2007 Paper 3 Question 4

Programming in C and C++

A C programmer is working with a little-endian machine with 8 bits in a byte and
4 bytes in a word. The compiler supports unaligned access and uses 1, 2 and 4 bytes
to store char, short and int respectively. The programmer writes the following
definitions (below right) to access values in main memory (below left):

Address| Byte offset

0 1 2 3
0x04 | 10 00 00 00
0x08 | 61 72 62 33
0xOc | 33 00 00 00
0x10 | 78 0Oc 00 00
0x14 | 08 00 00 00
0x18 | 01 00 4c 03
Oxlc | 18 00 00 00

int **i=(int **)0x04;

short **pps=(short **)0xlc;

struct i2c {
int 1i;
char *c;
}*p=(struct i2c*)0x10;

(a) Write down the values for the following C expressions:

(b)

*x%ki p—>c [2] &(*pps) [1] ++p->i
[8 marks]

Explain why the code shown below, when executed, will print the value 420.
#include<stdio.h>

#define init_employee(X,Y) {(X),(Y),wage_emp}

typedef struct Employee Em;

struct Employee {int hours,salary;int (*wage) (Em*);};
int wage_emp(Em *ths) {return ths->hours*ths->salary;}

#define init_manager(X,Y,Z) {(X),(Y),wage_man,(Z)}

typedef struct Manager Mn;

struct Manager {int hours,salary;int (*wage) (Mn*);int bonus;};
int wage_man(Mn *ths) {return ths->hours*ths->salary+ths->bonus;}

int main(void) {
Mn m = init_manager (40,10,20);
Em *e= (Em *) &m;
printf ("%d\n",e->wage(e));
return O;

[4 marks]

Rewrite the C code shown in part (b) using C++ primitives and give four
reasons why your C++ solution is better than the C one. [8 marks]

