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Recap: Different Rounding Procedures
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MAX-CUT, MAX-3-CNF, MAX-CNF: Uniform Guessing

Vertex-Cover: Deterministic Rounding with Threshold 1/2

Set-Cover (First Try), MAX-CNF: Linear Randomised Rounding

Set-Cover (Final Algorithm): Non-Linear Randomised Rounding

MAX-CNF (Hybrid Algorithm): Guessing + Linear Randomised Rouning
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem
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Origin of Graph Theory

Leonhard Euler (1707-1783)

Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?
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Source: Wikipedia

Source: Wikipedia
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Graphs Nowadays: Clustering

Goal: Use spectrum of graphs (unstructured data) to extract clustering
(communitites) or other structural information.
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Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications

Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

partition vertices in a graph

modularity, , min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 5



Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications

Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

partition vertices in a graph

modularity, , min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 5



Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications

Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

partition vertices in a graph

modularity, , min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 5



Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications
Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

partition vertices in a graph

modularity, , min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 5



Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications
Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

Graph Clustering: partition vertices in a graph
modularity, conductance, min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 5



Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications
Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

Graph Clustering: partition vertices in a graph
modularity, conductance, min-cut, etc.

11. Spectral Graph Theory © T. Sauerwald Introduction to (Spectral) Graph Theory and Clustering 5



Graphs and Matrices

Graphs

1 2

34

Connectivity

Bipartiteness

Number of triangles

Graph Clustering

Graph isomorphism

Maximum Flow

Shortest Paths

. . .

Matrices


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



Eigenvalues

Eigenvectors

Inverse

Determinant

Matrix-powers

. . .
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem
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Adjacency Matrix

Let G = (V ,E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

Au,v =

{
1 if {u, v} ∈ E
0 otherwise.

Adjacency matrix

1 2

34

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Properties of A:

The sum of elements in each row/column i equals the degree of the
corresponding vertex i , deg(i)

Since G is undirected, A is symmetric
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Eigenvalues and Graph Spectrum of A

Let M ∈ Rn×n, λ ∈ C is an eigenvalue of M if and only if there exists
x ∈ Cn \ {0} such that

Mx = λx .

We call x an eigenvector of M corresponding to the eigenvalue λ.

Eigenvalues and Eigenvectors

Let A be the adjacency matrix of a d-regular graph G with n vertices.

Then, A has n real eigenvalues λ1 ≤ · · · ≤ λn and n corresponding
orthonormal eigenvectors f1, . . . , fn. These eigenvalues associated with
their multiplicities constitute the spectrum of G.

Graph Spectrum

An undirected graph G is d-regular if every degree
is d , i.e., every vertex has exactly d connections.

Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise ≥)
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Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise ≥)
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Example 1

Question: What are the Eigenvalues and Eigenvectors?

Bonus: Can you find a short-cut to det(A− λ · I)?

1

2 3

A =

0 1 1
1 0 1
1 1 0



Solution:

The three eigenvalues are λ1 = λ2 = −1, λ3 = 2.

The three eigenvectors are (for example):

f1 =

 1
0
−1

 , f2 =

− 1
2

1
− 1

2

 , f3 =

1
1
1

 .
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Laplacian Matrix

Let G = (V ,E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L = I− 1
d

A,

where I is the n × n identity matrix.

Laplacian Matrix

1 2

34

L =


1 −1/2 0 −1/2

−1/2 1 −1/2 0
0 −1/2 1 −1/2

−1/2 0 −1/2 1


Properties of L:

The sum of elements in each row/column equals zero

L is symmetric
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Relating Spectrum of Adjacency Matrix and Laplacian Matrix

A and L have the same set of eigenvectors.

Correspondence between Adjacency and Laplacian Matrix

Exercise: Prove this correspondence. Hint: Use that L = I− 1
d A.

[Exercise 11/12.1]
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Eigenvalues and Graph Spectrum of L

Let M ∈ Rn×n, λ ∈ C is an eigenvalue of M if and only if there exists
x ∈ Cn \ {0} such that

Mx = λx .

We call x an eigenvector of M corresponding to the eigenvalue λ.

Eigenvalues and eigenvectors

Let L be the Laplacian matrix of a d-regular graph G with n vertices.
Then, L has n real eigenvalues λ1 ≤ · · · ≤ λn and n corresponding
orthonormal eigenvectors f1, . . . , fn. These eigenvalues associated with
their multiplicities constitute the spectrum of G.

Graph Spectrum
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Useful Facts of Graph Spectrum

Let L be the Laplacian matrix of an undirected, regular graph G = (V ,E)
with eigenvalues λ1 ≤ · · · ≤ λn.

1. λ1 = 0 with eigenvector 1
2. the multiplicity of the eigenvalue 0 is equal to the number of

connected components in G

3. λn ≤ 2

4. λn = 2 iff there exists a bipartite connected component.

Lemma

The proof of these properties is based on a
powerful characterisation of eigenvalues/vectors!
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

Let M be an n by n symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn.
Then,

λk = min
S : dim(S)=k

max
x∈S,x 6=0

xT Mx
xT x

,

where S is a subspace of Rn. The eigenvectors corresponding to
λ1, . . . , λk minimise such expression.

Courant-Fischer Min-Max Formula (non-examinable)

λ1 = min
x∈Rn\{0}

xT Mx
xT x

minimised by an eigenvector f1 for λ1

λ2 = min
x∈Rn\{0}

x⊥f1
xT x

minimised by f2
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Quadratic Forms of the Laplacian

Let L be the Laplacian matrix of a d-regular graph G = (V ,E) with n
vertices. For any x ∈ Rn,

xT Lx =
∑
{u,v}∈E

(xu − xv )2

d
.

Lemma

Proof:

xT Lx = xT
(

I− 1
d

A
)

x = xT x − 1
d

xT Ax

=
∑
u∈V

x2
u −

2
d

∑
{u,v}∈E

xuxv

=
1
d

∑
{u,v}∈E

(x2
u + x2

v − 2xuxv )

=
∑
{u,v}∈E

(xu − xv )2

d
.
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown
graph with many vertices in low-dimensional space?

A Larger Example

Algorithms and ML: Examples of Spectral Clustering 3

Embedding onto Line

Coordinates given by x

Algorithms and ML: Examples of Spectral Clustering 5

λ2 = 1
d · min

x∈Rn\{0}
x⊥f1

∑
{u,v}∈E (xu−xv )

2

‖x‖2
2

The coordinates in the vector x indicate how similar/dissimilar vertices
are. Edges between dissimilar vertices are penalised quadratically.
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.

We could obviously solve this easily using DFS/BFS, but
let’s see how we can tackle this using the spectrum of L!
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Example 2

Question: What are the Eigenvectors with Eigenvalue 0 of L?

1

2 3

4 5

7 6

A =



0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0



L =



1 − 1
2 − 1

2 0 0 0 0
− 1

2 1 − 1
2 0 0 0 0

− 1
2 − 1

2 1 0 0 0 0
0 0 0 1 − 1

2 0 − 1
2

0 0 0 − 1
2 1 − 1

2 0
0 0 0 0 − 1

2 1 − 1
2

0 0 0 − 1
2 0 − 1

2 1



Solution:
Two smallest eigenvalues are λ1 = λ2 = 0.
The corresponding two eigenvectors are:

f1 =



1
1
1
0
0
0
0


, f2 =



0
0
0
1
1
1
1



Thus we can easily solve the simplified clustering prob-
lem by computing the eigenvectors with eigenvalue 0

Next Lecture: A fine-grained
approach works even if the

clusters are sparsely connected!
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1
1
1
1
1
1
1


, f2 =



−1/3
−1/3
−1/3
1/4
1/4
1/4
1/4


)

Thus we can easily solve the simplified clustering prob-
lem by computing the eigenvectors with eigenvalue 0
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Proof of Lemma, 2nd statement (non-examinable)

Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (“=⇒” cc(G) ≤ mult(0)). We will show:
G has exactly k connected comp. C1, . . . ,Ck ⇒ λ1 = · · · = λk = 0

Take χCi
∈ {0, 1}n such that χCi

(u) = 1u∈Ci
for all u ∈ V

Clearly, the χCi
’s are orthogonal

χT
Ci

LχCi
= 1

d ·
∑
{u,v}∈E (χCi
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