Randomised Algorithms
Lecture 8: Solving a TSP Instance using Linear Programming

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025

B H UNIVERSITY OF
¥ CAMBRIDGE

Outline

Introduction

8. Solving TSP via Linear Programming © T. Sauerwald Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

8. Solving TSP via Linear Programming © T. Sauerwald Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

8. Solving TSP via Linear Programming © T. Sauerwald Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

8. Solving TSP via Linear Programming © T. Sauerwald Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

8. Solving TSP via Linear Programming © T. Sauerwald Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

3+2+14+3=9

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.

24+4+1+1=8

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

3
Or—C)
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
O
O m—C)
Solution space consists of at most n! possible tours! 3

2+4+1+1=8

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

3
Or—C)
Formal Definition 2 1
= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E 4 !
= Goal: Find a hamiltonian cycle of G with minimum cost.
O
O m—C)
Solution space consists of at most n! possible tours! 3
/)

[Actually the right number is (n — 1)!/2J 2t4+1+1=8

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O

Solution space consists of at most n! possible tours!
/)

[Actually the right number is (n — 1)!/2J 2t4+1+1=8

Special Instances

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O

Solution space consists of at most n! possible tours!
/)

[Actually the right number is (n — 1)!/2J

Special Instances

2+4+1+1=8

= Metric TSP: costs satisfy triangle inequality:

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

8. Solving TSP via Linear Programming © T. Sauerwald Introduction

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O

Solution space consists of at most n! possible tours!
/)

[Actually the right number is (n — 1)!/2J 2t4+1+1=8

Special Instances
. . . . , Even this version is
= Metric TSP: costs satisfy triangle inequality: < \p hard (Ex. 35.2-2)

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

The Traveling Salesman Problem (TSP)

Given a set of cities along with the cost of travel between them, find the
cheapest route visiting all cities and returning to your starting point.

Formal Definition

= Given: A complete undirected graph G = (V, E) with
nonnegative integer cost c(u, v) for each edge (u,v) € E

= Goal: Find a hamiltonian cycle of G with minimum cost.
O

Solution space consists of at most n! possible tours!
/)

[Actually the right number is (n — 1)!/2J

Special Instances
. . . . , Even this version is
= Metric TSP: costs satisfy triangle inequality: < \p hard (Ex. 35.2-2)

Yu,v,we V: c(u,w) < c(u,v) + c(v, w).

2+4+1+1=8

= Euclidean TSP: cities are points in the Euclidean space, costs are
equal to their (rounded) Euclidean distance

8. Solving TSP via Linear Programming © T. Sauerwald Introduction 3

Outline

Examples of TSP Instances

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

33 city contest (1964)

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

532 cities (1987 [Padberg, Rinaldi])

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

13,509 cities (1999 [Applegate, Bixby, Chavatal, Cook])

\3/ w/
M(g) y

SO R
Wk &/(iy t fg
¢ B/ %
/ oy / ¢ & \7§

Q"*)' A J“ %*{ ¢

m\¢ };L (I;W A
7\ 0y R&IW

?eft)L’MJ\

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

The Original Article (1954)

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and

Washington, D. C., has the shortest road distance.

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d;;), where d;; represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d;,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,* " little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C., is best, the d;; used representing road distances as
taken from an atlas.

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

The 42 (49) Cities

WO 00 NI U W

. Manchester, N. H.
. Montpelier, Vt.

. Detroit, Mich.

. Cleveland, Ohio

. Charleston, W. Va.
. Louisville, Ky.

. Indianapolis, Ind.
. Chicago, Ill.

. Milwaukee, Wis.

. Minneapolis, Minn.
. Pierre, S. D.

. Bismarck, N. D.

. Helena, Mont.

. Seattle, Wash.

. Portland, Ore.

. Boise, Idaho

. Salt Lake City, Utah

18.
19.
. Phoenix, Ariz.
21.
22.
23.
24.
25.
26.
27.
28.
. Dallas, Tex.
30.
31.
32.
33.

Carson City, Nev.
Los Angeles, Calif.

Santa Fe, N. M.
Denver, Colo.
Cheyenne, Wyo.
Omaha, Neb.

Des Moines, Iowa
Kansas City, Mo.
Topeka, Kans.
Oklahoma City, Okla.

Little Rock, Ark.
Memphis, Tenn.
Jackson, Miss.
New Orleans, La.

D

F.
G

. Birmingham, Ala.

. Atlanta, Ga.

. Jacksonville, Fla.

. Columbia, 8. C.

. Raleigh, N. C.

. Richmond, Va.

. Washington, D. C.
. Boston, Mass.

. Portland, Me.

. Baltimore, Md.

. Wilmington, Del.

. Philadelphia, Penn.
. Newark, N. J.

E.

New York, N. Y.
Hartford, Conn.

.‘Providence, R. I.

8. Solving TSP via Linear Programming © T. Sauerwald

Examples of TSP Instances

Combinatorial Explosion

& WolframAlpha

(2172 =] 1

88 NATURAL LanoUAGE] I MATH NPT 8 EXTENOED KEVBOARD 11 EXAMPLES & UPLOAD 36 RANDOM

Input

Y21y
2

Result

16 03:

Scientific notation

1 x10%

Number name Fullname
16 quindecillion ...
Number length

50 decimal digits

Alterative representations More
1 r42)

S@2-n=—

2 2

1 42,0

S@2-n=——

2 2

1 [0

S@2-n=—"

2 2

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Solution of this TSP problem

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

Road Distances

20| 165 165 120 123 124 106 106 105 110 104 86 97 71 93

25| 77 80 36 40 4b 34 27 19 21 13 29 30 77114111 84 by 96107 87 b0 0 37
26| 87 89 44 46 46 30 28 29 32 27 36 47 78116112 84 66 98 95 75 47 36 39
27| g1 93 48 50 48 34 32 33 36 30 34 45 77115110 83 63 97 91 72 44
28| 105 106 62 b3 b4 47 46 49 54 48 36 9 Bs1gris 88 66 o8 79 59 3T 36 42

3 s9 71 96130126 98 75 98 85 b2 38 47 53
91 92 50 51 46 30 33 38 43 49 60 71103 141136109 90115 99 81 §3 61 b2
83 85 42 43 38 22 26 32 36 51 63 75106142 140112 93126108 88 6o 64 66
89 91 S5 $5 S0 34 39 44 49 63 76 87120155150123 103123109 86 62 71 78
95 97 64 63 36 42 49 56 60 75 86 97126160 155 128 104 128 113 go 67 76 82
73 81 44 43 35 23 30 39 44 62 78 89121159155 127 108 136 124 101 75 79 81
67 69 43 41 31 25 32 41 46 64 83 90130164 160133114136 134 111 85 85 86
66 83 102 110 147 185 179 155 133 159 146 122 98 105 107

35 36 41 34 20 34 38 48 53 73 96 99137176 178 151131 1 Jlge 135 108 102 103
35 37 35 26 18 34 36 46 ST 70 93 97134171 176 151 129 161 163 139 118 102 101
2§ 33 30 21 18 35 33 40 45 65 87 91117166171 144125157 156139 113 95 976

o4t 3 8 63 83 105 109 147 186 188 164 144 176 182 161 134 119 11
Ink 148 88 &1 6 53111113 140 186 192 166 1oy 180 185 167 130 124 119

SR 538 npnge s
¥
3
>
8
i
%
&

57 59 46 41 25 30 36 47 52 71 93 98136172172 14811&28 147 124 121 97 99 7

67 60 62 67 79

2

86 78 84 88 101 108
90 87 90 94107114

2

45
71
77

2 8 TABLE I
i 39 45 Roap Distances BETWEEN CITIES IN ApJusTED UNITS

HIEUR The figures in the table are mileages between the two specified numbered cities, less 11,
6| b br 21 20 17 divided by 17, and rounded to the nearest integer.

7| 58 60 16 17 18 6

8| 59 60 15 2 26 17 10

9| 82 66 2 25 31 25 13

9

156
41 32
48 38

32 6

1 2 3 45 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28

29

36

38 39

40 41

8. Solving TSP via Linear Programming © T. Sauerwald

Examples of TSP Instances

Road Distances

(Hence this is an instance of the Metric TSP, but not Euclidean TSP. |

8 TABLE I
39 45 Roap Distances BETWEEN CITIES IN ApJusTED UNITS
749 The figures in the table are mileages between the two specified numbered cities, less 11,
divided by 17, and rounded to the nearest integer.

LN AW
]
&
&
.

BBt o e
R EBERRAR RRREE S
S 5eIE S 5®E 00 o
GEbFeR el
S eI EICERENE
BORIBEICNESY
© BESGREES ook
R 8B EER2RD
© SESSEGES
SEEGLE TR ORI R
o BEESS GG Suay
PEH N85 EIN G
© B BOE EEQ oo
& aB8S HaSSE
3 8 BB Se o @
% 8BEREGR8 g8
4 OB R o B oond 1
JlEI® reos
©EBE e Book s 1
EoR- 3% sEeL 8
95858y [N
I 283 B8«
- ad] Pl

o ~
e ES
e perag o
SRV b4
A2 0 v
8 286
o e
¥ S
o B
EAE-N
© o
ah&ER
amn
S&8
3

30

N
3
5
=
a
3
ES
,
kS
g
g
o
&
]
8
'
P
N
3
&
8
4
o
8
S
&
0]
4

43 77 7% 4 5
69105102 74 56 88 99 BT 54 32 29
77113111 84 b4 96107 87 bo 30 37 8
78116112 84 66 98 95 75 47 36 39 12 11
93 48 50 48 34 32 33 36 30 34 45 77115110 83 63 97 91 72 44 32 36 9 15 3
105106 62 b3 64 37 46 49 54 48 36 5o Bsigurs 88 06 of 79 59 31 36 32 28 33 21 20
3 57 59 71 96130126 98 75 98 85 b2 38 47 53 39 42 29 3o 12
91 92 50 51 46 30 33 38 43 49 60 71 103 141136 109 90115 99 81 §3 61 62 36 34 24 28 20 20

e
BRR &R
© o w
RN
& &
i
e
»
N
PN
N
RIS
3Rh
» B
58%
o
8 & &
@ e
3 B8
8w
S8
Py
B8
o
Eh-14

N
3
>

&

<
2
&

b4
X
s

30

31| 83 85 42 43 38 22 26 32 36 51 63 75106142 140112 93126108 88 6o 64 66 j9 36 27 31 28 28 8

32| 89 g1 55 55 50 34 39 44 49 63 76 87120155150123 100123109 86 62 71 78 52 49 39 44 35 24 15 12

33| 95 g7 b3 63 36 42 39 56 60 75 86 97126160155 128 104 128113 9o 67 76 82 62 59 49 53 40 29 25 23 X

34| 74 81 44 43 35 23 30 39 44 62 78 89121159155 127 108136 124101 75 79 BI 54 50 42 46 43 39 23 14 I4 20

35| 67 69 42 41 31 25 32 31 46 64 83 90130164160 133 114136134111 85 84 86 59 52 47 ST 53 49 32 24 24 30 9

36| 74 76 61 60 42 44 ST 60 66 83102110147 185 179 155133159 146 122 98105107 79 71 66 70 70 60 48 40 36 33 25 18

37| 57 39 46 41 25 30 36 47 52 71 93 98136172172 usuéx%E 147124 121 97 99 71 65 59 63 67 62 46 38 37 43 23 13 17

38| 45 36 41 34 20 34 38 48 53 73 96 99137176 178151 131 163159135108 102103 73 67 b4 69 75 72 54 46 49 54 34 24 29 12

39| 33 37 35 26 18 34 36 46 51 70 93 97134171 176 151 129 161 163 139 118 102101 71 63 65 70 B4 78 $8 S0 56 62 41 32 38 2 ¢

40| 29 33 30 21 18 35 33 40 45 65 87 91117166171 144125 157156139113 95 97 67 60 62 67 79 82 b2 3 5% 66 45 28 45 27 15 6

41 o4t 3 8 63 83105 109 147 186 188 164 144 176 182 161 134 119 116 86 78 84 88101108 88 80 86 92 71 64 71 54 41 32 2§

2 ? ok b ﬁ EZ 85 81 63 83113 115190 186 102 166 147 160 188 167 198 124 119 90 &7 96 94107 114 77 86 92 98 Bo 74 77 B0 48 38 32 6
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S o e)X (i)
subject to
2o XL)+ 2205 XU, 1) =2 foreach 1 <j <42
0<x(i,j)<1 foreach1<j<i<42

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize DD D= ()N (H)
subject to
2o XL)+ 2205 XU, 1) =2 foreach 1 <j <42
0<x(i,j)<1 foreach1<j<i<42
N

[Constraints x(/,j) € {0,1} are not allowed in a LP!J

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize DD D= ()N (H)
subject to
2o XL)+ 2205 XU, 1) =2 foreach 1 <j <42
0<x(i,j)<1 foreach1<j<i<42
N

[Constraints x(/,j) € {0,1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli)X (i)
subject to
2o XL)+ 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1<j<i<42
N

[Constraints x(/,j) € {0,1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:
+ As long as solution of LP has fractional x(/,j) € (0,1):

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli)X (i)
subject to
2o XL)+ 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1<j<i<42
N

[Constraints x(/,j) € {0,1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:

+ As long as solution of LP has fractional x(/,j) € (0,1):
= Add x(i,j) = 0 to the LP, solve it and recurse
= Add x(i,j) = 1 to the LP, solve it and recurse
= Return best of these two solutions

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(i,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli)X (i)
subject to
2o XL)+ 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1<j<i<42
N

[Constraints x(/,j) € {0,1} are not allowed in a LP!J

Branch & Bound to solve an Integer Program:

+ As long as solution of LP has fractional x(/,j) € (0,1):

= Add x(i,j) = 0 to the LP, solve it and recurse
= Add x(i,j) = 1 to the LP, solve it and recurse
= Return best of these two solutions

= If solution of LP integral, return objective value

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances

Modelling TSP as a Linear Program Relaxation

Idea: Indicator variable x(/,), i > j, which is one if the tour includes

edge {/,/} (in either direction)

minimize S Yot oli)X (i)
subject to
2o XL)+ 2205 XU, 1) =2 foreach 1 </ <42
0<x(i,j)<1 foreach1<j<i<42
N

[Constraints x(/,j) € {0,1} are not allowed in a LP!}

Branch & Bound to solve an Integer Program: T
» As long as solution of LP has fractional x(i,) € (0,1): CUIAT L b 11 U (R [Tonl
= Add x(i,j) = 0 to the LP, solve it and recurse mtﬁgralhsomtllon SO ffar |Elg>etter

= Add x(i,j) = 1 to the LP, solve it and recurse than the solution of a LP, no
need to explore branch further!

= Return best of these two solutions

= If solution of LP integral, return objective value

8. Solving TSP via Linear Programming © T. Sauerwald Examples of TSP Instances 13

Outline

Demonstration

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

In the following, there are a few different runs of the demo.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Iteration 1:

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

@/E}/

,20 . 2 303“1 ;
h o

. 35
i
k>
: ‘

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 1: Eliminate Subtour 1,2 41,42

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

F
1 2
8 ! 23 24 T

| ‘? ;
@ 7 F/ .
ﬁ%/@/

19 - 8 31)

. 35
i
3 l

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 1: Eliminate Subtour 1,2 41,42
Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

X(2,1) + x(41,1) + x(42, 1) + x(41,2) + x(42,2) + x(42,41) < 3

[Disallow subtour (1,2,42,41) by adding this constraint to the LP:]
\ 2 -

A T
w n

I g 3 31 .
T ; ng
y o

L \f

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 1: Eliminate Subtour 1,2 41,42

Objective value: —641.000000, 861 variables, 945 constraints, 1809 iterations

14 [Disallow subtour (1,2,42,41) by adding this constraint to the LP:]

X(2,1) + x(41,1) + x(42,1) + x(41,2) + x(42,2) + x(42,41) < 3
/1
71

Equivalent to: S = {1,2,41,42}, 2

0
Z x(max(i, f), min(i, f)) > 2 @

\:\16
/ \I\ i€S,jeV\S
9
; /JI(P
8 W 23 24 :

l}‘l

? % H
@/E}/

A

Yo

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 16

Iteration 2:
Objective value: —676.000000, 861 variables, 946 constraints, 1802 iterations

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 17

Iteration 2: Eliminate Subtour 3 — 9
Objective value: —676.000000, 861 variables, 946 constraints, 1802 iterations

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 17

Iteration 3:
Objective value: —681.000000, 861 variables, 947 constraints, 1984 iterations

1p 2
2 T 00 . 35 iz
é? \@\f?

3 Y=g
N

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 18

Iteration 3: Eliminate Subtour 24, 25,26, 27
Objective value: —681.000000, 861 variables, 947 constraints, 1984 iterations

25 m 1
24
0 6; 7 i
7 26 E

1p 2
. 28 31)
T [0, s %

é? o e

3 Y=g
? \\

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 18

Iteration 4:
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

E\l e i.m i

‘
8 23
| 0 , 1
51; :

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 19

Iteration 4: Eliminate Cut 11 — 23
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

T

p\ //m'

31 ‘

ST

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 19

Iteration 4: Eliminate Cut 11 — 23
Objective value: —682.500000, 861 variables, 948 constraints, 1492 iterations

= Fre o
| 1 P\ B

40,
1 2
T o wxsl w4

L

Tour has to include at least two edges between S = {11,12,...,23} and V\ S:
> x(max(i,), min(i,j)) > 2.

i€S,jeV\S

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 19

Iteration 5:

Objective value: —686.000000, 861 variables, 949 constraints, 2446 iterations

é?g %] -
N

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration 20

Iteration 5: Eliminate Subtour 13 — 23
Objective value: —686.000000, 861 variables, 949 constraints, 2446 iterations

1 5
" ——m S
o} @ 40,
27 2f @
A P

2
T & u ,

) o g
’ */ \

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 20

Iteration 6:
Objective value: —694.500000, 861 variables, 950 constraints, 1690 iterations

m , .

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 21

Iteration 6: Eliminate Cut 13 — 17
Objective value: —694.500000, 861 variables, 950 constraints, 1690 iterations

/I/ 2E12
1 u
7 éi 40,

37,
1

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 21

Iteration 7:
Objective value: —697.000000, 861 variables, 951 constraints, 2212 iterations

% o,

| T 2
VA g R\K ;
fa

F

42
i

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 22

lteration 7: Branch 1a xyg 15 = 0
Objective value: —697.000000, 861 variables, 951 constraints, 2212 iterations

= P § o o
‘ \El\g 3
/ Y 2 /:/ E&u 3 e oD~
[E] 7 éi 40
20 1 \D\Q 30 ;; N . 1
9 .

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 22

Iteration 8:
Objective value: —698.000000, 861 variables, 952 constraints, 1878 iterations

a
20 A\D\Q %0 31 . ‘
gy

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 23

Iteration 8: Branch 2a x4713 =0
Objective value: —698.000000, 861 variables, 952 constraints, 1878 iterations

18 ! 23 24 EU
] 7 éi 40,
1 2 »
20 '\E}\Q ‘3031) ;
34 n
Y

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 23

Iteration 9:
Objective value: —699.000000, 861 variables, 953 constraints, 2281 iterations

13

\-\
\D\ T m!

by

18
0 7 1
13 h;; fu

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 24

Iteration 9: Branch 2b xq7,13 = 1
Objective value: —699.000000, 861 variables, 953 constraints, 2281 iterations

14
P
T 2 ,
\ 2 42
\D\m o ‘m
= o ﬂ
7 . 25 m o
~ o ? Y
27 2 @ ‘
joF v

2

T * o] ¥

. 35
i
3 l

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 24

Iteration 10:
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

=

42
i

i/zk/l’/ &4 \D\E’ ;
fa

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 25

Iteration 10:
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

\
14 Branch & Bound procedure would stop here, since value of the best]

\m\ LP solution for x1g15 = 0 is worse than a prewously found tour.
15
\K — B2

~ /x%/u%

t;;

31

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 25

Iteration 10: Branch 1b xy5 15 = 1
Objective value: —700.000000, 861 variables, 954 constraints, 2398 iterations

\
14 Branch & Bound procedure would stop here, since value of the best]

\m\ LP solution for x1g15 = 0 is worse than a prewously found tour.
15
\K — B2

?/ /x P\ ® 4

31 ‘

ZO \E\Q

VN

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 25

Iteration 11:
Objective value: —701.000000, 861 variables, 953 constraints, 2506 iterations

14
1‘ 13
T ©
‘, 2 42
16 w EL
® 3
\I\l 25 m ne
8 . 23 24 S
[@$M * 7 E\i 40,
27 24 J
joF h@ B

2
. 2 31 ‘

"2? [ng &

U
\ I

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 26

Iteration 11: Branch & Bound terminates
Objective value: —701.000000, 861 variables, 953 constraints, 2506 iterations

1
o 13

T © »
16 * /'/ ELJ’
A — \E\
! 23 . ‘
' / 2 - : , éi .
= ﬁg 4

. . 2 3 5
20 g

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 26

Branch & Bound Overview

1: LP solution 641

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

27

Branch & Bound Overview

1: LP solution 641

Eliminate Subtour 1,2,41,42

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

27

Branch & Bound Overview

1: LP solution 641

2: LP solution 676

Eliminate Subtour 1,2,41,42

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

27

Branch & Bound Overview

1: LP solution 641

2: LP solution 676

Eliminate Subtour 1,2,41,42

Eliminate Subtour 3 — 9

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

27

Branch & Bound Overview

1: LP solution 641

2: LP solution 676
3: LP solution 681

Eliminate Subtour 1,2,41,42

Eliminate Subtour 3 — 9

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5
Eliminate Cut 13 — 17

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration 27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697
8: LP solution 698

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697
8: LP solution 698

X1713 =10

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697
8: LP solution 698

X1713 =10

9: Valid tour 699

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697
8: LP solution 698

X1713 =10

9: Valid tour 699

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

X1713 =10 X17,13 =1

9: Valid tour 699

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641

2: LP solution 676

3: LP solution 681

5: LP solution 686

7: LP solution 697

X1713 =10

Eliminate Subtour 1,2,41,42
Eliminate Subtour 3 — 9

Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

[9: Valid tour 699] [10: LP solution 700]%

Cut branch, since LP solution worse

than current best possible tour.]

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration 27

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

X1713 =10 X17,13 =1

(9: Valid tour 699] (10: LP solution 700)

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

X1713 =10 X17,13 =1

(9: Valid tour 699] (10: LP solution 700)

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697

X1g,15 = 1

X17,13 =0

(9: Valid tour 699] (10: LP solution 700)

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697
X1g,15 = 1
11: Valid tour 701

X1713 =10

(9: Valid tour 699] (10: LP solution 700)

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Branch & Bound Overview

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 11 — 23

5: LP solution 686

Eliminate Subtour 10,11, 12

6: LP solution 694.5

Eliminate Cut 13 — 17

7: LP solution 697
X1g,15 = 1
11: Valid tour 701

X1713 =10

(9: Valid tour 699] (10: LP solution 700)

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Iteration 7: Objective 697

® 12

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 28

Iteration 7: Objective 697

12

[What about choosing a different branching variable?]

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 28

Solving Progress (Alternative Branch 1)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 29

Solving Progress (Alternative Branch 1)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

29

Alternative Branch 1: xi3 15, Objective 697

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

30

Alternative Branch 1: xi3 15, Objective 697

14
1
g 13
|
16
|
=
]
' 23

2,
3 u
20

30

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

Alternative Branch 1a: x5 15 = 1, Objective 701 (Valid Tour)

1
g 13

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 31

Alternative Branch 1b: xig 15 = 0, Objective 698

050

:
20

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

32

Solving Progress (Alternative Branch 1)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27

4: LP solution 682.5

Eliminate Cut 13 — 17

Eliminate Subtour 10,11,12
6: LP solution 686
Eliminate Subtour 13 — 23
7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697

X1g,15 = 1 X18,15 =0
9: valid tour 701 10: LP solution 698
L‘“‘ u'x

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 33

Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10, 11,12
Eliminate Subtour 13 — 23
7: LP solution 688
Eliminate Subtour 11 — 23

8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 34

Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9
Eliminate Subtour 24,25, 26, 27
4: LP solution 682.5
Eliminate Cut 13 — 17

5: LP solution 686

Eliminate Subtour 10, 11,12
Eliminate Subtour 13 — 23
7: LP solution 688
Eliminate Subtour 11 — 23

8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Alternative Branch 2: x»7 2, Objective 697

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

35

Alternative Branch 2: x»7 2, Objective 697

14
1
f 13
® 12
\
16
iy 5

2
20

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 35

Alternative Branch 2a:

X27.20 = 1, Objective 708 (Valid tour)

1
1
[1] . >
1
1
1f o 25
18 ! 23 24 ! .
27 2f “
(L] (]
1p 21
B 31

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration 36

Alternative Branch 2b: x»7 2> = 0, Objective 697.75

|

16 LA
' L
y
' 23

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

37

Solving Progress (Alternative Branch 2)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26,27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23
8: LP solution 697

Xo7,00 = 1

9: valid tour 708

(10: LP solution 697.75)

i Y

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 38

Solving Progress (Alternative Branch 3)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12
6: LP solution 686
Eliminate Subtour 13 — 23
Eliminate Subtour 11 — 23
8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 39

Solving Progress (Alternative Branch 3)

1: LP solution 641
Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9
3: LP solution 681
Eliminate Subtour 24, 25, 26, 27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10,11,12
6: LP solution 686
Eliminate Subtour 13 — 23
Eliminate Subtour 11 — 23
8: LP solution 697

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Alternative Branch 3: x»7 24, Objective 697

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

40

Alternative Branch 3: x»7 24, Objective 697

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

40

Alternative Branch 3a: x»; 24 = 1, Objective 697.75

0.50

0.25

4

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

Alternative Branch 3b: x»7 24 = 0, Objective 698

|

16
'
y
' 23

0.50

> o o

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 42

Solving Progress (Alternative Branch 3)

Eliminate Subtour 1,2,41,42
2: LP solution 676
Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26,27
Eliminate Cut 13 — 17
5: LP solution 686
Eliminate Subtour 10, 11,12

6: LP solution 686

Eliminate Subtour 13 — 23

7: LP solution 688
Eliminate Subtour 11 — 23
8: LP solution 697

Xo7,24 = 1 Xo7,.24 =0
9: LP solution 697.75 10: LP solution 698
- " - "

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 43

Solving Progress (Alternative Branch 3)

1: LP solution 641

Eliminate Subtour 1,2,41,42

2: LP solution 676

Eliminate Subtour 3 — 9

3: LP solution 681

Eliminate Subtour 24, 25, 26,27
4: LP solution 682.5

Not only do we have to explore (and branch further in) both subtrees,
but also the optimal tour is in the subtree with larger LP solution!

6: LP solution 686
Eliminate Subtour 13 — 23

7: LP solution 688

Eliminate Subtour 11 — 23

8: LP solution 697
9: LP solution 697.75 10: LP solution 698

= . " .

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

43

Conclusion (1/2)

= How can one generate these constraints automatically?

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

44

Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

44

Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

44

Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

44

Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

= Should the search tree be explored by BFS or DFS?

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

44

Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

= Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

44

Conclusion (1/2)

= How can one generate these constraints automatically?
Subtour Elimination: Finding Connected Components
Small Cuts: Finding the Minimum Cut in Weighted Graphs

= Why don’t we add all possible Subtour Eliminiation constraints to the LP?
There are exponentially many of them!

= Should the search tree be explored by BFS or DFS?
BFS may be more attractive, even though it might need more memory.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration 44

Conclusion (2/2)

= Eliminate Subtour 1,2,41,42

= Eliminate Subtour 3 — 9

= Eliminate Subtour 10,11,12

= Eliminate Subtour 11 — 23

= Eliminate Subtour 13 — 23

= Eliminate Cut 13 — 17

= Eliminate Subtour 24,25, 26, 27

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration

45

Conclusion (2/2)

= Eliminate Subtour 1,2,41,42

= Eliminate Subtour 3 — 9

= Eliminate Subtour 10,11,12

= Eliminate Subtour 11 — 23

= Eliminate Subtour 13 — 23

= Eliminate Cut 13 — 17

= Eliminate Subtour 24,25, 26, 27

THE 49-CITY PROBLEM*

The optimal tour & is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(z) is a minimum for . We distinguish the following subsets of the
42 cities:

Si=11, 2, 41, 42} Ss=1(13, 14, - -, 23}
Se=1{3,4, ---,9} Se={13, 14, 15, 16, 17}
S;=1{1,2,---,9,29,30, ---, 42} S.=1{24, 25, 26, 27}.
Si={11,12, ---, 23}

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

45

CPLEX

€ 3 C [} enwikipedia.org/wiki/CPLEX

WIKIPEDIA
The Free Encyclopedia

Main page
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages

CPLEX

From Wikipedia, the free encyclopedia

IBM ILOG CPLEX Optimization Studio (often informally
referred to simply as CPLEX) is an optimization software
package. In 2004, the work on CPLEX earned the first
INFORMS Impact Prize.

The CPLEX Optimizer was named for the simplex
method as implemented in the C programming language,
although today it also supports other types of
mathematical optimization and offers interfaces other
than just C. It was originally developed by Robert E.
Bixby and was offered commercially starting in 1988 by

CPLEX
Developer(s) IBM
Stable release 126

Development status Active

Type Technical computing

License Proprietary

Website ibm.com/software
Jproducts

J/ibmilogcpleoptistud/&

CPLEX Optimization Inc., which was acquired by ILOG in 1997; ILOG was subsequently acquired by
IBM in January 2009.I") CPLEX continues to be actively developed under IBM.

The IBM ILOG CPLEX Optimizer solves integer programming problems, very large®! linear
programming problems using either primal or dual variants of the simplex method or the barrier interior

8. Solving TSP via Linear Programming © T. Sauerwald

Demonstration 46

Welcome to IBM({R) ILOG(R) CPLEX(R) Interactive Optimizer 12.6.1.@
with Simplex, Mixed Integer & Barrier Optimizers

5725-A@6 5725-A29 5724-Y48 5724-Y49 5724-Y54 5724-¥55 5655-Y21

Copyright IBM Corp. 1988, 2014. All Rights Reserved.

Type 'help' for a list of available commands.
Type 'help' followed by a command name for more
information on commands.

CPLEX> read tsp.lp

Problem 'tsp.lp' read.

Read time = ©.80@ sec. (@.86 ticks)

CPLEX= primopt

Tried aggregator 1 time.

LP Presolve eliminated 1 rows and 1 columns.

Reduced LP has 49 rows, 86@ columns, and 2483 nonzeros.
Presolve time = @.80 sec. (@.36 ticks)

Iteration log . . .

Iteration: 1 Infeasibility = 33.999999
Iteration: 26 Objective = 151@.000000
Iteration: 9@ Objective = 923.000000
Iteration: 155 Objective = 711.e0ee00

Primal simplex - Optimal: Objective = 6.9920000000c+@2
Solution time = .80 sec. Iterations = 168 (25)
Deterministic time = 1.16 ticks (288.86 ticks/sec)

cPLEX= I

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

CPLEX> display solution variables —

Variable Name Solution Value
% 2_1 1.000000
%_42_1 1.000000
%_3_2 1.000000
%_4_3 1.000000
x_5_4 1.000000
%_6_5 1.000000
% 7_6 1.000000
x_8_7 1.000000
%_9_8 1.000000
%_10_9 1.000000
x_11_10 1.000000
%_12_11 1.000000
%_13_12 1.000000
x_14_13 1.000000
%_15_14 1.000000
%_16_15 1.000000
%_17_16 1.000000
%_18_17 1.000000
%_19_18 1.000000
%_20_19 1.000000
%_21_20 1.000000
%_22_21 1.000000
%_23_22 1.000000
%_24_23 1.000000
%_25_24 1.000000
%_26_25 1.000000
%_27_26 1.000000
%_28 27 1.000000
%_29_28 1.000000
%_30_29 1.000000
%_31_30 1.000000
%_32_31 1.000000
%_33_32 1.000000
%_34_33 1.000000
%_35_34 1.000000
%_36_35 1.000000
%_37_36 1.000000
%_38_37 1.000000
%_39_38 1.000000
%_40_39 1.000000
%_41_40 1.000000
%_42_41 1.000000

All other variables in the range 1-861 are 8.

8. Solving TSP via Linear Programming © T. Sauerwald Demonstration

	Introduction
	Examples of TSP Instances
	Demonstration

