Randomised Algorithms
Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2025

UNIVERSITY OF
CAMBRIDGE

Outline

Randomised Approximation

9. Approximation Algorithms © T. Sauerwald

Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

Outline

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

(49 0

not covered here (non-examinable)]

Randomised Approximation Schemes 14

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + €)-approximation algorithm.
= |tis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).j
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - ,73)_]

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

MAX-3-CNF

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

——— MAX-3-CNF Satisfiability 1

= Given: 3-CNF formula, e.g9.: (X1 VXs VXa) A (X2 V Xz V X5) A - - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N
Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXsVX) A1 VXEVX)A(X2VXaV Xs) A (X1 V X2V X3)
N
[x1 =1,x%=0,x=1,xs =0and xs = 1 satisfies 3 (out of 4 clauses)j

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables x;, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclausei=1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i/,

P[clause iis notsatisfied]:l-l-lz1
2 2 2 8
. - 1 7
= P[clause jis satisfied] =1 — - = —
8 8
7
= E[V]=P[vi=1]-1=¢.

= Let Y : =3, Y, be the number of satisfied clauses. Then,

m m m 7 7
E[Y] —E{ZY,-] =Y E[Y] :Zgzg""' O
=1 /] i=t i=1 N
(Linearity of ExpectationSJ (maximum number of satisfiable clauses is m]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Interesting Implications

——— Theorem 35.6 N
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

. J

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

y
{ Probabilistic Method: powerful tool to J

[There B e & W elieh et V) = 5[]V show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

N S

[Follows from the previous Corollary.]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

/L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

[Y]:%~E[Y|x1:1]+%-E[Y|x1:0].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [Y]]

GREEDY-3-CNF(¢, n, m)

1: forj=1,2,...,n

2 Compute E[Y | xi =vi...,X_1 = Vj_1,x=1]

3: Compute E[Y | X1 = v1,...,X—1 = Vj_1,X = 0]

4 Let x; = v; so that the conditional expectation is maximised
5: return the assignment vq, Vo, ..., Vp

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Run of GREEDY-3-CNF(p, n, m)

VX VX)AXIVXeVX)A XV Xe VX)) A TV XaV X)) A (X1 V X2V Xg) A
(71\/72\/73)A(71VX2VX3)A(71V72VX3)A(X1 \/X3\/X4)/\(X2 V73V74)

?72?|.8.75
x1 =0 x1 =1
0???] 8.625 1?7??| 8.875
X2 =0 Xo =1 X =0 Xo =1
X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:O X3:1
A AV A V- AV-R oy A V- A V- A VR A

1l \\ 1l \ 1 \\ " \ 4 \ 4 \ I \ I \

S - S - S - (o] - (o) - (e} - () - [«) -
0000 || 0001 0010||0011 0100(|0101 0110|0111 1000|1001 1010|1011 1100 1110|1111

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.1

Run of GREEDY-3-CNF(y, n, m)

IAATAGGVX)ATACRVY X)) A (X2 VX3)A (VX)) ATA(X2V X3V Xs)

?7?7?|.8.75
xy =0 x; =1
0???| 8.625 1?7??| 8.875
X0 =0 Xo =1 X =0 Xo =1
X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:0 X3:1
A AV A V- AV-R oy A V- A V- AV A

1l \ 1l \\ 1l \ 1 \ I \ 4 \ 4 \ I \

S - S - S - (o] - () - (e} - (o) - [«) -
0000 || 0001 0010||0011 0100(|0101 0110|0111 1000|1001 1010|1011 1100 1110|1111

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.2

Run of GREEDY-3-CNF(p,n, m)

TATAIAGBY X)) ATATA(R)ATATA(GGV X)

S) - o)) - o) > o - o -
@

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.3

Run of GREEDY-3-CNF(p,n, m)

TATATATATATAOATATAT

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.4

Run of GREEDY-3-CNF(p, n, m)

TATATATATATAOATATAT

?72?].8.75
X1 = 0 X1 = 1
0???] 8.625 1?7??| 8.875
X2—0 X2—1 Xz—o X2—1
o) o 77) 8.75
X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:O X3:1

A AV A V- AV-R A V- A V- A VR A
I \ I \ 1 \ 1 \ I
- - - -

>

\ I \ I \ I \
- - - -

S S S S (o) (e} (o) (o)
0000 || 0001 0010||0011 0100(|0101 0110|0111 1000|1001 1010|1011 1100|1101 1110|1111
9 9

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.5

Run of GREEDY-3-CNF(y, n, m)

(X1 VXeVX)AXIVXe VX)) A (X VXe VX)) AT VXV Xa) A (X1 V X2V Xa) A
(71\/72\/73)A(71VX2VX3)A(71V72VX3)A(X1 \/X3\/X4)/\(X2 V73V74)

?72?| 8.75
xy =0 xg =1
0???| 8.625 12??] 8.875
X2—0 X2—1 Xz—O X2—1

8 0172) 9.25 9 1127] 8.75

X3:0 X3:1 X3:0 X3:1 X3:0 X3:1 X3:0 X3:1
000?| 8 001?| 8 010?| 9 011?] 9.5 1007 9 1017 9 110?| 9 111?| 8.5
STAVS NIAYS < [\¥ NTAYS VAV VAT NTAYS NTARS
1l \ 1l \ 4 \\ 1
- - -

\ I \ I \ I \ I \
- - - - -

(e} (e} (e} (e} (e} (e} (@) (@)
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.]

Analysis of GREEDY-3-CNF (¢, n, m)

[This algorithm is deterministic.)

Theorem '/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

= Step 1: polynomial-time algorithm

= Initerationj=1,2,...,n, Y = Y(¢) averages over 2"—/*1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,.... 1=V p,5=1] =Y E[Yi|xi=w,....5 1 =V_1,%5=1]
i=1

» Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iteration j = Sz
E[Y[xi=v, ... X_1=V_1,5=V] >E[Y|xg=v,... ., X_1=V_1]

SE[Y|X1=Vvi,...,X_2=Vj_2]
7

2E[Y]:§~m. O

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9.6

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a deterministic poly-time 8/7-approxim.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.

N
AN
[Essentially there is nothing smarter than just guessing!]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Yes, my research has So you said you have been studying
finally concluded... the field of algorithms for MAX-3-SAT?

J

N 4

...the best approach
is to randomly
guess a solution.

Source of Image: Stefan Szeider, TU Vienna

Outline

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

ANN
[This is an NP-hard problem.]

, Question: How can we deal with graphs that have
? - ?negative weights?

Applications:

» Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1
2
3
4
5
6
7

C =90
E' =G.E
while £ # 0
let (v, v) be an arbitrary edge of E’
C =CU{u,v}
remove from E’ every edge incident on either u or v
return C

N
[This algorithm is a 2-approximation for unweighted graphs!j

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

14.1

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

3 while £/ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® ©© O ©
1 1 1 1
)
[Computed solution has weight 101]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14.2

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=90

2 E'=G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O ©© @ ©
1 1 1 1
!
[Optimal solution has weight 4]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14.3

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € {0,1} foreachv e V
optimum is a lower bound on the optimal
Linear Proara weight of a minimum weight-cover.
Inear Frogram
—
minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € [0,1] foreachv e V
2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]_

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
1 C=9

2 compute X, an optimal solution to the linear program
3 foreachv el

4 if x(v) >1/2

5 C =CU{v}

6 return C

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

/1

L
[is polynomial-time because we can solve the linear program in polynomial time]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

(o)
X
~
0
2
Il
x
=
S
=
Il

x(e) = 1, x(d) =1, x(c) = o]

[x(a) =x(b) =x(e) =1, x(d) =1, x(c) = 0]

=
3

4
3
b b

4 4
(@) (@)
Rounding
S a

()
2

2

3 1 3

rounded solution of LP
with weight = 10

fractional solution of LP
with weight = 5.5

3
b

4
(@)
()
2

S

3

optimal solution
with weight = 6

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* < w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
w(C)>z"=> wWx(v) > >

veVv vev: x(v)>1/2

1 1
W(V)~§—§

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

	Randomised Approximation
	MAX-3-CNF
	Weighted Vertex Cover

