
Randomised Algorithms
Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2025



Outline

Randomised Approximation

MAX-3-CNF

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald Randomised Approximation 2



Approximation Ratio for Randomised Approximation Algorithms

A randomised algorithm for a problem has approximation ratio ρ(n), if
for any input of size n, the expected cost (value) E [ C ] of the returned
solution and optimal cost C∗ satisfy:

max

(
E [ C ]

C∗
,

C∗

E [ C ]

)
≤ ρ(n).

Approximation Ratio

Maximisation problem: C∗

E[ C ]
≥ 1

Minimisation problem: E[ C ]
C∗ ≥ 1

An approximation scheme is an approximation algorithm, which given
any input and ε > 0, is a (1 + ε)-approximation algorithm.

It is a polynomial-time approximation scheme (PTAS) if for any fixed
ε > 0, the runtime is polynomial in n.

It is a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ε and n.

Randomised Approximation Schemes
not covered here (non-examinable)

For example, O(n2/ε).

For example, O((1/ε)2 · n3).
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MAX-3-CNF Satisfiability

Given: 3-CNF formula, e.g.: (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ · · ·

Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

MAX-3-CNF Satisfiability

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Assume that no literal (including its negation)
appears more than once in the same clause.

Example:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3)

x1 = 1, x2 = 0, x3 = 1, x4 = 0 and x5 = 1 satisfies 3 (out of 4 clauses)

Idea: What about assigning each variable uniformly and independently at random?
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Analysis

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

Proof:

For every clause i = 1, 2, . . . ,m, define a random variable:

Yi = 1{clause i is satisfied}

Since each literal (including its negation) appears at most once in clause i ,

P [ clause i is not satisfied ] =
1
2
·

1
2
·

1
2

=
1
8

⇒ P [ clause i is satisfied ] = 1−
1
8

=
7
8

⇒ E [Yi ] = P [Yi = 1 ] · 1 =
7
8
.

Let Y :=
∑m

i=1 Yi be the number of satisfied clauses. Then,

E [Y ]

= E

[ m∑
i=1

Yi

]
=

m∑
i=1

E [Yi ] =
m∑

i=1

7
8

=
7
8
·m.

Linearity of Expectations maximum number of satisfiable clauses is m
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Interesting Implications

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least 7

8 of all clauses.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Corollary

There is ω ∈ Ω such that Y (ω) ≥ E [ Y ]
Probabilistic Method: powerful tool to

show existence of a non-obvious property.

Follows from the previous Corollary.
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Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8



Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8



Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof.

One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8



Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8



Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8



Expected Approximation Ratio

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Theorem 35.6

One could prove that the probability to satisfy (7/8) ·m clauses is at least 1/(8m)

E [ Y ] =
1
2
· E [ Y | x1 = 1 ] +

1
2
· E [ Y | x1 = 0 ] .

Y is defined as in
the previous proof. One of the two conditional expectations is at least E [ Y ]

Algorithm: Assign x1 so that the conditional
expectation is maximised and recurse.

GREEDY-3-CNF(φ, n,m)
1: for j = 1, 2, . . . , n
2: Compute E [ Y | x1 = v1 . . . , xj−1 = vj−1, xj = 1 ]
3: Compute E [ Y | x1 = v1, . . . , xj−1 = vj−1, xj = 0 ]
4: Let xj = vj so that the conditional expectation is maximised
5: return the assignment v1, v2, . . . , vn

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8



Run of GREEDY-3-CNF(ϕ,n,m)

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)
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Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.
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Analysis of GREEDY-3-CNF(φ,n,m)

GREEDY-3-CNF(φ, n,m) is a polynomial-time 8/7-approximation.
Theorem

This algorithm is deterministic.

Proof:

Step 1: polynomial-time algorithm

X
In iteration j = 1, 2, . . . , n, Y = Y (φ) averages over 2n−j+1 assignments
A smarter way is to use linearity of (conditional) expectations:

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

=
m∑

i=1

E
[

Yi | x1 = v1, . . . , xj−1 = vj−1, xj = 1
]

Step 2: satisfies at least 7/8 ·m clauses

X
Due to the greedy choice in each iteration j = 1, 2, . . . , n,

E
[

Y | x1 = v1, . . . , xj−1 = vj−1, xj = vj
]
≥ E

[
Y | x1 = v1, . . . , xj−1 = vj−1

]
≥ E

[
Y | x1 = v1, . . . , xj−2 = vj−2

]
...

≥ E [Y ] =
7
8
·m.

computable in O(1)
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MAX-3-CNF: Concluding Remarks

Given an instance of MAX-3-CNF with n variables x1, x2, . . . , xn and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem 35.6

GREEDY-3-CNF(φ, n,m) is a deterministic poly-time 8/7-approxim.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation al-
gorithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!
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GREEDY-3-CNF(φ, n,m) is a deterministic poly-time 8/7-approxim.

Theorem

For any ε > 0, there is no polynomial time 8/7 − ε approximation al-
gorithm of MAX3-CNF unless P=NP.

Theorem (Hastad’97)

Essentially there is nothing smarter than just guessing!
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So you said you have been studying
the field of algorithms for MAX-3-SAT?

Yes, my research has
finally concluded...

...the best approach
is to randomly

guess a solution.
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The Weighted Vertex-Cover Problem

Given: Undirected, vertex-weighted graph G = (V ,E)

Goal: Find a minimum-weight subset V ′ ⊆ V such
that if {u, v} ∈ E(G), then u ∈ V ′ or v ∈ V ′.

Vertex Cover Problem

This is an NP-hard problem.
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d

e

Applications:

Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Weight of a vertex could be salary of a person

Perform all tasks with the minimal amount of resources
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A Greedy Approach working for Unweighted Vertex Cover

35.1 The vertex-cover problem 1109
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Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge .b; c/, shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges .a; b/, .c; e/, and .c; d/, shown dashed, are removed since they are now covered
by some vertex in C . (c) Edge .e; f / is chosen; vertices e and f are added to C . (d) Edge .d; g/
is chosen; vertices d and g are added to C . (e) The set C , which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b; c; d; e; f; g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d , and e.

APPROX-VERTEX-COVER.G/

1 C D ;
2 E 0 D G:E
3 while E 0 ¤ ;
4 let .u; !/ be an arbitrary edge of E 0

5 C D C [ fu; !g
6 remove from E 0 every edge incident on either u or !
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E 0 to be a copy of the edge set G:E of
the graph. The loop of lines 3–6 repeatedly picks an edge .u; !/ from E 0, adds its
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This algorithm is a 2-approximation for unweighted graphs!

Computed solution has weight 101Optimal solution has weight 4
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Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ {0, 1} for each v ∈ V

0-1 Integer Program

minimize
∑
v∈V

w(v)x(v)

subject to x(u) + x(v) ≥ 1 for each (u, v) ∈ E

x(v) ∈ [0, 1] for each v ∈ V

Linear Program

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Rounding Rule: if x(v) ≥ 1/2 then round up, otherwise round down.
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The Algorithm

1126 Chapter 35 Approximation Algorithms

APPROX-MIN-WEIGHT-VC.G; w/

1 C D ;
2 compute Nx, an optimal solution to the linear program in lines (35.17)–(35.20)
3 for each ! 2 V
4 if Nx.!/ ! 1=2
5 C D C [ f!g
6 return C

The APPROX-MIN-WEIGHT-VC procedure works as follows. Line 1 initial-
izes the vertex cover to be empty. Line 2 formulates the linear program in
lines (35.17)–(35.20) and then solves this linear program. An optimal solution
gives each vertex ! an associated value Nx.!/, where 0 " Nx.!/ " 1. We use this
value to guide the choice of which vertices to add to the vertex cover C in lines 3–5.
If Nx.!/ ! 1=2, we add ! to C ; otherwise we do not. In effect, we are “rounding”
each fractional variable in the solution to the linear program to 0 or 1 in order to
obtain a solution to the 0-1 integer program in lines (35.14)–(35.16). Finally, line 6
returns the vertex cover C .

Theorem 35.7
Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Proof Because there is a polynomial-time algorithm to solve the linear program
in line 2, and because the for loop of lines 3–5 runs in polynomial time, APPROX-
MIN-WEIGHT-VC is a polynomial-time algorithm.

Now we show that APPROX-MIN-WEIGHT-VC is a 2-approximation algo-
rithm. Let C ! be an optimal solution to the minimum-weight vertex-cover prob-
lem, and let ´! be the value of an optimal solution to the linear program in
lines (35.17)–(35.20). Since an optimal vertex cover is a feasible solution to the
linear program, ´! must be a lower bound on w.C !/, that is,
´! " w.C !/ : (35.21)
Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
a vertex cover, consider any edge .u; !/ 2 E. By constraint (35.18), we know that
x.u/C x.!/ ! 1, which implies that at least one of Nx.u/ and Nx.!/ is at least 1=2.
Therefore, at least one of u and ! is included in the vertex cover, and so every edge
is covered.

Now, we consider the weight of the cover. We have

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Theorem 35.7

is polynomial-time because we can solve the linear program in polynomial time
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linear program, ´! must be a lower bound on w.C !/, that is,
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Next, we claim that by rounding the fractional values of the variables Nx.!/, we
produce a set C that is a vertex cover and satisfies w.C / " 2´!. To see that C is
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Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Let C∗ be an optimal solution to the minimum-weight vertex cover problem
Let z∗ be the value of an optimal solution to the linear program, so

z∗ ≤ w(C∗)

Step 1: The computed set C covers all vertices:

Consider any edge (u, v) ∈ E which imposes the constraint x(u) + x(v) ≥ 1
⇒ at least one of x(u) and x(v) is at least 1/2

⇒ C covers edge (u, v)

Step 2: The computed set C satisfies w(C) ≤ 2z∗:

w(C∗) ≥

z∗

=
∑
v∈V

w(v)x(v) ≥
∑

v∈V : x(v)≥1/2

w(v) · 1
2

=
1
2

w(C).
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Rounding
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