P7,8 = 3
10

7

3

6

8
2

4

1
10

5

9

Let us now enlarge the state space by looking at each particle individually!

For each particle an indicator variable⇒ Ω = {0, 1}d

At each step: pick a random coordinate in [d] and flip it

Random Walk on the Hypercube

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes 3

Analysis of the Mixing Time

For each particle an indicator variable⇒ Ω = {0, 1}d

At each step: pick a random coordinate in [d] and flip it

(Non-Lazy) Random Walk on the Hypercube

Problem: This Markov Chain is periodic, as the
number of ones always switches between odd to even!

Solution: Add self-loops to break periodic behaviour!

At each step t = 0, 1, 2 . . .
Pick a random coordinate in [d]
With prob. 1/2 flip coordinate.

Lazy Random Walk (1st Version)

At each step t = 0, 1, 2 . . .
Pick a random coordinate in [d]
Set coordinate to {0, 1} uniformly.

Lazy Random Walk (2nd Version)

These two chains are equivalent!

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes 4

Example of a Random Walk on a 4-Dimensional Hypercube

0000 0001

0010 0011

0110

0100 0101

0111

1010

1000

1011

1001

1110 1111

1100 1101

Once all coordinates have been picked at least
once, the state is uniformly at random in {0, 1}d .

Coupon Collector ; mixing time should be O(d log d)

We won’t formalise this argument here (see [Ex. 4/5.11])

t Coord. Xt

0 2 0 0 0 0

1 3 0 1 0 0

2 3 0 1 0 0

3 4 0 1 1 0

4 2 0 1 1 1

5 4 0 1 1 1

6 2 0 1 1 0

7 4 0 0 1 0

8 3 0 0 1 0

9 1 0 0 1 0

10 done! 0 0 1 0

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes 5

Total Variation Distance of Random Walk on Hypercube (d = 22)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

d log d ≈ 68.00

t

‖P
t x
−
π
‖ t

v

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes 6

Theoretical Results (by Diaconis, Graham and Morrison)

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

This is a numerical plot of a theoretical bound, where d = 1012

(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
The variation distance exhibits a so-called cut-off phenomena:

Distance remains close to its maximum value 1 until step 1
4 n log n −Θ(n)

Then distance moves close to 0 before step 1
4 n log n + Θ(n)

5. Hitting Times © T. Sauerwald Application 3: Ehrenfest Chain and Hypercubes 7

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 8

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for (Xt)t≥0 if for
every s ≥ 0 the event {τ = s} depends only on X0, . . . ,Xs.

Example - College Carbs Stopping times:

X “We had rice yesterday” ; τ := min {t ≥ 1 : Xt−1 = “rice”}
× “We are having pasta next Thursday”

For two states x , y ∈ Ω we call h(x , y) the hitting time of y from x :

h(x , y) := Ex [τy] = E [τy | X0 = x] where τy = min{t ≥ 1 : Xt = y}.

Some distinguish between τ+
y = min{t ≥ 1 : Xt = y} and τy = min{t ≥ 0 : Xt = y}

Hitting times are the solution to a set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

P(x , z) · h(z, y) ∀x , y ∈ Ω.

A Useful Identity

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 9

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 10

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =


1

2 deg(u)
if {u, v} ∈ E ,

1
2 if u = v ,
0 otherwise.

P - SRW matrix
I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

a b

d c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

SRW on C4, Periodic

a b

d c

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

LRW on C4, Aperiodic

5. Hitting Times © T. Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 11

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 12

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 13

SRW Random Walk on Two-Dimensional Grids: Animation

For animation, see full slides.

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 14

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [0, n], E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Exercise: [Exercise 4/5.15] What happens for the LRW on Pn?

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 15

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

P(x , z) · h(z, y) ∀x , y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

5. Hitting Times © T. Sauerwald Random Walks on Paths and Grids 16

Outline

Application 3: Ehrenfest Chain and Hypercubes

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 17

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT; n is the number of
variables.

In general, determining if a SAT formula has a solution is NP-hard
A huge amount of problems can be posed as a SAT:
→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 18

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 : Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T T T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F
3 T T F T

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 19

2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 : (Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T F T F

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T
3 T T F T

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 20

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED-2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The process Xi is complicated to describe in full; however by (i)− (iii) we can
bound it by Yi (SRW on the n-path from 0). This gives (see also [Ex 4/5.17])

E [time to find sol] ≤ E0[min{t : Xt = n}]≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Running for 2n2 steps and using Markov’s inequality yields:

If the formula is satisfiable, RANDOMISED-2-SAT will return a valid solu-
tion in O

(
n2) steps with probability at least 1/2.

Proposition

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 21

Boosting Success Probabilities

Suppose a randomised algorithm succeeds with probability (at least) p.
Then for any C ≥ 1, dC

p · log ne repetitions are sufficient to succeed (in at
least one repetition) with probability at least 1− n−C .

Boosting Lemma

Proof: Recall that 1− p ≤ e−p for all real p. Let t = dC
p log ne and observe

P [t runs all fail] ≤ (1− p)t

≤ e−pt

≤ n−C ,

thus the probability one of the runs succeeds is at least 1− n−C .

There is a O
(
n2 log n

)
-step algorithm for 2-SAT which succeeds w.h.p.

RANDOMISED-2-SAT

5. Hitting Times © T. Sauerwald SAT and a Randomised Algorithm for 2-SAT 22

	Application 3: Ehrenfest Chain and Hypercubes
	Random Walks on Graphs, Hitting Times and Cover Times
	Random Walks on Paths and Grids
	SAT and a Randomised Algorithm for 2-SAT

