2004 Paper 11 Question 7

Continuous Mathematics

For non-negative integers r and s we have the orthogonality properties
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Derive expressions for the Fourier coefficients ag, a,,, b, (n = 1,2,...) such that
the infinite series

70 Z_: ay, cos(nz) + by, sin(nz))
is the Fourier series for the function f(x) in an interval of length 27. [6 marks]

For any fixed integer N > 1 let
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be the Fourier series for f(x) truncated to the first N terms and let
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be any other Fourier series truncated to the first NV terms. Show that
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[8 marks]
Given the function f(x) show that
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L= ap, b, =0b, (n=1,2,...),

that is, the Fourier series gives the best approximation to f(z) using N terms
in the sense of minimising the mean-squared error. [6 marks]

is minimised by the unique choice af, = ayg, a,



