2006 Paper 4 Question 7

Numerical Analysis I

(a) The Newton-Raphson iteration for solution of f(x) = 0 is

$$\tilde{x} = x - \frac{f(x)}{f'(x)}.$$

By drawing a carefully labelled graph, explain the graphical interpretation of this formula. What is the order of convergence? [4 marks]

(b) Consider $f(x) = x^3 + x^2 - 2$. The following table shows successive iterations for each of the three starting values (i) x = 1.5, (ii) x = 0.2, (iii) x = -0.5. Note that, to the accuracy shown, each iteration finds the root at x = 1.

n	<i>(i)</i>	(ii)	(iii)
0	1.50000 $\times 10^{0}$	2.00000×10^{-1}	-5.00000×10 ⁻¹
1	1.12821 $\times 10^{0}$	$\texttt{3.95384}{\times}10^{0}$	-8.00000 $\times 10^{0}$
2	1.01152 $\times 10^{0}$	2.57730×10^{0}	-5.44318 $\times 10^{0}$
3	1.00010×10^{0}	1.70966 $\times 10^{0}$	-3.72976 $\times 10^0$
4	1.00000×10^{0}	1.22393 $\times 10^{0}$	-2.56345×10^{0}
5	1.00000×10^{0}	1.03212 $\times 10^{0}$	-1.72202×10^{0}
6		1.00079 $\times 10^{0}$	-9.62478×10^{-1}
7		1.00000 $\times 10^{0}$	$\texttt{1.33836}{\times}10^{0}$
8		1.00000 $\times 10^{0}$	$\texttt{1.06651}{\times}10^{0}$
9			1.00329 $\times 10^{0}$
10			1.00000 $\times 10^{0}$
11			1.00000 $\times 10^{0}$

Sketch the graph of f(x) and show the first iteration for cases (i) and (ii) to show why (i) converges faster than (ii). In a separate sketch, show the first two iterations for case (iii). [Hint: a very rough sketch will suffice for case (iii).] [10 marks]

(c) Now consider $f(x) = x^4 - 3x^2 - 2$. Calculate two Newton-Raphson iterations from the starting value x = 1. Comment on the prospects for convergence in this case.