Randomised Algorithms

Lecture 10: Approximation Algorithms: Set-Cover and MAX-CNF

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2025

UNIVERSITY OF
CAMBRIDGE

Outline

Weighted Set Cover

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

The Weighted Set-Cover Problem

Set Cover Problem

= Given: set X, | X| = n, a family of subsets
F, and cost function ¢ : F — R*

= Goal: Find a minimum-cost subset C C F

Sum over the costs | St X = U S.
of all sets in C sec
L

Remarks:
= generalisation of the weighted Vertex-Cover problem
» models resource allocation problems

([([([
Si
o (o @
° e | o
]] [J
S3 Ss
S1 Sz 83 S4 85 86

c:2 3 3 5

1

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

2

Setting up an Integer Program

Question: Try to formulate the integer program and linear
’ , ’ program of the weighted SET-COVER problem
m B = (solution on next slide!)

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

Setting up an Integer Program

——— 0-1 Integer Program

minimize > e(S)y(S)
SeF
subject to dooys) = for each x € X
SeF: xe$§
y(S) € {0,1} foreach S e F

Linear Program

minimize > e(S)y(S)
seF
subject to S oy = A for each x € X
SeF: xe8
y(S) € [0,1] foreach Se F

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

Back to the Example

| @
|

o o [
Ss Ss

Sy S Ss S S S

C: 2 3 3 5 1 2

7(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 85
N

7 \

[The strategy employed for Vertex-Cover would take all 6 sets!]
N

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

5

Randomised Rounding

Sy S S S S S
Cc: 2 3 3 5 1 2
yO): 1/2 1/2 1/2 1/2 1 1/2

Randomised Rounding

* Let C C F be arandom set with each set S being included
independently with probability y(S).

* More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

y(S) = 1 with pr?bablllty y(S) forall Se F.
0 otherwise.

= Therefore, E[y(S)] = y(S).

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

6.1

Randomised Rounding

81 Sg 83 84 85 86
c: 2 3 3 5 1 2
y(): t1/2 1/2 1/2 1/2 A 1/2

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(5) - ¥(S).

SeF

= The probability that an element x € X is covered satisfies

Plxel]s|>1-1.
<eUsl=

Sec

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

6.2

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

* The expected cost satisfies E[¢(C)] = > g €(S) - ¥(S).
* The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Proof:
= Step 1: The expected cost of the random set C

E[c(C)] =E [20(3)] =E [Z Tsec - 0(3)]
Sec SeF

=> P[Sec]-¢(S)=D_¥(S5)-c(S).
SeF SeF
= Step 2: The probability for an element to be (not) covered

Plx¢UseccSl = [PIs¢ci= [(-9

SeF: xe8 ScF: xe8

-¥(s
< II ¢ (FsohestheLP!
(1 + x < eX for any Xﬁ e xes

=e Yser: xesV(S) < 9*1 O

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g £ ¢(S) - y(S).
= The probability that x is covered satisfies P[x € UsecS] > 1 — 1e

Z;

[Problem: Need to make sure that every element is covered!]

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F, ¢)

1: compute y, an optimal solution to the linear program
2C=0

3: repeat 2In ntimes

4: foreach S e F

5: let C = C U {S} with probability y(S) __~_
6: return C

clearly runs in polynomial-time!]

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 8

Theorem

= With probability at least 1 — ‘5 the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that

1 2Inn 1
P[x & UsecS] < (;) ==

= This implies for the event that all elements are covered:

P[X=UgecS]=1-P [U {x QUSecs}]

xeX

1 1
(Praver<Plal+PIBIS > 1 S PIxgusees] 210 f=1- 1
xeX
= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is > sc = ¢(S) - ¥(S).

® Linearity = E[c(C)] < 2In(n) - > sc 7 €(S) - ¥(S) < 2In(n) - ¢(C*)

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover

9.1

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — ‘5 the returned set C is a valid cover of X.
= The expected approximation ratio is 2 In(n).

[By Markov’s inequality, P [¢(C) < 4In(n) - c(C*)] > 1/2.]

Hence with probability at least 1—2 —1 > 1, solution probability could be further
is valid and within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

ANN

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9.2

Outline

MAX-CNF

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

» Given: 3-CNF formula, e.g.: (x1 VXa VX)) A (X2 VXa VX5) A - - -

» Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (X1 VXa) A (e VXsV Xa V X5) A - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

\ X

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T. Sauerwald MAX-CNF

Approach 1: Guessing the Assignment

10. Approximation Algorithms © T. Sauerwald MAX-CNF 11

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
P [clause i is satisfied] = 1 — 27 := a.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

» First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
* As before, let Y := Y7, Y; be the number of satisfied clauses. Then,

E[Y]zE[ivf} o LD DL

10. Approximation Algorithms © T. Sauerwald MAX-CNF

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

——— 0-1 Integer Program

o m These auxiliary variables are used to
maximize)z reflect whether a clause is satisfied or not
i=1
V/d
subjectto > y+ > (1-y) > z foreachi=1,2,....m
jec; jec
1 zz e {0,1} foreachi=1,2,....m
C" is the index set of the un- y, € {01} foreachj=1,2,...,n
negated variables of clause i. Y

= In the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let (¥, Z) be the optimal solution of the LP
= Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

4
P [clause i is satisfied] > <1 - (1 - —) > - Zj.

Proof of Lemma (1/2):
» Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V- -+ V X¢)
0 0
= P[clause i is satisfied] =1 - [[P[xisfalse | =1 -] (1 - 7))
j=1 j=1

Arithmetic vs. geometric mean: L - £
>i-i(1=Y))

a+ ...+ ak P >q1— (=£="__ "7
— > Va1 X ... X &. - ¢

k

e =* ¢
Z':1 Y V4
- _<1 fé ’> 21—(1—’)
10. Approximation Algorithms © T. Sauerwald MAX-CNF 14 1

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. - 1\¢\ =
P [clause i is satisfied] > (1 - (1 - —)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P [clause i is satisfied] > 1 — <1 — Z’>

* Forany ¢ > 1, define g(z) :=1— (1 — %)[This is a concave function
V4
with g(0) = 0 and g(1) = 1 — (1 - %) = Be. 9(2)

= 9(z)>p-z foranyze[0,1] 1-(1-1)3

= Therefore, P [clause i is satisfied] > 3. - Z;. O

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14.2

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. - 1\ _
P[clause i is satisfied] > (1 — (1 — —)) - Zj.

——— Theorem N

Randomised Rounding yields a 1/(1 — 1/e) ~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

. J

Proof of Theorem:
* Forany clause i =1,2,..., m, let {; be the corresponding length.
* Then the expected number of satisfied clauses is:

i u 1\4 = 1 1
E[Y]=Y E[Y]> Z<1—(1—ﬂ))-zi22<1—e>~z;2 (1—6) .OPT
= = ! 7 = N
. LP solution at least
_ X
By Lemma [Slnce (1-1/x)< 1/e] L as good as optimum J
10. Approximation Algorithms © T. Sauerwald MAX-CNF 14.3

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses

= Approach 2 (Rounding) achieves better guarantee on shorier clauses

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

HYBRID-MAX-CNF (¢, n, m) >

b}

. Let b € {0,1} be the flip of a fair coin e\
~Yc

\A

: If b = 0 then perform random guessing

(o)
: If b =1 then perform randomised rounding g ‘y
return the computed solution dc 2

c/e

A ON =

Algorithm sets each variable x; to TRUE with prob. 1 - 1 + 1 - ¥,
Note, however, that variables are not independently assigned!

10. Approximation Algorithms © T. Sauerwald MAX-CNF 15

Analysis of Hybrid Algorithm

MAX-CNF Conclusion

Theorem
HYBRID-MAX-CNF(¢, n, m) is a randomised 4 /3-approx. algorithm.

Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 — 2= ¢ = oy > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % cop - Zi+ % - Be - Zj.
= Note 2¢}2¢ = 3/4 for £ € {1,2}, and for ¢ > 3, [Pt > 3/4 (see figure)
= = HYBRID-MAX-CNF(¢, n, m) satisfies it with prob. at least 3/4 - Z; O

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Summary
= Since oz = B> = 3/4, we cannot achieve a better approximation
ratio than 4/3 by combining Algorithm 1 & 2 in a different way
* The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution
* The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!

10. Approximation Algorithms © T. Sauerwald MAX-CNF

	Weighted Set Cover
	MAX-CNF

