
Randomised Algorithms
Lecture 10: Approximation Algorithms: Set-Cover and MAX-CNF

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025

Outline

Weighted Set Cover

MAX-CNF

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 2

The Weighted Set-Cover Problem

Given: set X , |X | = n, a family of subsets
F , and cost function c : F → R+

Goal: Find a minimum-cost subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted Vertex-Cover problem

models resource allocation problems

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 3

The Weighted Set-Cover Problem

Given: set X , |X | = n, a family of subsets
F , and cost function c : F → R+

Goal: Find a minimum-cost subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted Vertex-Cover problem

models resource allocation problems

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 3

The Weighted Set-Cover Problem

Given: set X , |X | = n, a family of subsets
F , and cost function c : F → R+

Goal: Find a minimum-cost subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2

Remarks:

generalisation of the weighted Vertex-Cover problem

models resource allocation problems

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 3

The Weighted Set-Cover Problem

Given: set X , |X | = n, a family of subsets
F , and cost function c : F → R+

Goal: Find a minimum-cost subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted Vertex-Cover problem

models resource allocation problems

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 3

The Weighted Set-Cover Problem

Given: set X , |X | = n, a family of subsets
F , and cost function c : F → R+

Goal: Find a minimum-cost subset C ⊆ F

s.t. X =
⋃

S∈C

S.

Set Cover Problem

Only solvable if
⋃

S∈F S = X !

Sum over the costs
of all sets in C

Question: How can we reduce the
Vertex-Cover problem to the
Set-Cover problem?

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2Remarks:

generalisation of the weighted Vertex-Cover problem

models resource allocation problems

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 3

Setting up an Integer Program

Question: Try to formulate the integer program and linear
program of the weighted SET-COVER problem
(solution on next slide!)

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ {0,1} for each S ∈ F

0-1 Integer Program

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ [0,1] for each S ∈ F

Linear Program

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 4

Setting up an Integer Program

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ {0, 1} for each S ∈ F

0-1 Integer Program

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ [0, 1] for each S ∈ F

Linear Program

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 4

Setting up an Integer Program

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ {0, 1} for each S ∈ F

0-1 Integer Program

minimize
∑
S∈F

c(S)y(S)

subject to
∑

S∈F : x∈S

y(S) ≥ 1 for each x ∈ X

y(S) ∈ [0, 1] for each S ∈ F

Linear Program

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 4

Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2

y(.): 1/2 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 5

Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 5

Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 5

Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 5

Back to the Example

S1

S2

S3 S4 S5

S6

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2 Cost equals 8.5

The strategy employed for Vertex-Cover would take all 6 sets!

Even worse: If all y ’s were below 1/2, we would not even return a valid cover!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 5

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [c(C)] =
∑
S∈F

c(S) · y(S).

The probability that an element x ∈ X is covered satisfies

P

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [c(C)] =
∑
S∈F

c(S) · y(S).

The probability that an element x ∈ X is covered satisfies

P

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

Let C ⊆ F be a random set with each set S being included
independently with probability y(S).

More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

y(S) =

{
1 with probability y(S)

0 otherwise.
for all S ∈ F .

Therefore, E [y(S)] = y(S).

Randomised Rounding

The expected cost satisfies

E [c(C)] =
∑
S∈F

c(S) · y(S).

The probability that an element x ∈ X is covered satisfies

P

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

Let C ⊆ F be a random set with each set S being included
independently with probability y(S).

More precisely, if y denotes the optimal solution of the LP, then we
compute an integral solution y by:

y(S) =

{
1 with probability y(S)

0 otherwise.
for all S ∈ F .

Therefore, E [y(S)] = y(S).

Randomised Rounding

The expected cost satisfies

E [c(C)] =
∑
S∈F

c(S) · y(S).

The probability that an element x ∈ X is covered satisfies

P

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [c(C)] =
∑
S∈F

c(S) · y(S).

The probability that an element x ∈ X is covered satisfies

P

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [c(C)] =
∑
S∈F

c(S) · y(S).

The probability that an element x ∈ X is covered satisfies

P

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6

Randomised Rounding

S1 S2 S3 S4 S5 S6

c : 2 3 3 5 1 2
y(.): 1/2 1/2 1/2 1/2 1 1/2

Idea: Interpret the y -values as probabilities for picking the respective set.

The expected cost satisfies

E [c(C)] =
∑
S∈F

c(S) · y(S).

The probability that an element x ∈ X is covered satisfies

P

[
x ∈

⋃
S∈C

S

]
≥ 1− 1

e
.

Lemma

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 6

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:

Step 1: The expected cost of the random set C

X

E [c(C)]

= E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C

X

E [c(C)]

= E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C

X

E [c(C)]

= E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C

X

E [c(C)] = E

∑
S∈C

c(S)



= E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C

X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)



=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C

X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S)

=
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C

X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS]

=
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1
1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C]

=
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1
1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1
1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1

1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S)

≤ e−1

1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S)

≤ e−1

1 + x ≤ ex for any x ∈ R
y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered

X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1
1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1
1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

Proof of Lemma

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Proof:
Step 1: The expected cost of the random set C X

E [c(C)] = E

∑
S∈C

c(S)

 = E

 ∑
S∈F

1S∈C · c(S)


=
∑
S∈F

P [S ∈ C] · c(S) =
∑
S∈F

y(S) · c(S).

Step 2: The probability for an element to be (not) covered X

P [x 6∈ ∪S∈CS] =
∏

S∈F : x∈S

P [S 6∈ C] =
∏

S∈F : x∈S

(1− y(S))

≤
∏

S∈F : x∈S

e−y(S)

= e−
∑

S∈F : x∈S y(S) ≤ e−1
1 + x ≤ ex for any x ∈ R

y solves the LP!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 7

The Final Step

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C clearly runs in polynomial-time!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 8

The Final Step

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C clearly runs in polynomial-time!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 8

The Final Step

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C clearly runs in polynomial-time!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 8

The Final Step

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C

clearly runs in polynomial-time!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 8

The Final Step

Let C ⊆ F be a random subset with each set S being included independ-
ently with probability y(S).

The expected cost satisfies E [c(C)] =
∑

S∈F c(S) · y(S).

The probability that x is covered satisfies P [x ∈ ∪S∈CS] ≥ 1− 1
e .

Lemma

Problem: Need to make sure that every element is covered!

Idea: Amplify this probability by taking the union of Ω(log n) random sets C.

WEIGHTED SET COVER-LP(X ,F , c)
1: compute y , an optimal solution to the linear program
2: C = ∅
3: repeat 2 ln n times
4: for each S ∈ F
5: let C = C ∪ {S} with probability y(S)
6: return C clearly runs in polynomial-time!

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 8

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:

Step 1: The probability that C is a cover

X
By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n

=
1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:

Step 1: The probability that C is a cover

X
By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n

=
1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X
By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n

=
1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n

=
1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n

=
1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] =

1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}



≥ 1−
∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}



≥ 1−
∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS]

≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover

X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X

By previous lemma, the expected cost of one iteration is
∑

S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X

By previous lemma, the expected cost of one iteration is
∑

S∈F c(S) · y(S).
Linearity⇒ E [c(C)] ≤ 2 ln(n) ·

∑
S∈F c(S) · y(S)

≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio

X

By previous lemma, the expected cost of one iteration is
∑

S∈F c(S) · y(S).
Linearity⇒ E [c(C)] ≤ 2 ln(n) ·

∑
S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.

probability could be further
increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Analysis of WEIGHTED SET COVER-LP

With probability at least 1− 1
n , the returned set C is a valid cover of X .

The expected approximation ratio is 2 ln(n).

Theorem

By Markov’s inequality, P [c(C) ≤ 4 ln(n) · c(C∗)] ≥ 1/2.

Hence with probability at least 1− 1
n−

1
2 >

1
3 , solution

is valid and within a factor of 4 ln(n) of the optimum.
probability could be further

increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Proof:
Step 1: The probability that C is a cover X

By previous Lemma, an element x ∈ X is covered in one of the 2 ln n
iterations with probability at least 1− 1

e , so that

P [x 6∈ ∪S∈CS] ≤
(

1
e

)2 ln n
=

1
n2
.

This implies for the event that all elements are covered:

P [X = ∪S∈CS] = 1− P

 ⋃
x∈X

{x 6∈ ∪S∈CS}


≥ 1−

∑
x∈X

P [x 6∈ ∪S∈CS] ≥ 1− n ·
1
n2

= 1−
1
n
.

Step 2: The expected approximation ratio X
By previous lemma, the expected cost of one iteration is

∑
S∈F c(S) · y(S).

Linearity⇒ E [c(C)] ≤ 2 ln(n) ·
∑

S∈F c(S) · y(S) ≤ 2 ln(n) · c(C∗)

P [A ∪ B] ≤ P [A] + P [B]

[Exercise Question (9/10).10] gives a different perspective on the
amplification procedure through non-linear randomised rounding.

10. Approximation Algorithms © T. Sauerwald Weighted Set Cover 9

Outline

Weighted Set Cover

MAX-CNF

10. Approximation Algorithms © T. Sauerwald MAX-CNF 10

MAX-CNF

Recall:

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Given: CNF formula, e.g.: (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

Why study this generalised problem?

Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T. Sauerwald MAX-CNF 11

MAX-CNF

Recall:

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Given: CNF formula, e.g.: (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

Why study this generalised problem?

Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T. Sauerwald MAX-CNF 11

MAX-CNF

Recall:

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Given: CNF formula, e.g.: (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

Why study this generalised problem?

Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T. Sauerwald MAX-CNF 11

MAX-CNF

Recall:

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Given: CNF formula, e.g.: (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4 ∨ x5) ∧ · · ·
Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-CNF Satisfiability (MAX-SAT)

Why study this generalised problem?

Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

a nice concluding example where we can practice previously learned approaches

10. Approximation Algorithms © T. Sauerwald MAX-CNF 11

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

P [clause i is satisfied] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:

First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [Yi] ≥
m∑

i=1

1
2

=
1
2
·m.

10. Approximation Algorithms © T. Sauerwald MAX-CNF 12

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

P [clause i is satisfied] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:

First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [Yi] ≥
m∑

i=1

1
2

=
1
2
·m.

10. Approximation Algorithms © T. Sauerwald MAX-CNF 12

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

P [clause i is satisfied] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:

First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [Yi] ≥
m∑

i=1

1
2

=
1
2
·m.

10. Approximation Algorithms © T. Sauerwald MAX-CNF 12

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

P [clause i is satisfied] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:

First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [Yi] ≥
m∑

i=1

1
2

=
1
2
·m.

10. Approximation Algorithms © T. Sauerwald MAX-CNF 12

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

P [clause i is satisfied] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:
First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.

As before, let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [Yi] ≥
m∑

i=1

1
2

=
1
2
·m.

10. Approximation Algorithms © T. Sauerwald MAX-CNF 12

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Recall: This was the successful approach to solve MAX-3-CNF!

For any clause i which has length `,

P [clause i is satisfied] = 1− 2−` := α`.

In particular, the guessing algorithm is a randomised 2-approximation.

Analysis

Proof:
First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all ` occurring variables must be set to a specific value.
As before, let Y :=

∑m
i=1 Yi be the number of satisfied clauses. Then,

E [Y] = E

[
m∑

i=1

Yi

]
=

m∑
i=1

E [Yi] ≥
m∑

i=1

1
2

=
1
2
·m.

10. Approximation Algorithms © T. Sauerwald MAX-CNF 12

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑
j∈C+

i

yj +
∑

j∈C−i

(1− yj) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y , z) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF 13

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑
j∈C+

i

yj +
∑

j∈C−i

(1− yj) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y , z) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF 13

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑
j∈C+

i

yj +
∑

j∈C−i

(1− yj) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y , z) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF 13

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑
j∈C+

i

yj +
∑

j∈C−i

(1− yj) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y , z) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF 13

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑
j∈C+

i

yj +
∑

j∈C−i

(1− yj) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y , z) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF 13

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

The same as randomised rounding!

maximize
m∑

i=1

zi

subject to
∑
j∈C+

i

yj +
∑

j∈C−i

(1− yj) ≥ zi for each i = 1, 2, . . . ,m

zi ∈ {0, 1} for each i = 1, 2, . . . ,m

yj ∈ {0, 1} for each j = 1, 2, . . . , n

0-1 Integer Program

These auxiliary variables are used to
reflect whether a clause is satisfied or not

C+
i is the index set of the un-

negated variables of clause i .

In the corresponding LP each ∈ {0, 1} is replaced by ∈ [0, 1]

Let (y , z) be the optimal solution of the LP

Obtain an integer solution y through randomised rounding of y

10. Approximation Algorithms © T. Sauerwald MAX-CNF 13

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] =

1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false]

= 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`

≥ 1−
(

1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (1/2):

Assume w.l.o.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of xj by xj in the whole formula)

Further, by relabelling assume Ci = (x1 ∨ · · · ∨ x`)

⇒ P [clause i is satisfied] = 1−
∏̀
j=1

P [xj is false] = 1−
∏̀
j=1

(
1− y j

)

≥ 1−

(∑`
j=1(1− y j)

`

)`

= 1−

(
1−

∑`
j=1 y j

`

)`
≥ 1−

(
1− z i

`

)`
.

Arithmetic vs. geometric mean:
a1 + . . . + ak

k
≥ k√a1 × . . .× ak .

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [clause i is satisfied] ≥ 1−
(

1− z i

`

)`

For any ` ≥ 1, define g(z) := 1−
(
1− z

`

)`.

This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [clause i is satisfied] ≥ β` · z i .
z

g(z)

0 1

1− (1− 1
3)

3

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [clause i is satisfied] ≥ 1−
(

1− z i

`

)`
For any ` ≥ 1, define g(z) := 1−

(
1− z

`

)`.

This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [clause i is satisfied] ≥ β` · z i .
z

g(z)

0 1

1− (1− 1
3)

3

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [clause i is satisfied] ≥ 1−
(

1− z i

`

)`
For any ` ≥ 1, define g(z) := 1−

(
1− z

`

)`. This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [clause i is satisfied] ≥ β` · z i .
z

g(z)

0 1

1− (1− 1
3)

3

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [clause i is satisfied] ≥ 1−
(

1− z i

`

)`
For any ` ≥ 1, define g(z) := 1−

(
1− z

`

)`. This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [clause i is satisfied] ≥ β` · z i .

z

g(z)

0 1

1− (1− 1
3)

3

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [clause i is satisfied] ≥ 1−
(

1− z i

`

)`
For any ` ≥ 1, define g(z) := 1−

(
1− z

`

)`. This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [clause i is satisfied] ≥ β` · z i .

z

g(z)

0 1

1− (1− 1
3)

3

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [clause i is satisfied] ≥ 1−
(

1− z i

`

)`
For any ` ≥ 1, define g(z) := 1−

(
1− z

`

)`. This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [clause i is satisfied] ≥ β` · z i .
z

g(z)

0 1

1− (1− 1
3)

3

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Proof of Lemma (2/2):

So far we have shown:

P [clause i is satisfied] ≥ 1−
(

1− z i

`

)`
For any ` ≥ 1, define g(z) := 1−

(
1− z

`

)`. This is a concave function

with g(0) = 0 and g(1) = 1−
(

1− 1
`

)`
=: β`.

⇒ g(z) ≥ β` · z for any z ∈ [0, 1]

Therefore, P [clause i is satisfied] ≥ β` · z i .
z

g(z)

0 1

1− (1− 1
3)

3

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [Y] =
m∑

i=1

E [Yi] ≥

m∑
i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑
i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [Y] =
m∑

i=1

E [Yi] ≥

m∑
i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑
i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [Y] =
m∑

i=1

E [Yi] ≥

m∑
i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑
i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [Y] =
m∑

i=1

E [Yi] ≥

m∑
i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑
i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [Y] =
m∑

i=1

E [Yi] ≥
m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i

≥
m∑

i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma

Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [Y] =
m∑

i=1

E [Yi] ≥
m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑
i=1

(
1− 1

e

)
· z i

≥
(

1− 1
e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e

LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Analysis of Randomised Rounding

For any clause i of length `,

P [clause i is satisfied] ≥
(

1−
(

1− 1
`

)`)
· z i .

Lemma

Randomised Rounding yields a 1/(1 − 1/e) ≈ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

Theorem

Proof of Theorem:

For any clause i = 1, 2, . . . ,m, let `i be the corresponding length.

Then the expected number of satisfied clauses is:

E [Y] =
m∑

i=1

E [Yi] ≥
m∑

i=1

(
1−

(
1− 1

`i

)`i
)
· z i ≥

m∑
i=1

(
1− 1

e

)
· z i ≥

(
1− 1

e

)
·OPT

By Lemma Since (1− 1/x)x ≤ 1/e
LP solution at least
as good as optimum

10. Approximation Algorithms © T. Sauerwald MAX-CNF 14

Approach 3: Hybrid Algorithm

Summary
Approach 1 (Guessing) achieves better guarantee on longer clauses

Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF(ϕ, n,m)
1: Let b ∈ {0, 1} be the flip of a fair coin
2: If b = 0 then perform random guessing
3: If b = 1 then perform randomised rounding
4: return the computed solution

Algorithm sets each variable xi to TRUE with prob. 1
2 ·

1
2 + 1

2 · y i .
Note, however, that variables are not independently assigned!

10. Approximation Algorithms © T. Sauerwald MAX-CNF 15

Approach 3: Hybrid Algorithm

Summary
Approach 1 (Guessing) achieves better guarantee on longer clauses

Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF(ϕ, n,m)
1: Let b ∈ {0, 1} be the flip of a fair coin
2: If b = 0 then perform random guessing
3: If b = 1 then perform randomised rounding
4: return the computed solution

Algorithm sets each variable xi to TRUE with prob. 1
2 ·

1
2 + 1

2 · y i .
Note, however, that variables are not independently assigned!

10. Approximation Algorithms © T. Sauerwald MAX-CNF 15

Approach 3: Hybrid Algorithm

Summary
Approach 1 (Guessing) achieves better guarantee on longer clauses

Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF(ϕ, n,m)
1: Let b ∈ {0, 1} be the flip of a fair coin
2: If b = 0 then perform random guessing
3: If b = 1 then perform randomised rounding
4: return the computed solution

Algorithm sets each variable xi to TRUE with prob. 1
2 ·

1
2 + 1

2 · y i .
Note, however, that variables are not independently assigned!

10. Approximation Algorithms © T. Sauerwald MAX-CNF 15

Approach 3: Hybrid Algorithm

Summary
Approach 1 (Guessing) achieves better guarantee on longer clauses

Approach 2 (Rounding) achieves better guarantee on shorter clauses

Idea: Consider a hybrid algorithm which interpolates between the two approaches

HYBRID-MAX-CNF(ϕ, n,m)
1: Let b ∈ {0, 1} be the flip of a fair coin
2: If b = 0 then perform random guessing
3: If b = 1 then perform randomised rounding
4: return the computed solution

Algorithm sets each variable xi to TRUE with prob. 1
2 ·

1
2 + 1

2 · y i .
Note, however, that variables are not independently assigned!

10. Approximation Algorithms © T. Sauerwald MAX-CNF 15

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:

Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:

Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:

Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:

Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .

Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2},

and for ` ≥ 3, α`+β`
2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2}, and for ` ≥ 3, α`+β`

2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2}, and for ` ≥ 3, α`+β`

2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2}, and for ` ≥ 3, α`+β`

2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2}, and for ` ≥ 3, α`+β`

2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2}, and for ` ≥ 3, α`+β`

2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

Analysis of Hybrid Algorithm

HYBRID-MAX-CNF(ϕ, n,m) is a randomised 4/3-approx. algorithm.

Theorem

Proof:

It suffices to prove that clause i is satisfied with probability at least 3/4 · z i

For any clause i of length `:
Algorithm 1 satisfies it with probability 1− 2−` = α` ≥ α` · z i .
Algorithm 2 satisfies it with probability β` · z i .

HYBRID-MAX-CNF(ϕ, n,m) satisfies it with probability 1
2 · α` · z i +

1
2 · β` · z i .

Note α`+β`
2 = 3/4 for ` ∈ {1, 2}, and for ` ≥ 3, α`+β`

2 ≥ 3/4 (see figure)

⇒ HYBRID-MAX-CNF(ϕ, n,m) satisfies it with prob. at least 3/4 · z i

`0
1 2 3 4

0.75

1

1

0.5

10. Approximation Algorithms © T. Sauerwald MAX-CNF 16

MAX-CNF Conclusion

Since α2 = β2 = 3/4, we cannot achieve a better approximation
ratio than 4/3 by combining Algorithm 1 & 2 in a different way
The 4/3-approximation algorithm can be easily derandomised

Idea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution

The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

Even MAX-2-CNF (every clause has length 2) is NP-hard!

Summary

10. Approximation Algorithms © T. Sauerwald MAX-CNF 17

	Weighted Set Cover
	MAX-CNF

