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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

1: Pick an element from the array, the so-called pivot

2. lfn=0o0rn=1then

3: return A

4: else

5 Create two subarrays A and Az (without the pivot) such that:
6: A contains the elements that are smaller than the pivot
7: A contains the elements that are greater (or equal) than the pivot
8: QUICKSORT(A1)

9: QUICKSORT(Az)
10: return A
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot

:lfn=0o0rn=1then

return A

. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot

QUICKSORT(A1)

QUICKSORT(Az)

return A

© o N>R D

-
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= Example: Let A= (2,8,9,1,7,5,6, 3,4) with A[7] = 6 as pivot.
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QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot
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. else
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= Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4)and A> = (8,9,7)
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot

:lfn=0o0rn=1then

return A

. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot

QUICKSORT(A1)

QUICKSORT(Az)

10: return A

© o N>R D

= Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4)and A> = (8,9,7)

= Worst-Case Complexity (number of comparisons) is ©(n?),
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QuickSort

QUICKSORT (Input A[1], A[2], . .., A[n])

: Pick an element from the array, the so-called pivot
:lfn=0o0rn=1then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A
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Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4) and A, = (8,9,7)

= Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).
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QuickSort

QUICKSORT (Input A[1], A[2], . .., A[n])

: Pick an element from the array, the so-called pivot
:lfn=0o0rn=1then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
A contains the elements that are smaller than the pivot
A contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(Az)
return A
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Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4) and A, = (8,9,7)
= Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).

2

[We will now give a proof of this “well-known” result! ]
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

21,534 8,9,7

(89)
&) ®

[What is the number of comparisons? ]
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

21,534 8,9,7

(89)
&) ®

[What is the number of comparisons? j

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the depths of all nodes in the tree (why?).
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

21,534 8,9,7

(89)
&) ®

[What is the number of comparisons? j

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the depths of all nodes in the tree (why?). In this case:

O+14+1+2+2+3+3+3+4=19.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
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How to pick a good pivot? We don't, just pick one at random.
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1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H= >, H;
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course ©j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H= >, H;

3. We will prove that there exists C > 0 such that

P[H < Cnlogn] >1—n"".
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

(This should be your standard answer in this course ©)

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H= >, H;

3. We will prove that there exists C > 0 such that
P[H < Cnlogn] >1—n"".
4. Actually, we will prove sth slightly stronger:

P [ﬁ{H,g Clogn}] >1—-n".

i=1
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

2,8,9,1,7,5,6,3,4
2,1,5,3,4
2,5,3,4

8,9,7
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

2,8,9,1,7,5,6,3,4
2,1,5,3,4
2,5,3,4

8,9,7

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) = (2,3) = (2)
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element
= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level t in P.
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level t in P.
2,8,9,1,7,5,6,3,4 |50 = 9
bad
2,1,5,3,4
2,5,3,4

8,9,7
89)
(8)

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) = (2,3) = (2)
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= otherwise, the node is bad
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level t in P.

(289,1,7.5634)% ~ 9
bad
(21534)s -5
(2534)s -4 (89)
232 ® ®
2

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)

8,9,7
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= Anodein Pis called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level t in P.

bad

9
232 ® ®
3471

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)

8,9,7
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Randomised QuickSort: Analysis (3/4)

= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (3/4)

= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary
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= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?
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P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?
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3. Concentration © T. Sauerwald Application 2: Randomised QuickSort



Randomised QuickSort: Analysis (3/4)

= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with sp = n

First Case, node: si. 1 < £ - sk
= Second Case, bad node: s, < sy.
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= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with sp = n

First Case, node: si. 1 < £ - sk
= Second Case, bad node: s, < sy.

= There are at most T = m;% < 3log n many nodes on any path P.
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= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with sp = n

= First Case, node: i1 < £ - S This even holds always,
= Second Case, bad node: s, < sy. i.e., deterministically!
= There are at most T = m;% < 3log n many nodes on any path P.
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= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with sp = n

= First Case, node: i1 < £ - S This even holds always,
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= Consider now any element j € {1,2,..., n} and construct the path
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How far could such a path P possibly run until we have s, = 1?
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= First Case, node: i1 < £ - S This even holds always,
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Randomised QuickSort: Analysis (3/4)

= Consider now any element j € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with sp = n

H . - 2
= First Case, node: Si1 < 5 - Sk This even holds always, ]

= Second Case, bad node: s, < sy. i.e., deterministically!
= There are at most T = m)ﬁ% < 3log n many nodes on any path P.

= Assume |P| > Clognfor C :=24
=- number of bad nodes in the first 24 log n levels is more than 21 log n.

N
[Let us now upper bound the probability that this “bad event” happens!]
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n nodes of P to the deepest level of element i.
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n nodes of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:
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= Consider the first 24 log n nodes of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= X; = 0if the node at level j is
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n nodes of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:
= X; = 1ifthe node at level j is bad,
= X; = 0if the node at level j is

- P[)(]=1 ‘X():Xo,...,)(j_1:)(/_1]§%
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n nodes of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= X; = 0if the node at level j is

SP[X =1 Xo=Xo,- ., X1 =x_1]<2 1 (/3 203

> pivot
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= Consider the first 24 log n nodes of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,

= X; = 0if the node at level j is .  bad | , bad | pivot
SP[X =1 Xo=Xo,- ., X1 =x_1]<2 1 43 203 ¢

, , , Question: Edge Case: What if the path P does not reach level j?
m B =
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n nodes of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,

= X; = 0if the node at level j is .  bad | , bad | pivot
SP[X =1 Xo=Xo,- ., X1 =x_1]<2 1 43 203 ¢

, , , Question: Edge Case: What if the path P does not reach level j?
[ ]

| | [ ] ﬂ
[Answer: We can then simply define X; as 0. j

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n nodes of P to the deepest level of element J.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I ]

PIXi=1]Xo=Xo,...,Xj—1 =X_1]<2 1 /3 203

¢
- X = Zf:('fg "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

, , , Question: Edge Case: What if the path P does not reach level j?
[ ]

| | [ ] ﬂ
[Answer: We can then simply define X; as 0. ]

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n nodes of P to the deepest level of element J.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I ]

PIXi=1]Xo=Xo,...,Xj—1 =X_1]<2 1 /3 203

¢
- X = Zf:('fg "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n nodes of P to the deepest level of element J.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I ]

PIXi=1]Xo=Xo,...,Xj—1 =X_1]<2 1 /3 203

¢
- X = Zf;‘('fg "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

We can now apply a Chernoff Bound! (We use the “nice” version.)

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n nodes of P to the deepest level of element J.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I ]

PIXi=1]Xo=Xo,...,Xj—1 =X_1]<2 1 /3 203

¢
- X = Zf;‘('fg "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

We can now apply a Chernoff Bound! (We use the “nice” version.)

We have E[X] < (2/3) - 24logn = 16logn

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n nodes of P to the deepest level of element J.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I ]

PIXi=1]Xo=Xo,...,Xj—1 =X_1]<2 1 /3 203

¢
- X = Zf;‘('fg "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

We can now apply a Chernoff Bound! (We use the “nice” version.)

We have E[X] < (2/3) - 24logn = 16logn
Then, by the “nicer” Chernoff Bounds

3. Concentration © T. Sauerwald Application 2: Randomised QuickSort 8



Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n nodes of P to the deepest level of element J.
= Forany level j € {0,1,...,24log n — 1}, define an indicator variable X;:

= X; = 1ifthe node at level j is bad,
= Xj = 0if the node at level j is . bad bad

I ]

PIXi=1]Xo=Xo,...,Xj—1 =X_1]<2 1 /3 203

¢
- X = Zf;‘('fg "1 X; satisfies relaxed independence assumption (Lecture 2)

pivot

We can now apply a Chernoff Bound! (We use the “nice” version.)
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P[X >21logn] <P[X >E[X]+5logn] < e 2Ge*/@4leen) < =2

= Then, by the “nicer” Chernoff Bounds

= Hence P has more than 24 log n nodes with probability at most n=2.

= As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n~'.
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= Hence P has more than 24 log n nodes with probability at most n=2.
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)
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= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)

immediately implies a O(nlog n) bound on the expected number

2 Exercise: [Ex 2-3.6] Our upper bound of O(nlog n) whp also
of comparisons!
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)

Exercise: [Ex 2-3.6] Our upper bound of O(nlog n) whp also
A immediately implies a O(nlog n) bound on the expected number
of comparisons!
= |t is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.
= The latter requires to compute the median of the array in linear time,
which is not easy...
= The presented randomised algorithm for QUICKSORT is much easier to
implement!
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Outline

Extensions of Chernoff Bounds
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Hoeffding’s Extension

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.
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Hoeffding’s Extension

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here:

Hoeffding’s Extension Lemma
Let X be a random variable with mean 0 such that a < X < b. Then for

all \ € R,
AX (b— a)®r?
E [e ] s ep <T
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Hoeffding’s Extension

= Besides sums of independent Bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here: | You can always consider
X = X-E[X]

Hoeffding’s Extension Lemma
Let X be a random variable with mean 0 such that a < X < b. Then for

all \ € R,
AX (b— a)®r?
E [e } < exp <f

We omit the proof of this lemmal
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Hoeffding Bounds

Hoeffding’s Inequality
Let Xi, ..., X, be independent random variables with mean p; such that
a<Xi<b.lLetX=Xi+...+Xp,andlet u = E[X] =37, pi. Then
forany t > 0,

P[X>u+t]<exp<—¢)
- - Sibi—a))’
and
PIX < 1] < ex (_Qi’)

_/1/ — p En (bi_ai)2 °

i=1

3. Concentration © T. Sauerwald Extensions of Chernoff Bounds



Hoeffding Bounds

Hoeffding’s Inequality

Let Xi, ..., X, be independent random variables with mean p; such that
a<Xi<b.lLetX=Xi+...+Xp,andlet u = E[X] =37, pi. Then
forany t > 0,

P[X>/A—|—Z‘]<exp<—¢)
- - Sibi—a))’
and
PIX <p—t]<ex (_Qi’)

_/A — p En (bi_ai)2 °

i=1

Proof Outline (skipped):
sletX =X —piand X' = X{+ ...+ X, thenP[ X > u+t]=P[X > t]

“P[X >t]<e M, E [ew] < exp [4t+ 250 (bi— a,-)z]

= Choose \ = to get the result.
SRR

(This is not “magic” — you just need to optimise A! J
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Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi,
to study the random variable:

(X, .., Xn)

..., Xn. We want
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Some examples:
1. X =Xy + ...+ Xs (our setting earlier)
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Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi, ..., X,. We want
to study the random variable:

(X, .., Xn)

Some examples:
1. X =Xy + ...+ Xs (our setting earlier)

2. Inballs into bins, X; indicates where ball i is allocated, and f(Xj, ..., Xm)
is the number of empty bins
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Suppose, we have independent random variables Xi, ..., X,. We want
to study the random variable:

(X, .., Xn)

Some examples:
1. X =Xy + ...+ Xs (our setting earlier)

2. Inballs into bins, X; indicates where ball i is allocated, and f(Xj, ..., Xm)
is the number of empty bins

3. Inarandomly generated graph, X; indicates if the i-th edge is present and
f(X,..., X(g)) represents the number of connected components of G
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Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi, ..., X,. We want
to study the random variable:

(X, .., Xn)

Some examples:
1. X =Xy + ...+ Xs (our setting earlier)

2. Inballs into bins, X; indicates where ball i is allocated, and f(Xj, ..., Xm)
is the number of empty bins

3. Inarandomly generated graph, X; indicates if the i-th edge is present and
f(X,..., X(g)) represents the number of connected components of G

In all those cases (and more) we can easily prove
concentration of f(Xi, ..., X,) around its mean by
the so-called Method of Bounded Differences.
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (cy, ..., c,) if for all
i=1,2,...,n,
‘f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,',1,;i,X,‘+1,...,Xn)| <,

where x; and Xx; are in the domain of the i-th coordinate.
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (cy, ..., c,) if for all
i=1,2,...,n,

‘f(X1,X2,...,X,',1,X,',X,'+1,...,Xn)— f(X1,X2,...,X,',1,§i,X,‘+1,...,Xn)| <,

where x; and Xx; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (¢1,...,Cn). Let X = f(Xi,..., Xy). Then forany t > 0,

212
P[X>p+t]<exp sz )
i

i=1
and
P[X<p—t]<ex —2712

i=1
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (cy, ..., c,) if for all
i=1,2,...,n,
‘f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,',1,§i,X,‘+1,...,Xn)| < Ci,

where x; and Xx; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (c¢y,...,Cn). Let X = f(X1,..., Xp). Thenforany t > 0,

212
P[X>p+t]<exp sz )
i

i=1
and
P[X<p—t]<ex —2712

i=1

= Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (cy, ..., c,) if for all
i=1,2,...,n,
‘f(X1,X2,...,X,',1,X,',X,'+1,...,Xn) — f(X1,X2,...,X,',1,§i,X,‘+1,...,Xn)| < Ci,

where x; and Xx; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi, ..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (c¢y,...,Cn). Let X = f(X1,..., Xp). Thenforany t > 0,

212
P[X>p+t]<exp sz )
i

i=1
and
P[X <p—t]<ex _ 2

i=1

= Notice the similarity with Hoeffding’s inequality! [Exercise 2/3.14]
= The proof is omitted here (it requires the concept of martingales).
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Outline

Applications of Method of Bounded Differences
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Application 3: Balls into Bins (again...)

sl

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;
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= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

Let Z be the number of empty bins (after assigning the m balls)
= Z=2(Xi,...,Xn)and Zis Lipschitzwithe = (1,...,1)
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= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)

» Z=2(Xi,...,Xn)and Zis Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)
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sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)

» Z=2(Xi,...,Xn)and Zis Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[IZ-E[Z]|>t]<2 e 2/m
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)

» Z=2(Xi,...,Xn)and Zis Lipschitzwithe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[IZ-E[Z]|>t]<2 e 2/m
g

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.
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Application 4: Bin Packing

0.85

0.2

= We are given n items of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]
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= We are given nitems of sizes in the unit interval [0, 1]

We want to pack those items into the fewest number of unit-capacity bins

Suppose the item sizes X; are independent random variables in [0, 1]

Let B = B(Xi, ..., Xn) be the optimal number of bins
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0.85

= We are given n items of sizes in the unit interval [0, 1]
We want to pack those items into the fewest number of unit-capacity bins
Suppose the item sizes X; are independent random variables in [0, 1]

Let B= B(Xi, ..., Xp) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?
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Application 4: Bin Packing

0.85

0.2

= We are given n items of sizes in the unit interval [0, 1]
We want to pack those items into the fewest number of unit-capacity bins
Suppose the item sizes X; are independent random variables in [0, 1]

Let B= B(Xi, ..., Xp) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

= Therefore ,
P[|IB-E[B]|>t]<2.-e72/"
2.

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!
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