Randomised Algorithms
Lecture 9: Approximation Algorithms: MAX-3-CNF and Vertex-Cover

Thomas Sauerwald (tms41@cam. ac.uk)

Lent 2025

mgm UNIVERSITY OF
¥ CAMBRIDGE

Outline

Randomised Approximation

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

X <Eé*C]7 E[C;]> < p(n).

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

o (521655) <0

N

\

= Maximisation problem: & > 1

» Minimisation problem: EL¢1 > 1

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

X <Eé*C]7 E[C;]> < p(n).

not covered here (non-examinable)]
Randomised Approximation Schemes 1/

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

(59 65) <o

not covered here (non-examinable)]
Randomised Approximation Schemes 1/

An approximation scheme is an approximation algorithm, which given
any input and € > 0, is a (1 + ¢)-approximation algorithm.
= |tis a polynomial-time approximation scheme (PTAS) if for any fixed
€ > 0, the runtime is polynomial in n. (For example, O(n2/€).)
= |tis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/¢ and n. G:or example, O((1/¢)? - nS)_)

9. Approximation Algorithms © T. Sauerwald Randomised Approximation

Outline

MAX-3-CNF

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF Satisfiability

—— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF Satisfiability

—— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF Satisfiability

—— MAX-3-CNF Satisfiability

clauses as possible.

N

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

MAX-3-CNF Satisfiability

—— MAX-3-CNF Satisfiability

[

Assume that no literal (including its negation)
appears more than once in the same clause.

]

clauses as possible.

N

7
v

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

MAX-3-CNF Satisfiability

—— MAX-3-CNF Satisfiability

clauses as possible.

{

Assume that no literal (including its negation)
appears more than once in the same clause.

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

7
v

N

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXaVXa)A(X1 VXV XE)A (X2 VXaV X5)A (X1 V X2V X3)

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF 5

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

MAX-3-CNF Satisfiability

%
= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible. N

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(X1 VXaVXa)A(X1 VXV XE)A (X2 VXaV X5)A (X1 V X2V X3)
N
[x1 =1,x%=0,x3=1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

—— MAX-3-CNF Satisfiability

[

Assume that no literal (including its negation)
appears more than once in the same clause.

]

clauses as possible.

N

7
v

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A+ -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—

Example:

(X1 VXaVXa)A(X1 VXV XE)A (X2 VXaV X5)A (X1 V X2V X3)

N

[x1 =1,x%=0,x3=1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

Idea: What about assigning each variable uniformly and independently at random?

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

5

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = = - = - = ==

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

11 1 1
P [clause i is not satisfied] = = - = - = ==

1 7
= P[clause i is satisfied] = 1 — il

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Y,]=P[Y,=1]-1=_.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Y,]=P[Y,=1]-1=_.

= Let Y := 37, V] be the number of satisfied clauses. Then,

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Y,]=P[Y,=1]-1=_.

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[Y]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Y,]=P[Y,=1]-1=_.

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[Y] :E{zmjy,}
i=1

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

111 1
P [clause i is not satisfied] = = - = - = = —
2 2 2 8
. e 1 7
= P[clause i is satisfied] = 1 — il
7
> E[V]=P[Y;=1]-1= 2.

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[Y] :E{zmjy,}
=y

(Linearity of Expectations)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

111 1
P [clause i is not satisfied] = = - = - = = —
2 2 2 8
. e 1 7
= P[clause i is satisfied] = 1 — il
7
> E[V]=P[Y;=1]-1= 2.

= Let Y := 37, V] be the number of satisfied clauses. Then,

m m
E[Y] =E{ZY,} => E[Y]
i1 1=
(Linearity of Expectations)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]]=P[Y,=1]-1= .

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[V] :E{ZY,} =Y EvI=3;
=11 = =

(Linearity of Expectations)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = = - = - = ==

2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Y]]=P[Y,=1]-1= .

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[Y] :E{ZY'} => E[Y] =Zg=g-m.
=1 1] i=t i=1

(Linearity of Expectations)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

11 1 1
P [clause i is not satisfied] = = - = - = ==
2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Yi]=P[Y,=1]-1=¢.

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[Y] :E{ZY'} => E[Y] =Zg=g-m.
=1 1 i=1 =1 N

[Linearity of Expectations] [maximum number of satisfiable clauses is m]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= For every clause i = 1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

11 1 1
P [clause i is not satisfied] = = - = - = ==
2 2 2 8
. - 1 7
= P[clause i is satisfied] =1 — - = =
8 8
7
= E[Yi]=P[Y,=1]-1=¢.

= Let Y := 37, V] be the number of satisfied clauses. Then,

E[Y]:E{ZY'}:ZE[YI']=Z;:;m. O
i— 1 = i N

[Linearity of Expectations] [maximum number of satisfiable clauses is m]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 6

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Interesting Implications

~——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

5

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Interesting Implications

~——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

5

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1
[There s w € 2 such that Y(w) > E[Y]]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Interesting Implications

~——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

5

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

A HH 1 .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Interesting Implications

~——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

5

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Interesting Implications

~——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables x1, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\ J

5

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least £ of all clauses.

1 T .
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to]

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

[

[Follows from the previous Corollary.]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1 1
E[YI=3 -E[Y | x=1]+5-

Y is defined as in
the previous proof.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1

E[Y]=5 E[Y [x=1]+y-

Y is defined as in
the previous proof.

(One of the two conditional expectations is at least E | Y]j

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1

[Y]:%-E[Y|x1:1]+§-E[Y|x1:0].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [Y]]
/]

Algorithm: Assign x; so that the conditional
expectation is maximised and recurse.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,..., X, and m

clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1

[Y]:%-E[Y|x1:1]+§-E[Y|x1:0].

Y is defined as in
the previous proof.

(One of the two conditional expectations is at least E | Y]j

GREEDY-3-CNF(¢, n, m)
1:forj=1,2,....n

2: Compute E[Y | xi =vi...,X—1 = Vi1, =1]

3: Compute E[Y | x1 = v1,...,X—1 = Vj—1,X, = 0]

4: Let x; = v; so that the conditional expectation is maximised
5: return the assignment vy, va,..., vy

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 8

Run of GREEDY-3-CNF (¢, n, m)

(aVxeVxs)Aa VX VXa) AV xe VX)) A VXV Xe) AV Xe V) A KT VIRV XE) AV Xe VXs) A GV Xe V Xs) A

X1:0 X1=1
Xo =0 Xo =1 X2 =20
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3

ST &
1l \ 1l
(o) - S

(X1 V XsV Xa) A (X2 V X5 V Xa)

Xo =1
=0 X3:1

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

(VX VX)) A VRVX) A VX VX)) ARV X)A X VXe VX)) ATV X)) A KTV X VXs)AXT VXV X3)A(X VX3V Xa)A(Xe VX3V Xg)

0???| 8.625

x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
1017 111?
SFATS NTAYS NTAYS

I \ I \! I \

(o) - (e} - o -

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

(VX VX)) A VRVX) A VX VX)) ARV X)A X VXe VX)) ATV X)) A KTV X VXs)AXT VXV X3)A(X VX3V Xa)A(Xe VX3V Xg)

????| 8.75

X1:0 X1=1

0???| 8.625

x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
AR TA:

// \ Il \ 4 \!

o - (e} - o -

0000 0010 0100

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

(VX VX)) A VRVX) A VX VX)) ARV X)A X VXe VX)) ATV X)) A KTV X VXs)AXT VXV X3)A(X VX3V Xa)A(Xe VX3V Xg)

????|.8.75

X1:0 X1=1

0???| 8.625

x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
AR TA:

// \ Il \ 4 \!

o - (e} - o -

0000 0010 0100

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

(6N TR A (T Ra) A MR A (VK5 V Xa) A (XM TG A RV R VX)) A GV Xe V Xa) A (EV R V Xe) A e VT Ra) A (X V X V Xa)

????|.8.75

X1:0 X1=1

0???| 8.625

x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
AR TA:

// \ Il \ 4 \!

o - (e} - o -

0000 0010 0100

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

IANTATACGV X)ATARVY X)) A (X2 VX)) AV X3)ATA(X2V X3V Xa)

????|.8.75
xy =0 Xy =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1

x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
AT ARy AR A -y A vy A VR AV A v
I \ I \ I \ I \! I \ I \ I \ Il \!

- o - - o - o - (<) - (e} - o -

o S
0000 0010 0100 0110 1000

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

IANTATACGV X)ATARVY X)) A (X2 VX)) AV X3)ATA(X2V X3V Xa)

????|.8.75
xy =0 Xy =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1

1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
AT AV-R A vy A vy A vy ARy A vy AV
I \ I \ I \ I \! I \ I \ I \ I \!

- o - - o - o - o - o - o -

o S
0000 0010 0100 0110 1000

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

IANTATACGV X)ATARVY X)) A (X2 VX)) AV X3)ATA(X2V X3V Xa)

????|.8.75
xy =0 Xy =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1

1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
AT AV-R A vy A vy A vy ARy A vy AV
I \ I \ I \ I \! I \ I \ I \ I \!

- o - - o - o - o - o - o -

o S
0000 0010 0100 0110 1000

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

TATATAGV X)) A ARG A (Y X3) A(XoR5) AT A (XY X3V Xs)

????|.8.75
xy =0 Xy =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1

=
=
OQ&,
—
=
=

0
\
v
0

&
I
o o
0000 0010 0100 m 1000 1100 11101111

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVY X)) ATATAG)ATATA(KG YV Xq)

????|.8.75
xy =0 Xy =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1

1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
AT AV-R A vy A vy A vy ARy A vy AV
I \ I \ I \ I \! I \ I \ I \ I \!

- o - - o - o - o - o - o -

o S
0000 0010 0100 0110 1000

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVY X)) ATATAG)ATATA(KG YV Xq)

????|.8.75
x1 =0 X1 =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0

X3 =1

RTAYS NTAES RTAYSS
]

AV Av- I A vy Ay
/ \\ \ 1 \ I \ Vi
-

o -

&
I
(e} (e] (e} - (o]

\ I \ I \! I \
- o -

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGVY X)) ATATAG)ATATA(KG YV Xq)

????|.8.75
x1 =0 xy =1
0???] 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1177] 8.75
X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1

ST\E &\F O S\E S\F SF S ST\E - &TE

> A > A IS
I \ Il \ 4 \! I \! I \ I \

o - [« - (<) - o - o
o))

1l \! Il \

- o - [« - [«) -

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATAGEY R ATATA () AT ATAGEV Xs)

????|.8.75
x1 =0 xy =1
0???] 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1177] 8.75
X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1

ST\E &\F O S\E S\F SF S ST\E - &TE

> A kS £ FS
I \ Il \ 4 \!

>

I \! I \ I \

o - [« - (<) - o - o
o)) o)

1l \! Il \

- o - [« - [«) -

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x1 =0 xy =1
0???] 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1177] 8.75
X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1

ST\E &\F O S\E S\F SF S ST\E - &TE

> A > A IS
I \ Il \ 4 \! I \! I \ I \

o - [« - (<) - o - o
o))

1l \! Il \

- o - [« - [«) -

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x1 =0 xy =1
0???] 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1177] 8.75
X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1 X3 =0 X3 =1

ST\E &\F O S\E S\F SF S ST\E - &TE

> A > A IS
I \ Il \ 4 \! I \! I \ I \

o - [« - (<) - o - o
o))
9

1l \! Il \
-

- o - o - o
9

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
X1 = 0 x1 =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1172) 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
Ny AT S AV AV AT S A

A
1l \! 1l \! I \\ I \\ // \\ // \\

&
I

(e} (e] (e} - (e} - (o] (e}
9 9

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
X1 = 0 x1 =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
1072] 9 1172) 8.75

x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
STE S\E S\E S\E S\E S\E S\E &

I \ 1l

\ 4 \\ // \\ // \\ // \\ // \\ // \\
-

(e}

<) -

(o)
0000 0001 .

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 9

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x1 =0 xy =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
00??] 8 01??] 9.25 10??| 9 11??| 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?| 9 110?| 9 111?| 8.5
YAV A vy A vy A vy A V- A vy A v A ¥

S

EnEn o))
8 8 9 7 9 9 10 9 9 9 9 9 8 9

9 9

Il \ Il \ 4 \!

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
x1 =0 xy =1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
00??] 8 01??] 9.25 10??| 9 11??| 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?| 9 110?| 9 111?| 8.5
YAV A vy A vy A vy A V- A Ty A v A ¥

S

EnEn @)
8 8 9 7 9 9 10 9 9 9 9 9 8 9

9 9

Il \ Il \ 4 \!

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

IATATATATATAOATATAA

????|.8.75
X1 = 0 X1 = 1
0???| 8.625 17?7 8.875
Xo =0 Xo =1 X2 =20 Xo =1
00??| 8 01??] 9.25 10??| 9 11??| 8.75
x3=0 Xz =1 X3 =0 X3 =1 x3=0 Xz =1 X3 =0 xz3 =1
000?| 8 001?| 8 010?| 9 011?] 9.5 100?| 9 101?| 9 110?| 9 111?
A AV-R Ly A - A V- A V- A - AV AV
I \ Il \ I \! I \! I \ I \ I \! I \
(e} (o) -

(e} - (e] - (e} - - - o - [« - o
EnEn @) [@9er)
8 8 9 7 9 9 10 9 9 9 9 9 8 9

9 9

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable. j

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem %
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem %
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

)

Proof:

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

= Step 1: polynomial-time algorithm

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

(This algorithm is deterministic.]

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem %
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

)

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

E[YIxg =V, 1=V, 65=1]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y|X1 =Vi,ee Xjo :|/j717xj:1} :ZE[Y/‘X‘] =V, X1 :‘/f*1’X/‘:1]
i=1

computable in O(1)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[Y|X1 =Vi,ee Xjo :|/j717xj:1} :ZE[Y/‘X‘] =V, X1 :‘/f*1’X/‘:1]
i=1

computable in O(1)

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.j

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

(This algorithm is deterministic.]

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

E[Y|xt=vi,... ., 51 =Vi_,5=V]| 2E[Y|Xx1=vi,...,X_1=V_1]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

(This algorithm is deterministic.]

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xt=vi,... ., 51 =Vi_,5=V]| 2E[Y|Xx1=vi,...,X_1=V_1]
SE[Y|xi=v,....X_2=V_2]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)

(This algorithm is deterministic.]

Theorem /e
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xt=vi,... ., 51 =Vi_,5=V]| 2E[Y|Xx1=vi,...,X_1=V_1]
SE[Y|xi=v,....X_2=V_2]
>E[Y]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 10

Analysis of GREEDY-3-CNF(¢, n, m)
(This algorithm is deterministic.]

[

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,
Xt = Vi X =] ZE[Y X =Xy = v]

E[Y‘X1 = V,..
SE[Y|xi=v,....X_2=V_2]

zE[Y]:g-m.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
(This algorithm is deterministic.]

[

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses v’
= Due to the greedy choice in each iterationj =1,2,...,n,
Xt = Vi X =] ZE[Y X =Xy = v]

E[Y‘X1 = V,..
SE[Y|xi=v,....X_2=V_2]

zE[Y]:g-m.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
(This algorithm is deterministic.]

[

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initeration j =1,2,...,n, Y = Y(¢) averages over 2"/ assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=vi,..., X1 =V, x=1] => E[Yi|x1=vi,...,X_ 1=V, x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses v’
= Due to the greedy choice in each iterationj =1,2,...,n,

E[Y|xt=vi,... ., 51 =Vi_,5=V]| 2E[Y|Xx1=vi,...,X_1=V_1]
SE[Y|xi=v,....X_2=V_2]
7

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, X2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, X2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a deterministic poly-time 8,/7-approxim.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a deterministic poly-time 8,/7-approxim.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, X2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a deterministic poly-time 8,/7-approxim.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.

N

\
[Essentially there is nothing smarter than just guessing!]

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald

MAX-3-CNF

So you said you have been studying
the field of algorithms for MAX-3-SAT?

4

CEO

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

Yes, my research has So you said you have been studying
finally concluded... the field of algorithms for MAX-3-SAT?

N 4

CEO

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

Yes, my research has So you said you have been studying
finally concluded... the field of algorithms for MAX-3-SAT?

N 4

...the best approach
is to randomly
guess a solution.

CEO

Source of Image: Stefan Szeider, TU Vienna

9. Approximation Algorithms © T. Sauerwald MAX-3-CNF 11

Outline

Weighted Vertex Cover

9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

(=)=
“’@‘
w

“(2)
~(®)

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

w

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

AN

“(°)
~(2)

’ Question: How can we deal with graphs that have
? = ?negative weights?

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

(=)=
“’Q‘
w

= (°)
~(®)

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

(20>
“’Q‘
w

“(2)
~(2)

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

N

\
[This is an NP-hard problem.]

(20>
N
w

@ (0)
~(=)

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

N

\
[This is an NP-hard problem.]

Applications:

(20>
N
w

@ (0)
~(=)

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

w

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

N
\

[This is an NP-hard problem.]

el

(©
3

_‘e

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

3
Vertex Cover Problem 4
= Given: Undirected, vertex-weighted graph G = (V, E) e
= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V. e
A\ 2

[This is an NP-hard problem.]

(©
3

_‘e

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

3
Vertex Cover Problem 4
= Given: Undirected, vertex-weighted graph G = (V, E) e
= Goal: Find a minimum-weight subset V' C V such
that if {u,v} € E(G),thenue V' orve V.

2\ 2

\
©
3

[This is an NP-hard problem.]

_‘e

Applications:
= Every edge forms a task, and every vertex represents a person/machine
which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E' =G.E

3 while £ # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E' =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

N
[This algorithm is a 2-approximation for unweighted graphs!]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 14

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E' =G.E

3 while £ # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

& @ O ©
T 1t 1 A1

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E' =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® © O ©
1 1 1 1
)
[Computed solution has weight 101]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E' =G.E

3 while E' # 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

O © @ ©
1 1 1 1
)
[Optimal solution has weight 4]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 for each (u,v) € E

x(v) € {0,1} foreachv e V

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 15

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

minimize > w(v)x(v)
veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V
Linear Program
minimize > w(v)x(v)
vev
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € [0,1] foreachv e V

9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program

minimize > w(v)x(v)

veVv

subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

-
minimize > w(v)x(v)
vev
subject to x(u)+x(v) > 1 foreach (u,v) € E
x(v) € [0,1] foreachv e V

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

0-1 Integer Program
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) e {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)y+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
A2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]’

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC(G, w)

I C=29

2 compute X, an optimal solution to the linear program
3 foreachv eV

4 if x(v) > 1/2

5 C =CU{v}

6 return C

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC(G, w)
C=90
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{v}
return C

W N =

N W

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
C=90
compute X, an optimal solution to the linear program
foreachv e V
if x(v) > 1/2
C =CU{}
return C

W N =

N W

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

)

[is polynomial-time because we can solve the linear program in polynomial time]

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Example of APPROX-MIN-WEIGHT-VC

(7(;,1) =X(b) =x(e) = %, X(d) =1,%(¢c) = oJ
V

3
b
4
(@)
()
2

@

3

fractional solution of LP
with weight = 5.5

9. Approximation Algorithms © T. Sauerwald

Weighted Vertex Cover

Example of APPROX-MIN-WEIGHT-VC

(Y(a) =X(b) =Xx(e) = %, X(d) =1,X(c) = OJ (X(a) =x(b) =x(e) =1, x(d) =1, x(¢c) = OJ

3 3
b b

4 4
(&) (@)
Rounding
—_ e

()
2

2

3 1 3

fractional solution of LP rounded solution of LP
with weight = 5.5 with weight = 10

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17

Example of APPROX-MIN-WEIGHT-VC

(Y(a) =X(b) =Xx(e) = %, X(d) =1,X(c) = OJ (X(a) =x(b) =x(e) =1, x(d) =1, x(¢c) = OJ

3 3 3
b b b

4 4 4
(&) (@) (@)
Rounding
—_ e

() O
2 2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

" <w(C")

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

" <w(C")

= Step 1: The computed set C covers all vertices:

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZ* < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= atleast one of X(u) and X(v) is at least 1/2

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

" <w(C")
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

" <w(C")
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

" <w(C")
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

w(C) >z =Y w(v)X(v)

veVv

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
* * vi 1

> = Pypp—
w(C") >z E w(v)x(v) > E w(v) 5

vev vev: X(v)>1/2

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
* * v . 1 fr 1
w(C)>z" = wvx(v) = > w) 5 = 5w(O).

vev vev: X(v)>1/2

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

w(C)>z" =Y wvx(v) = > w)- % = %W(C).

vev vev: X(v)>1/2

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
" <w(C")

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(u) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

w(C)>z" =Y wvx(v) = > w)- % = %W(C). O

vev vev: X(v)>1/2

Rounding

9. Approximation Algorithms © T. Sauerwald Weighted Vertex Cover 18

	Randomised Approximation
	MAX-3-CNF
	Weighted Vertex Cover

