
2000 Paper 13 Question 11

Introduction to Functional Programming

The following is a recursive definition of a datatype ltree, which is intended to
represent binary trees in which data is stored only at the leaves, not at internal
nodes.

datatype ’a ltree = Empty

| Leaf of ’a

| Branch of (’a ltree) * (’a ltree);

(a) Write a simple recursive function

elems: (’a ltree) -> (’a list)

which gives a list of the data elements stored in a tree. [4 marks]

(b) Write an iterative version of this function

elemsi: (’a ltree * ’a list) -> (’a list)

which does not require appending of lists, and which satisfies the equality:

elemsi(t, l) = elems(t)@l

You do not have to prove the equality. [6 marks]

(c) Given the datatype of sequences:

datatype ’a seq = Nil

| Cons of ’a * (unit -> ’a seq)

write a function appendq:((’a seq)*(’a seq))-> (’a seq) for appending
two sequences. [4 marks]

Use this to define a function elemsq:(’a ltree)-> (’a seq) which, given a
tree, produces a lazy list of the data elements stored in it. [6 marks]

1


