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Introduction
Extended Example: Visualization of SIMPLEX
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Exercise: How many basic solutions (including non-feasible ones) are there?
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linear programming is a powerful tool in optimisation

inspired more sophisticated techniques such as quadratic optimisation,
convex optimisation, integer programming and semi-definite programming

we will later use the connection between linear and integer programming

Overall we will approach the following problems with linear programming:

1. a “generic” production problem, shortest path, maximum flow,
minimum-cost flow (directly)

2. TSP, Vertex Cover, Set Cover, MAX-CNF (indirectly)
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What are Linear Programs?

maximise or minimise an objective, given limited resources
(competing constraints)

constraints are specified as (in)equalities

objective function and constraints are linear

Linear Programming (informal definition)
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A Simple Example of a Linear Optimisation Problem

Laptop
selling price to retailer: 1,000 GBP
glass: 4 units
copper: 2 units
rare-earth elements: 1 unit

Smartphone
selling price to retailer: 1,000 GBP
glass: 1 unit
copper: 1 unit
rare-earth elements: 2 units

You have a daily supply of:
glass: 20 units
copper: 10 units
rare-earth elements: 14 units
(and enough of everything else...)

How to maximise your daily earnings?
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The Linear Program

maximise x1 + x2

subject to
4x1 + x2 ≤ 20
2x1 + x2 ≤ 10
x1 + 2x2 ≤ 14
x1, x2 ≥ 0

Linear Program for the Production Problem

The solution of this linear program yields the optimal production schedule.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimise or maximise a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints
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Finding the Optimal Production Schedule

maximise x1 + x2

subject to
4x1 + x2 ≤ 20
2x1 + x2 ≤ 10
x1 + 2x2 ≤ 14
x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.
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Question: Which aspect did we ignore in the formulation of the
linear program?
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Finding the Optimal Production Schedule
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While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.
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Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk ) is minimised.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

Exercise: Translate the SPSP problem into a linear program
which finds the distance between s and v !

maximise dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxim-
isation problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E
{

du + w(u, v)
}
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ds = 0.

Shortest Paths as LP

this is a maxim-
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Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+

(recall c(u, v) = 0 if (u, v) 6∈ E), pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
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4/4

6/8

9/9

9/10

10/10

maximise
∑

v∈V fsv −
∑

v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP
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Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27
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Minimum-Cost Flow as a LP

minimise
∑

(u,v)∈E a(u, v)fuv

subject to
fuv ≤ c(u, v) for u, v ∈ V ,∑

v∈V fvu −
∑

v∈V fuv = 0 for u ∈ V \ {s, t},∑
v∈V fsv −

∑
v∈V fvs = d ,

fuv ≥ 0 for u, v ∈ V .

Minimum-Cost Flow as LP

Real power of Linear Programming comes
from the ability to solve new problems!

Question: Can we use a similar approach to solve the shortest
path problem?
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Standard and Slack Forms

maximise
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximise cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.

minimise −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximise 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximise 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by the difference of two
non-negative variables x ′2 and x ′′2
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

6. Linear Programming © T. Sauerwald Standard and Slack Forms 19

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximise 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.
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Converting into Standard Form (5/5)

maximise 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i-th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.
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Converting Standard Form into Slack Form (2/3)

maximise 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximise 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables
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Converting Standard Form into Slack Form (3/3)

maximise 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

6. Linear Programming © T. Sauerwald Standard and Slack Forms 24

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.
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Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 + x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0



b =

b1

b2

b4

 =

 8
4
18

 , c =

c3

c5

c6

 =

−1/6
−1/6
−2/3


v = 28

Slack Form Notation
Next lecture: each slack form corresponds to a

“basic” solution: x3 = x5 = x6 = 0 and so x1 = 8,
x2 = 4 and x4 = 18, with objective value 28.
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