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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
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Formal Definition

= Given: A complete undirected graph G = (V, E) with
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

24+4+1+1=8
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

3
Or—C)
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
O
O m—C)
Solution space consists of at most n! possible tours! 3

2+4+1+1=8
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= Given: A complete undirected graph G = (V, E) with
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= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
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[Actually the right number is (n — 1)!/2J

Special Instances

2+4+1+1=8

= Metric TSP: costs satisfy triangle inequality:

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).
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Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E
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The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O

Solution space consists of at most n! possible tours!
/)

[Actually the right number is (n — 1)!/2J

Special Instances
. . . . , Even this version is
= Metric TSP: costs satisfy triangle inequality: < \p hard (Ex. 35.2-2)

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

2+4+1+1=8

= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance
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Examples of TSP Instances

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances



33 city contest (1964)
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532 cities (1987 [Padberg, Rinaldi])
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13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])
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The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;;), where d;; represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,* " little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.
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The 42 (49) Cities

WO 00 NI U W

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.
. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18.
19.
. Phoenix, Ariz.
21.
22.
23.
24.
25.
26.
27.
28.
. Dallas, Tex.
30.
31.
32.
33.

Carson City, Nev.
Los Angeles, Calif.

Santa Fe, N. M.
Denver, Colo.
Cheyenne, Wyo.
Omaha, Neb.

Des Moines, Iowa
Kansas City, Mo.
Topeka, Kans.
Oklahoma City, Okla.

Little Rock, Ark.
Memphis, Tenn.
Jackson, Miss.
New Orleans, La.

D

F.
G

. Birmingham, Ala.

. Atlanta, Ga.

. Jacksonville, Fla.

. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

E.

New York, N. Y.
Hartford, Conn.

.‘Providence, R. I.
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Combinatorial Explosion

& WolframAlpha

(2172 =] 1

88 NATURAL LanoUAGE] I MATH NPT 8 EXTENOED KEVBOARD 11 EXAMPLES & UPLOAD 36 RANDOM

Input

Y21y
2

Result

16 03:

Scientific notation

1 x10%

Number name Fullname
16 quindecillion ...
Number length

50 decimal digits

Alterative representations More
1 r42)

S@2-n=—

2 2

1 42,0

S@2-n=——

2 2

1 [0

S@2-n=—"

2 2
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Solution of this TSP problem

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html
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http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

Road Distances

20| 165 165 120 123 124 106 106 105 110 104 86 97 71 93

25| 77 80 36 40 4b 34 27 19 21 13 29 30 77114111 84 by 96107 87 b0 0 37
26| 87 89 44 46 46 30 28 29 32 27 36 47 78116112 84 66 98 95 75 47 36 39
27| g1 93 48 50 48 34 32 33 36 30 34 45 77115110 83 63 97 91 72 44
28| 105 106 62 b3 b4 47 46 49 54 48 36 9 Bs1gris 88 66 o8 79 59 3T 36 42

3 s9 71 96130126 98 75 98 85 b2 38 47 53
91 92 50 51 46 30 33 38 43 49 60 71103 141136109 90115 99 81 §3 61 b2
83 85 42 43 38 22 26 32 36 51 63 75106142 140112 93126108 88 6o 64 66
89 91 S5 $5 S0 34 39 44 49 63 76 87120155150123 103123109 86 62 71 78
95 97 64 63 36 42 49 56 60 75 86 97126160 155 128 104 128 113 go 67 76 82
73 81 44 43 35 23 30 39 44 62 78 89121159155 127 108 136 124 101 75 79 81
67 69 43 41 31 25 32 41 46 64 83 90130164 160133114136 134 111 85 85 86
66 83 102 110 147 185 179 155 133 159 146 122 98 105 107

35 36 41 34 20 34 38 48 53 73 96 99137176 178 151131 1 Jlge 135 108 102 103
35 37 35 26 18 34 36 46 ST 70 93 97134171 176 151 129 161 163 139 118 102 101
2§ 33 30 21 18 35 33 40 45 65 87 91117166171 144125157 156139 113 95 976

o4t 3 8 63 83 105 109 147 186 188 164 144 176 182 161 134 119 11
Ink 148 88 &1 6 53111113 140 186 192 166 1oy 180 185 167 130 124 119

SR 538 npnge s
¥
3
>
8
i
%
&

57 59 46 41 25 30 36 47 52 71 93 98136172172 14811&28 147 124 121 97 99 7

67 60 62 67 79

2

86 78 84 88 101 108
90 87 90 94107114

2

45
71
77

2 8 TABLE I
i 39 45 Roap Distances BETWEEN CITIES IN ApJusTED UNITS

HIEUR The figures in the table are mileages between the two specified numbered cities, less 11,
6| b br 21 20 17 divided by 17, and rounded to the nearest integer.

7| 58 60 16 17 18 6

8| 59 60 15 2 26 17 10

9| 82 66 2 25 31 25 13

9

156
41 32
48 38

32 6

1 2 3 45 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28

29

36

38 39

40 41
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Road Distances

(Hence this is an instance of the Metric TSP, but not Euclidean TSP. |

8 TABLE I
39 45 Roap Distances BETWEEN CITIES IN ApJusTED UNITS
749 The figures in the table are mileages between the two specified numbered cities, less 11,
divided by 17, and rounded to the nearest integer.
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Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, ), i > j, which is one if the tour includes

edge {/,/} (in either direction)
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Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, ), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S o e )X (i)
subject to
2o XL )+ 2205 XU, 1) =2 foreach 1 <j <42
0<x(i,j)<1 foreach1<j<i<42
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subject to
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Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, ), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize DD D= ()N (H)
subject to
2o XL )+ 2205 XU, 1) =2 foreach 1 <j <42
0<x(i,j)<1 foreach1<j<i<42
N

[ Constraints x(/,j) € {0,1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:
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+ As long as solution of LP has fractional x(/,j) € (0,1):

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, ), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli )X (i)
subject to
2o XL )+ 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1<j<i<42
N

[ Constraints x(/,j) € {0,1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:

+ As long as solution of LP has fractional x(/,j) € (0,1):
= Add x(i,j) = 0 to the LP, solve it and recurse
= Add x(i,j) = 1 to the LP, solve it and recurse
= Return best of these two solutions
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Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i, ), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli )X (i)
subject to
2o XL )+ 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1<j<i<42
N

[ Constraints x(/,j) € {0,1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:

+ As long as solution of LP has fractional x(/,j) € (0,1):

= Add x(i,j) = 0 to the LP, solve it and recurse
= Add x(i,j) = 1 to the LP, solve it and recurse
= Return best of these two solutions

= If solution of LP integral, return objective value

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances



Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(/, ), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli )X (i)
subject to
2o XL )+ 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1<j<i<42
N

[ Constraints x(/,j) € {0,1} are not allowed in a LP!}

Branch & Bound to solve an Integer Program: T
» As long as solution of LP has fractional x(i, ) € (0,1): CUIAT L b 11 U (R [ Tonl
= Add x(i,j) = 0 to the LP, solve it and recurse mtﬁgralhsomtllon SO ffar |Elg>etter

= Add x(i,j) = 1 to the LP, solve it and recurse than the solution of a LP, no
need to explore branch further!

= Return best of these two solutions

= If solution of LP integral, return objective value
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In the following, there are a few different runs of the demo.
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Iteration 1:

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations
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Iteration 1: Eliminate Subtour 1,2 41,42

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations
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Iteration 1: Eliminate Subtour 1,2 41,42
Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

X(2,1) + x(41,1) + x(42, 1) + x(41,2) + x(42,2) + x(42,41) < 3

[ Disallow subtour (1,2,42,41) by adding this constraint to the LP: ]
\ 2 -

A T
w n

I g 3 31 .
T ; ng
y o

L \f
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Iteration 1: Eliminate Subtour 1,2 41,42

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

14 [ Disallow subtour (1,2,42,41) by adding this constraint to the LP: ]

X(2,1) + x(41,1) + x(42,1) + x(41,2) + x(42,2) + x(42,41) < 3
/1
71

Equivalent to: S = {1,2,41,42}, 2

0
Z x(max(i, f), min(i, f)) > 2 @

\:\16
/ \I\ i€S,jeV\S
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Iteration 2:
Objective value: —676.000000, 861 variables, 946 constraints, 1802 iterations
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Iteration 2: Eliminate Subtour 3 — 9
Objective value: —676.000000, 861 variables, 946 constraints, 1802 iterations

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 17



Iteration 3:
Objective value: —681.000000, 861 variables, 947 constraints, 1984 iterations

1p 2
2 T 00 . 35 iz
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3 Y=g
N
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Iteration 3: Eliminate Subtour 24, 25,26, 27
Objective value: —681.000000, 861 variables, 947 constraints, 1984 iterations

25 m 1
24
0 6; 7 i
7 26 E

1p 2
. 28 31 )
T [0, s %

é? o e

3 Y=g
? \\
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Iteration 4:
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

E\l e i.m i

‘
8 23
| 0 , 1
51; :
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Iteration 4: Eliminate Cut 11 — 23
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations
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Iteration 4: Eliminate Cut 11 — 23
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

= Fre o
| 1 P\ B

40,
1 2
T o wxsl w4

L

Tour has to include at least two edges between S = {11,12,...,23} and V\ S:
> x(max(i, ), min(i,j)) > 2.
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Iteration 5:

Objective value: —686.000000, 861 variables, 949 constraints, 2446 iterations
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Iteration 5: Eliminate Subtour 13 — 23
Objective value: —686.000000, 861 variables, 949 constraints, 2446 iterations
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Iteration 6:
Objective value: —694.500000, 861 variables, 950 constraints, 1690 iterations
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Iteration 6: Eliminate Cut 13 — 17
Objective value: —694.500000, 861 variables, 950 constraints, 1690 iterations
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Iteration 7:
Objective value: —697.000000, 861 variables, 951 constraints, 2212 iterations
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lteration 7: Branch 1a xyg 15 = 0
Objective value: —697.000000, 861 variables, 951 constraints, 2212 iterations
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Iteration 8:
Objective value: —698.000000, 861 variables, 952 constraints, 1878 iterations

a
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Iteration 8: Branch 2a x4713 =0
Objective value: —698.000000, 861 variables, 952 constraints, 1878 iterations
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Iteration 9:
Objective value: —699.000000, 861 variables, 953 constraints, 2281 iterations

13

\-\
\D\ T m!

by

18
0 7 1
13 h;; fu

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 24



Iteration 9: Branch 2b xq7,13 = 1
Objective value: —699.000000, 861 variables, 953 constraints, 2281 iterations
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Iteration 10:
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations
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Iteration 10:
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

\
14 Branch & Bound procedure would stop here, since value of the best ]

\m\ LP solution for x1g15 = 0 is worse than a prewously found tour.
15
\K — B2

~ /x%/u%

t;;

31
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Iteration 10: Branch 1b xy5 15 = 1
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

\
14 Branch & Bound procedure would stop here, since value of the best ]

\m\ LP solution for x1g15 = 0 is worse than a prewously found tour.
15
\K — B2

?/ /x P\ ® 4
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Iteration 11:
Objective value: —701.000000, 861 variables, 953 constraints, 2506 iterations
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Iteration 11: Branch & Bound terminates
Objective value: —701.000000, 861 variables, 953 constraints, 2506 iterations
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Branch & Bound Overview

1: LP solution 641
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Branch & Bound Overview

1: LP solution 641
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[9: Valid tour 699] [10: LP solution 700]%

Cut branch, since LP solution worse

than current best possible tour. ]
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Iteration 7: Objective 697

® 12

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 28



Iteration 7: Objective 697

12

[What about choosing a different branching variable? ]
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Solving Progress (Alternative Branch 1)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697
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Alternative Branch 1: xi3 15, Objective 697
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Alternative Branch 1: xi3 15, Objective 697
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Alternative Branch 1a: x5 15 = 1, Objective 701 (Valid Tour)
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Alternative Branch 1b: xig 15 = 0, Objective 698
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Solving Progress (Alternative Branch 1)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 13 — 17

Eliminate Subtour 10,11,12
6: LP solution 686
Eliminate Subtour 13 — 23
7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

X1g,15 = 1 X18,15 =0
9: valid tour 701 10: LP solution 698
L‘“‘ u'x
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Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10, 11,12
Eliminate Subtour 13 — 23
7: LP solution 688
Eliminate Subtour 11 — 23

8: LP solution 697
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Alternative Branch 2: x»7 2, Objective 697
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Alternative Branch 2: x»7 2, Objective 697
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Alternative Branch 2a:

X27.20 = 1, Objective 708 (Valid tour)
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Alternative Branch 2b: x»7 2> = 0, Objective 697.75
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Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26,27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23
8: LP solution 697

Xo7,00 = 1

9: valid tour 708

(10: LP solution 697.75)

i Y
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Solving Progress (Alternative Branch 3)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12
6: LP solution 686
Eliminate Subtour 13 — 23
Eliminate Subtour 11 — 23
8: LP solution 697
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Alternative Branch 3: x»7 24, Objective 697
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Alternative Branch 3: x»7 24, Objective 697
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Alternative Branch 3a: x»; 24 = 1, Objective 697.75
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Alternative Branch 3b: x»7 24 = 0, Objective 698
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Solving Progress (Alternative Branch 3)

Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26,27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10, 11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688
Eliminate Subtour 11 — 23
8: LP solution 697

Xo7,24 = 1 Xo7,.24 =0
9: LP solution 697.75 10: LP solution 698
- " - "
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Solving Progress (Alternative Branch 3)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26,27
4: LP solution 682.5

Not only do we have to explore (and branch further in) both subtrees,
but also the optimal tour is in the subtree with larger LP solution!

6: LP solution 686
Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697
9: LP solution 697.75 10: LP solution 698

= . " .
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Conclusion (1/2)

= How can one generate these constraints automatically?
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Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

= Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.
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Conclusion (2/2)

= Eliminate Subtour 1,2,41,42

= Eliminate Subtour 3 — 9

= Eliminate Subtour 10,11,12

= Eliminate Subtour 11 — 23

= Eliminate Subtour 13 — 23

= Eliminate Cut 13 — 17

= Eliminate Subtour 24,25, 26, 27
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Conclusion (2/2)

= Eliminate Subtour 1,2,41,42

= Eliminate Subtour 3 — 9

= Eliminate Subtour 10,11,12

= Eliminate Subtour 11 — 23

= Eliminate Subtour 13 — 23

= Eliminate Cut 13 — 17

= Eliminate Subtour 24,25, 26, 27

THE 49-CITY PROBLEM*

The optimal tour & is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(z) is a minimum for . We distinguish the following subsets of the
42 cities:

Si=11, 2, 41, 42} Ss=1(13, 14, - -, 23}
Se=1{3,4, ---,9} Se={13, 14, 15, 16, 17}
S;=1{1,2,---,9,29,30, ---, 42} S.=1{24, 25, 26, 27}.
Si={11,12, ---, 23}

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

45



CPLEX
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CPLEX

From Wikipedia, the free encyclopedia

IBM ILOG CPLEX Optimization Studio (often informally
referred to simply as CPLEX) is an optimization software
package. In 2004, the work on CPLEX earned the first
INFORMS Impact Prize.

The CPLEX Optimizer was named for the simplex
method as implemented in the C programming language,
although today it also supports other types of
mathematical optimization and offers interfaces other
than just C. It was originally developed by Robert E.
Bixby and was offered commercially starting in 1988 by

CPLEX
Developer(s) IBM
Stable release 126

Development status Active

Type Technical computing

License Proprietary

Website ibm.com/software
Jproducts

J/ibmilogcpleoptistud/&

CPLEX Optimization Inc., which was acquired by ILOG in 1997; ILOG was subsequently acquired by
IBM in January 2009.I") CPLEX continues to be actively developed under IBM.

The IBM ILOG CPLEX Optimizer solves integer programming problems, very large®! linear
programming problems using either primal or dual variants of the simplex method or the barrier interior
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Welcome to IBM({R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.@
with Simplex, Mixed Integer & Barrier Optimizers

5725-A@6 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-¥55 5655-Y21

Copyright IBM Corp. 1988, 2014. All Rights Reserved.

Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX> read tsp.lp

Problem 'tsp.lp' read.

Read time = ©.80@ sec. (@.86 ticks)

CPLEX= primopt

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 49 rows, 86@ columns, and 2483 nonzeros.
Presolve time = @.80 sec. (@.36 ticks)

Iteration log . . .

Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective = 151@.000000
Iteration: 9@ Objective = 923.000000
Iteration: 155 Objective = 711.e0ee00

Primal simplex - Optimal: Objective = 6.9920000000c+@2
Solution time = .80 sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)

cPLEX= I
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CPLEX> display solution variables —

Variable Name Solution Value
% 2_1 1.000000
%_42_1 1.000000
%_3_2 1.000000
%_4_3 1.000000
x_5_4 1.000000
%_6_5 1.000000
% 7_6 1.000000
x_8_7 1.000000
%_9_8 1.000000
%_10_9 1.000000
x_11_10 1.000000
%_12_11 1.000000
%_13_12 1.000000
x_14_13 1.000000
%_15_14 1.000000
%_16_15 1.000000
%_17_16 1.000000
%_18_17 1.000000
%_19_18 1.000000
%_20_19 1.000000
%_21_20 1.000000
%_22_21 1.000000
%_23_22 1.000000
%_24_23 1.000000
%_25_24 1.000000
%_26_25 1.000000
%_27_26 1.000000
%_28 27 1.000000
%_29_28 1.000000
%_30_29 1.000000
%_31_30 1.000000
%_32_31 1.000000
%_33_32 1.000000
%_34_33 1.000000
%_35_34 1.000000
%_36_35 1.000000
%_37_36 1.000000
%_38_37 1.000000
%_39_38 1.000000
%_40_39 1.000000
%_41_40 1.000000
%_42_41 1.000000

All other variables in the range 1-861 are 8.
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