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Recap: Different Rounding Procedures
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MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing

= Set-Cover (First Try), MAX-CNF: Linear Randomised Rounding
= Set-Cover (Final Algorithm): Non-Linear Randomised Rounding
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MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing

= Set-Cover (First Try), MAX-CNF: Linear Randomised Rounding
= Set-Cover (Final Algorithm): Non-Linear Randomised Rounding
= MAX-CNF (Hybrid Algorithm): Guessing + Linear Randomised Rouning
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Outline

Introduction to (Spectral) Graph Theory and Clustering
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Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Kénigsberg 1737

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering



Origin of Graph Theory

éource: Wikipedia Source: Wikipedia
Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)

Is there a tour which crosses
each bridge exactly once?
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Origin of Graph Theory
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Origin of Graph Theory

Source: Wikipedia Source: Wikipedia

Seven Bridges at Kénigsberg 1737 \ Leonhard Euler (1707-1783)
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Graphs Nowadays: Clustering
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Graphs Nowadays: Clustering
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Goal: Use spectrum of graphs (unstructured data) to extract clustering

(communitites) or other structural information.
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Graph Clustering (applications)

= Applications of Graph Clustering
= Community detection
= Group webpages according to their topics
= Find proteins performing the same function within a cell
= Image segmentation
= |dentify bottlenecks in a network
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Graph Clustering (applications)

= Applications of Graph Clustering
= Community detection
= Group webpages according to their topics
= Find proteins performing the same function within a cell
= Image segmentation
= |dentify bottlenecks in a network

= Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

= Different formalisations for different applications

= Geometric Clustering: partition points in a Euclidean space
k-means, k-medians, k-centres, etc.

= Graph Clustering: partition vertices in a graph
modularity, conductance, min-cut, etc.
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Graphs and Matrices

Graphs Matrices

R
o—=0 =
N Y
-0 =
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Graphs and Matrices

Graphs Matrices

01 0 1
1 0 1 0
01 0 1
1 0 1 0

= Connectivity = Eigenvalues

= Bipartiteness = Eigenvectors

= Number of triangles = Inverse

= Graph Clustering = Determinant

= Graph isomorphism = Matrix-powers

= Maximum Flow -
Shortest Paths
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Outline

Matrices, Spectrum and Structure
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Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

1 if{u,vieE
Au,v = .
0 otherwise.
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Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

1 if{uv}eE
AUV:{ {u,v}

0 otherwise.

- O =0
o -0 =
- O =0
o =0 =
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Adjacency Matrix

Adjacency matrix

Let G = (V, E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

1 if{uv}eE
AUV:{ {u,v}

0 otherwise.

4~ o0-=0
o—0 =
2~ o-—0
O =0 =

Properties of A:
= The sum of elements in each row/column i equals the degree of the
corresponding vertex i, deg(/)
= Since G is undirected, A is symmetric
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

x € C"\ {0} such that

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .
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x € C"\ {0} such that
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Mx = A\x.

We call x an eigenvector of M corresponding to the eigenvalue .

Graph Spectrum

Let A be the adjacency matrix

of a d-regular graph G with n vertices.
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Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists
x € C"\ {0} such that
Mx = \x.

We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.

Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
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Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists
x € C"\ {0} such that
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We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
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Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues \y < --- < )\, and n corresponding
orthonormal eigenvectors fi, ..., f,.
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists
x € C"\ {0} such that
Mx = \x.

We call x an eigenvector of M corresponding to the eigenvalue .

An undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.

Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues \y < --- < )\, and n corresponding
orthonormal eigenvectors fi, ..., f,.

1\

[: orthogonal and normalised]
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Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

x € C"\ {0} such that
Mx = \x.

We call x an eigenvector of M corresponding to the eigenvalue .
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Graph Spectrum [

Let A be the adjacency matrix of a d-regular graph G with n vertices.
Then, A has n real eigenvalues \y < --- < )\, and n corresponding
orthonormal eigenvectors fi, ..., fr. These eigenvalues associated with
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Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

x € C"\ {0} such that
Mx = \x.

We call x an eigenvector of M corresponding to the eigenvalue .

LAn undirected graph G is d-regular if every degree
is d, i.e., every vertex has exactly d connections.
Graph Spectrum

Let A be the adjacency matrix of a d-regular graph G with n vertices.

Then, A has n real eigenvalues \y < --- < )\, and n corresponding

orthonormal eigenvectors fi, ..., fr. These eigenvalues associated with

their multiplicities constitute the spectrum of G.

(Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise >) ]

11. Spectral Graph Theory © T. Sauerwald Matrices, Spectrum and Structure 9



Example 1

, , , Question: What are the Eigenvalues and Eigenvectors?
m B =
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Example 1

[Bonus: Can you find a short-cut to det(A — X\ - 1)? ]

, , , Question: What are the Eigenvalues and Eigenvectors?
m B =

1 1
A= 0 1
1 0
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Example 1

[Bonus: Can you find a short-cut to det(A — X\ - 1)? ]

, , , Question: What are the Eigenvalues and Eigenvectors?
m B =

Solution:

= The three eigenvalues are \j = o = —1, A3 = 2.
= The three eigenvectors are (for example):

1 -3 1
=10, b=|1], &=[1].
—1 -1 1

11. Spectral Graph Theory © T. Sauerwald
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L=1-JA,

where | is the n x nidentity matrix.
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L=1- _A,

1
d

where | is the n x nidentity matrix.

p ’ P Question: How does the matrix I - § - A look like?
m B =
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

]
L=1-JA,

where | is the n x nidentity matrix.

1 -1/2 0 -1/2
~1/2 1 -1/2 0

0 -1/2 1  —1)2
—1/2 0 -1/2 1
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

]
L=1-JA,

where | is the n x nidentity matrix.

1 -1/2 0 -1/2
~1/2 1 -1/2 0

0 -1/2 1  —1)2
—1/2 0 -1/2 1

Properties of L:
= The sum of elements in each row/column equals zero
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Laplacian Matrix

Laplacian Matrix

Let G = (V, E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

]
L=1-JA,

where | is the n x nidentity matrix.

1 -1/2 0 -1/2
~1/2 1 -1/2 0

0 -1/2 1  —1)2
—1/2 0 -1/2 1

Properties of L:
= The sum of elements in each row/column equals zero
= L is symmetric
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Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix

A and L have the same set of eigenvectors.

Exercise: Prove this correspondence. Hint: Use thatL =1 — %A.
[Exercise 11/12.1]
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Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors

Let M € R™" X\ € C is an eigenvalue of M if and only if there exists

x € C"\ {0} such that
Mx = Ax.

We call x an eigenvector of M corresponding to the eigenvalue .

Graph Spectrum

Let L be the Laplacian matrix of a d-regular graph G with n vertices.
Then, L has n real eigenvalues Ay < --- < X, and n corresponding
orthonormal eigenvectors fi, ..., fr. These eigenvalues associated with

their multiplicities constitute the spectrum of G.
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Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < Ap.

1. Ay = 0 with eigenvector 1

2. the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G
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Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < Ap.

1. Ay = 0 with eigenvector 1

2. the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G

3. <2
4. )\, = 2 iff there exists a bipartite connected component.
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Useful Facts of Graph Spectrum

Lemma

Let L be the Laplacian matrix of an undirected, regular graph G = (V, E)
with eigenvalues A\ < --- < .

1.
2.

A1 = 0 with eigenvector 1

the multiplicity of the eigenvalue 0 is equal to the number of
connected components in G

An <2

. An = 2iiff there exists a bipartite connected component.

AN

The proof of these properties is based on a
powerful characterisation of eigenvalues/vectors!

1
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula (non-examinable)

Let M be an n by n symmetric matrix with eigenvalues Ay < --- < A
Then,
. xTMx
Ak = min max ———,
S: dim(S)=k xeS,x#0 X'Xx

where S is a subspace of R". The eigenvectors corresponding to
A1, ..., Ak minimise such expression.
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula (non-examinable)

Let M be an n by n symmetric matrix with eigenvalues Ay < --- < A
Then,
. xTMx
Ak = min max ———,
S: dim(S)=k xeS,x#0 X'Xx

where S is a subspace of R". The eigenvectors corresponding to
A1, ..., Ak minimise such expression.

xTMx

A1 = min —
xeRM {0} XTx

minimised by an eigenvector f; for A
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula (non-examinable)

Let M be an n by n symmetric matrix with eigenvalues Ay < --- < A

Then,
Ak = min

where S is a subspace of R".

max ———,
S: dim(S)=k x€S,x#0 XTX

The eigenvectors corresponding to

xTMx

A1, ..., Ak minimise such expression.
T
T x"Mx
. x"Mx - in 2
A= min = A2 = Yoy XTx
xeRM {0} Xx'x x€R™M\ {0}

minimised by an eigenvector f; for A

xLf

minimised by £

11. Spectral Graph Theory © T. Sauerwald
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula (non-examinable)

Let M be an n by n symmetric matrix with eigenvalues Ay < --- < A
Then,
. xTMx
Ak = min max ———,
S: dim(S)=k xeS,x#0 X'Xx

where S is a subspace of R". The eigenvectors corresponding to
A1, ..., Ak minimise such expression.

;
T . x"Mx
x'"Mx Ao = min —
xeRM {0} X'X

xLf

A1 = min —
xeRM {0} XTx

minimised by an eigenvector f; for A minimised by %
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

~——— Courant-Fischer Min-Max Formula (non-examinable)

Let M be an n by n symmetric matrix with eigenvalues Ay < --- < A
Then,
. xTMx
Ak = min max ———,
S: dim(S)=k xeS,x#0 X'Xx

where S is a subspace of R". The eigenvectors corresponding to
A1, ..., Ak minimise such expression.

;
T . x"Mx
x'"Mx Ao = min —
xeRM {0} X'X

xLf

A1 = min —
xeRM {0} XTx

minimised by an eigenvector f; for A minimised by %
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Quadratic Forms of the Laplacian

Lemma

Let L be the Laplacian matrix of a d-regular graph G = (V, E) with n
vertices. For any x € R”,

T _ (Xu - Xv)2
xTLx = Z s

{u,v}€eE
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Quadratic Forms of the Laplacian

Lemma

Let L be the Laplacian matrix of a d-regular graph G = (V, E) with n
vertices. For any x € R”,

T _ (Xu - Xv)2
x'Lx = Z R

{u,v}€eE

Proof:

xTLx = x" (I - 1A) X=x"x— leAx

d d
s 2
B EED T
ueV {u,vieE
1
=3 > (G + X - 2xux)
{u,v}€E
-y Gexk
{u,v}€E d
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown
graph with many vertices in low-dimensional space?
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

mnates givem
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

mnates givem

2
9 Xu— X
min Z{u,v}GE( u—Xv)

2
x€RM {0} lIX113 -
xLf .
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown

graph with many vertices in low-dimensional space?

Embedding onto Line

2
9 Xu— X
min Z{u,v}GE( u—Xv)

2
xER™ {0} lIX113 »
xLfy .
- .

1 .

The coordinates in the vector x indicate how similar/dissimilar vertices
are. Edges between dissimilar vertices are penalised quadratically.
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Outline

A Simplified Clustering Problem
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.
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A Simplified Clustering Problem

tices in the same component is connected, but vertices in different com-
ponents are not.

[ Partition the graph into connected components so that any pair of ver-

|
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A Simplified Clustering Problem

tices in the same component is connected, but vertices in different com-

Partition the graph into connected components so that any pair of ver-
ponents are not.

|

let's see how we can tackle this using the spectrum of L!

[ We could obviously solve this easily using DFS/BFS, but 1
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Example 2

’ , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
m B =

11. Spectral Graph Theory © T. Sauerwald A Simplified Clustering Problem
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Example 2

’ , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
m B =

L

OO0 = —=-0
coo0ooOo—=-0—=
OO0 OO =~ —=
- O0O—20000
oO—-0—+000
O —=-000O0
O—-0—-000
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Example 2

, , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
[ ]

e 01 1 0 0 0 0
1 0 1 0 0 0 0
110 0 0 0 0
A=|0 0 0 0 1 0 1
00 0 1 0 1 0
00 0 0 1 0 1
(D—® 0001010
1%‘?0000
7‘?150000
-1 -1 1 o 0o 0o o
ee L=l o o o 1 -1 o -}
0 0 o0 11 -1 o
0 0 o0 -1 1 =}
o o o -} -1 1
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Example 2

, , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
[ ]

e 0 1 1 0
1 0 1 0
11 0 0
A=|0 0 0 o0
0 0 0 i
0 0 0 0
(D—® 0 0 0 1
1T =1 -1 o0
-4 TR S
S TR
e e L=| o0 0 0 1
0 0 0 -3
0 0 0
1
Solution: 0 0 0 —2

= Two smallest eigenvalues are A\ = X\, = 0.
= The corresponding two eigenvectors are:

1

0
0
0
1
1
1
1

(=ReNe Nt

0o 0 O
0o 0 O
0O 0 O
1 0 1
0o 1 0
1 0 1
o 1 0
0 0 0
0 0 0
0 0 0
-3 0 -3
1 7% 0
_1 1 _1
2 ; 12
2
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Example 2

, , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?

o 1 1 0 0 O O
1 0 1 0 0 0 O
i 1 0 0 0 0 O
A=|(0 0 0 O 1 0 1
o 0 0 1 0 1 O
0O 0 0 0o 1 0 f
o e o 0 0o 1t 0 1 0
1 -3 7‘? 0 0 0 0
7‘? 1 -3 0 0 0 0
-5 =3 1 0 0 0 0
e e L=1]0 0 0 1 -3 0 -3
0 0 0 -3 1 -3 0
0 0 0 -3 1 -3
Solution: 0 0 0 *15 *% 1
= Two smallest eigenvalues are A\ = X\, = 0.
= The corresponding two eigenvectors are:
1 0 1 —-1/3
1 0 1 -1/3
1 0 1 -1/3
=10, b= [1](or Ai=|1|, =] 1/4|)
0 1 1 1/4
0 1 1 1/4
0 1 1 1/4
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Example 2

’ , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
[ ]

H = 0
1
1
A=1|0
0
0
0
Oan©.
1
,11 12
S
2 2
O—© |8 3
0 0
0 0
Solution: 0 0

coo0ooOo—=-0—=

1
0
0
0
0

Il —=

OO0 OO =~ —=

- O0O—20000

- O OO

o=

=

oO—-0—+000

o oo

nl=

nl=

O —=-000O0

|
=

[eNeleNe) oO—-0O0—-+000

1
2

ol coco
=

=

= Two smallest eigenvalues are A\ = X\, = 0.
= The corresponding two eigenvectors are:

Thus we can easily solve the simplified clustering prob-
lem by computing the eigenvectors with eigenvalue 0

]

1

0
0
0
1
1
1
1

(=ReNe Nt
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Example 2

’ , ’ Question: What are the Eigenvectors with Eigenvalue 0 of L?
[ ]

e 01 1 0 0 0 0
1 01 0 0 0 0
110 0 0 0 0
A=|0 0 0 0 1 0 1
00 0 1 0 1 0
00 0 0 1 0 1
o e 00 0 1 0 1 0
f -1 f‘? 0 0 o0 0
-3 1 -4 0 0 0 0
- -3 0 0 o0 0
e e L=| 0 o o 1 -1 o -1
0o 0 0 -} 1 10
0 0 o0 -1 1 1
Solution: 0 0 0 *15 0 % 1

= Two smallest eigenvalues are A1 = X2 = 0. (Thus we can easily solve the simplified clustering prob-
= The corresponding two eigenvectors are: lem by computing the eigenvectors with eigenvalue 0
1

Next Lecture: A fine-grained
approach works even if the

0
0
0
1
1 clusters are sparsely connected!
1

(=ReNe Nt
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Proof of Lemma, 2nd statement (non-examinable)

[Let us generalise and formalise the previous example! j
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1. (“="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Cy,...,Cx = A== X
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Proof (multiplicity of 0 equals the no. of connected components):

1. ("="cc(G) < mult(0)). We will show:
G has exactly k connected comp. Cy,...,Cx = AN ==X =
= Take x¢, € {0,1}" such that x¢,(u) = 1yeg, forallu e vV
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= there exist ;... fi orthonormal such that 3=, 1 cg(fi(u) — fi(v))? =0

= = f;,..., fx constant on connected components
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" xtlxe = § Y wneete () = xg (V)P =0 = A= =X =

2. (“«<="cc(G) > mult(0)). We will show:
M =---=X =0 = G has at least k connected comp. Cy,...
= there exist fy, . .., fx orthonormal such that 30,y c£(fi(u) — fi(v))

Ck
=0

N -

= = f;,..., fx constant on connected components

= asfy,..., f, are pairwise orthogonal, G must have k different connected
components.
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