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The Ehrenfest Markov Chain Analysis of the Mixing Time
—— Ehrenfest Model
= A simple model for the exchange of molecules Prg= L
between two boxes A (Non-Lazy) Random Walk on the Hypercube
» We have d particles labelled 1,2,...,d | = For each particle an indicator variable = Q = {0,1}¢
* At each step a particle is selected uniformly at ® e : © * At each step: pick a random coordinate in [d] and flip it
random and switches to the other box @@ 0? (o) N
» fQ={0,1,...,d} denotes the number of ® | ® Problem: This Markov Chain is periodic, as the
particles in the red box, then: ____“ number of ones always switches between odd to even!
X d—x Pre = 1 - D
Pyx_1= 3 and Py i1 = 7 [Solutlon: Add seli-loops to break periodic behaviour! ]
Lazy Random Walk (1st Version) Lazy Random Walk (2nd Version)
Let us now enlarge the state space by looking at each particle individually! = Ateachstept=0,1,2... = Ateachstept=0,1,2...
= Pick a random coordinate in [d] = Pick a random coordinate in [d]
Random Walk on the Hypercube = With prob. 1/2 flip coordinate. = Set coordinate to {0, 1} uniformly.
= For each particle an indicator variable = Q = {0,1}¢ g
= At each step: pick a random coordinate in [d] and flip it S \/
o These two chains are equivalent!
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Example of a Random Walk on a 4-Dimensional Hypercube

t Coord. Xi
0 2 0 0 0 O
R
1 3 0O 1 0 O
@ 2 3 0O 1 0 O
3 4 01 10
4 2 o 1 1 1
2
5 4 o 1 1 1
3 6 2 0O 1 1 0
7| 4 00 1 0
Once all coordinates have been picked at least 8 3 0O 0 1 0
once, the state is uniformly at random in {0,1}9.
72 1 0O 0 1 O
Coupon Collector ~ mixing time should be O(d log d
[ ( )] 10 | done! 0 0 1 0
(We won't formalise this argument here (see [Ex. 4/5.1 1]))
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Total Variation Distance of Random Walk on Hypercube (d = 22)

0.4

1Px = 7l

0.2}

dlogd ‘z 68.00 |
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Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE 53
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Fig. 1. The variation distance V as a function of N, for n =10"%

Source: “Asymptotic analysis of a random walk on a hypercube with many dimensions”, P. Diaconis, R.L. Graham, J.A. Morrison; Random
Structures & Algorithms, 1990.

= This is a numerical plot of a theoretical bound, where d = 102
(Minor Remark: This random walk is with a loop probability of 1/(d + 1))
= The variation distance exhibits a so-called cut-off phenomena:

= Distance remains close to its maximum value 1 until step %nlog n—0(n)
= Then distance moves close to 0 before step %n log n+ ©(n)
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Random Walks on Graphs, Hitting Times and Cover Times
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Stopping and Hitting Times

A non-negative integer random variable 7 is a stopping time for (Xt),-, if for
every s > 0 the event {7 = s} depends only on Xy, ..., X;. a
Example - College Carbs Stopping times:
v “We had rice yesterday” ~ 7 :=min{t>1: X;_1 = “rice”}
x “We are having pasta next Thursday”
For two states x, y € Q we call h(x, y) the hitting time of y from x:

h(x,y) :=Ex[ry] =E[7y | Xo =x] wherery =min{t>1:X;=y}.

AN
[Some distinguish between Tj =min{t >1: Xy =y}and 7, = min{t > 0: X; = y}]

—— A Useful Identity

Hitting times are the solution to a set of linear equations:

hooy) "ETT L YT Px2) h(zy)  vxyeQ
zeQ\{y}
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Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

if {u,v} € E,

P(u,v) = {dg‘() and  (u) = 9B

0 if{uvi¢E.’
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + 1) /2,

1 .
. 2 deg(u) if {U, V} € E7
PU,V - % if u= V,
0 otherwise.

P - SRW matrix
I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

1
.

SRW on C4, Periodic LRW on C,, Aperiodic

Outline
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Random Walks on Paths and Grids
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1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid

Infinite 3D Grid

o
O Q=050 00 O
O OO0 00" O
00— 0—0—=0—0—0-—0
O 00000 O
O 000 00 O
o

2 ”

“A drunk man will find his way home, but a drunk bird may get lost forever.”
£S5,

[But for any regular (finite) graph, the expected return time to uis 1/7(u) = n }
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SRW Random Walk on Two-Dimensional Grids: Animation

For animation, see full slides.
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Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [0, n], E(P,) = {{i,j} :j=i+1}.

X%

O—0E—©

©

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

A Exercise: [Exercise 4/5.15] What happens for the LRW on P,?
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Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hixy) E 4 N P(x2) - h(zy)  Vxy eV
ze\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

+f(k—1)+f(k+1)

f(0)=1+f(1) and f(k)=1 5 .

System of n independent equations in n unknowns, so has a unigue solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed

fO)=1+f(1)=1+n" —12 =1,
and for any 1 < k < n— 1 we have,

n2—(k—1)2+n2—(k+1)2: 2

— g2
f(k)y =1+ > 5 P — k2.

for1 <k<n-1.
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SAT and a Randomised Algorithm for 2-SAT
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 V72V73)A (71\/73)/\ (X1 V X2 \/X4)/\ (X4V73) A\ (X4V71)
Solution: Xy = True, Xxo — False, X3 —False and x4 = True.

= If each clause has k literals we call the problem k-SAT; nis the number of
variables.

= In general, determining if a SAT formula has a solution is NP-hard

= A huge amount of problems can be posed as a SAT:

— Model checking and hardware/software verification
— Design of experiments

— Classical planning
— ...
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 2r° times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step /.

» Let a be any solution and X; = |variable values shared by A; and «.
Example 1 : Solution Found

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VX73)/\(X4 \/z)
T F F T T T T T T F

a=(T,T,F,T).

(T % (%% %]

F F

WIN|=|O
H( | m ™

T F
T F
T F

X
©

© &—

S|
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2-SAT

RANDOMISED-2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n° times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5
6

If formula is satisfied then return “Satisfiable”
: return “Unsatisfiable”
= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «.
Example 2 : (Another) Solution Found

A VX)AGTVXE)A (VX)) A (X V X3) A (Xa V X7) o = (T,F,F,T).

T F F T T T T F T F
[t [xfxe[x]x]
O|F |F|F|F
1| F|F|F|T
2| F | T|F|T
@ @ @ @ @ 3|T|T|F|T
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2-SAT and the SRW on the Path

Boosting Success Probabilities

Expected iterations of (2) in RANDOMISED-2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED-2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution «, thenforany i > 0and 1 < k <n-1,
() P[ X1 =1]X=0]=1

(i) P[ X =k+1| Xi=k]>1/2

(i) P[Xin =k =1 | X;=k] <1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that X, = 0 (none of our initial guesses is right).

The process X; is complicated to describe in full; however by (i) — (i) we can
bound it by Y; (SRW on the n-path from 0). This gives (see also [Ex 4/5.17])

E [time to find sol] < Eg[min{t : X; = n}] < Eo[min{t: Y; = n}] = h(0, n) = r’.

[Running for 2n? steps and using Markov’s inequality yields: ]
Proposition 1~

If the formula is satisfiable, RANDOMISED-2-SAT will return a valid solu-
tion in O(n?) steps with probability at least 1/2.

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Then forany C > 1, [% - log n| repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recallthat 1 — p < e7P for all real p. Let t = [% log n] and observe

P[trunsallfail] < (1 — p)’
< g™

<n°®

)

thus the probability one of the runs succeeds is at least 1 — n~C.

RANDOMISED-2-SAT

There is a O(n? log n)-step algorithm for 2-SAT which succeeds w.h.p.
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