Randomised Algorithms
Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2025

mgm UNIVERSITY OF
¥ CAMBRIDGE

Outline

Randomised Approximation

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

(59 65) <o

not covered here (non-examinable)]
Randomised Approximation Schemes 1/

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.
= |tis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).)
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_)

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Outline

MAX-3-CNF

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF Satisfiability

—— MAX-3-CNF Satisfiability

[

Assume that no literal (including its negation)
appears more than once in the same clause.

]

clauses as possible.

N

7
v

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—

Example:

(X1 VXaVXa)A(X1 VXV XE)A (X2 VXaV X5)A (X1 V X2V X3)

N

[x1 =1,x%=0,x3=1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

5

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

11 1 1
P [clause i is not satisfied] = = - = - = ==
2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Yi]=P[Y,=1]-1=¢.

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[Y]:E{ZY'}:ZE[YI']=Z;:;m. O
i— 1 = i N

[Linearity of Expectations] [maximum number of satisfiable clauses is m]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Interesting Implications

~——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

5

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1

[Y]:%-E[Y|x1:1]+§-E[Y|x1:0].

Y is defined as in
the previous proof.

(One of the two conditional expectations is at least E | Y]j

GREEDY-3-CNF(¢, n, m)
1:forj=1,2,....n

2: Compute E[Y | xi =vi...,X—1 = Vi1, =1]

3: Compute E[Y | x1 = v1,...,X—1 = Vj—1,X, = 0]

4: Let x; = v; so that the conditional expectation is maximised
5: return the assignment vy, va,..., vy

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Run of GREEDY-3-CNF (¢, n, m)

(X1 V X2 \/X3)/\(X1 \/X72VX74)/\(X1 VX2V74)A(71V73\/X4)/\(X1 VX2V74)/\
VX VXE)AKT VX VX)AXT VXV X3)A (X1 VX3V Xa)A(XeV X5V Xs)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.1

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATA(RVXB)A (X VXs)A(XaVX3) ATA (X2 VX5V Xa)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TAIATAGGY X)ATATA(B)ATATA(GV Xa)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

9.3

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

??77?
x1 =0
0???| 8.625
Xz—o X2:1
x3 =0 X3 =1 x3 =0 x3 =1
STAYS VAV NFAES ST\ %

Il \ Il \ I \ l \

[e) -~ o) - o - o
(o)
9

8.75

Xq =1

17?2?| 8.875

Xo = 0 Xo = 1

10??| 9 11?2?] 8.75
X3:0 X3:1 X3:0 X3:1

W) e [0 o

N ¥ INFAYS SNEAVS

I \ 4 \ Il \

S - [} =

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

????|.8.75
x3 =0 x; =1
07??| 8.625 12?7] 8.875
X2 =0 X2 =1 X2 =0 X2 =1
1072] 9 1172) 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1
¥ AL AL

\ 4 \ Il \

o - o -

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

(X1 V X2 \/X3)/\(X1 \/X72VX74)/\(X1 VX2V74)A(71V73\/X4)/\(X1 VX2V74)/\
VX VXE)AKT VX VX)AXT VXV X3)A (X1 VX3V Xa)A(XeV X5V Xs)

9 7 9 9 10 9 9 9 9 9 9 9 8 9

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.6

Analysis of GREEDY-3-CNF(¢, n, m)
(This algorithm is deterministic.]

[

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iteration j = 5=z

E[Y|xt=vi,... ., 51 =Vi_,5=V]| 2E[Y|Xx1=vi,...,X_1=V_1]
SE[Y|xi=v,....X_2=V_2]
7
>E[Y] =<--m. O
8
MAX-3-CNF 10

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, X2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a deterministic poly-time 8,/7-approxim.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.

N

\
[Essentially there is nothing smarter than just guessing!]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Yes, my research has So you said you have been studying
finally concluded... the field of algorithms for MAX-3-SAT?

N 4

...the best approach
is to randomly
guess a solution.

CEO

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

Outline

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

3
Vertex Cover Problem 4
= Given: Undirected, vertex-weighted graph G = (V, E) e
= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

2\ 2

\
©
3

[This is an NP-hard problem.]

Question: How can we deal with graphs that have

" Question: How ca
? = ?negatlvewelghts.

Applications:
= Every edge forms a task, and every vertex represents a person/machine
which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

_‘e

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

cC=90
E' =G.E
while E' # ¢

let (1, v) be an arbitrary edge of E’

C =CU{u,v}

remove from E’ every edge incident on either u or v
return C

~N NN R W=

N
[This algorithm is a 2-approximation for unweighted graphs!]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 141

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

cC=90
E' =G.E
while E' # ¢

let (1, v) be an arbitrary edge of E’

C =CU{u,v}

remove from E’ every edge incident on either u or v
return C

~N NN R W=

100

® © O ©
1 1 1 1
)
[Computed solution has weight 101]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

14.2

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

cC=90
E' =G.E
while E' # ¢

let (1, v) be an arbitrary edge of E’

C =CU{u,v}

remove from E’ every edge incident on either u or v
return C

~N NN R W=

100

® © O ©
1 1 1 1
)
[Optimal solution has weight 4]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

14.3

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) e {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)y+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
A2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]’

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
C=90
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{}
return C

W N =

N W

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

)

[is polynomial-time because we can solve the linear program in polynomial time]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Example of APPROX-MIN-WEIGHT-VC

(Y(a) =X(b) =Xx(e) = %, X(d) =1,X(c) = OJ (X(a) =x(b) =x(e) =1, x(d) =1, x(¢c) = OJ

3 3 3
b b b

4 4 4
(&) (@) (@)
Rounding
—_ e

() O
2 2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

w(C)>z" =Y wvx(v) = > w)- % = %W(C). O

vev vev: X(v)>1/2

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

	Randomised Approximation
	MAX-3-CNF
	Weighted Vertex Cover

