
CST.2016.6.1

COMPUTER SCIENCE TRIPOS Part IB

Thursday 2 June 2016 1.30 to 4.30

COMPUTER SCIENCE Paper 6

Answer five questions.

Submit the answers in five separate bundles, each with its own cover sheet. On each
cover sheet, write the numbers of all attempted questions, and circle the number of
the question attached.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
Blue cover sheets
Tags

SPECIAL REQUIREMENTS
Approved calculator permitted

CST.2016.6.2

1 Complexity Theory

(a) Let f : N→ N be a function and let rng(f) be defined to be the set

rng(f) = {y | f(x) = y for some x ∈ N}.

(i) Define what it means to say that f is computable in polynomial time.
Pay particular attention to the question of how numbers are represented as
strings of symbols. [3 marks]

(ii) Show that if f is computable in polynomial time and increasing (i.e., for
all x ∈ N, x < f(x)), then rng(f) is in NP. [5 marks]

(iii) Show that if f is computable in polynomial time, increasing and injective,
then rng(f) is in UP. [5 marks]

(b) Let A ⊆ N be defined as the following set of numbers

A = {x | x = pq for distinct prime numbers p and q}.

Prove that A is in NP and in co-NP. [7 marks]

2

CST.2016.6.3

2 Complexity Theory

The Graph Isomorphism problem is the problem of deciding, given two graphs
G1 = (V1, E1) and G2 = (V2, E2), whether there is a bijection β : V1 → V2 such
that

(u, v) ∈ E1 if, and only if, (β(u), β(v)) ∈ E2,

for all u, v ∈ V1.

The Graph Isomorphism problem is not known to be in P nor known to be
NP-complete.

We define GI to be the set of all languages L which are polynomial-time reducible to
Graph Isomorphism.

What can you conclude from the above definitions and information about the truth
of the following statements? If the statement is true or false, justify your answer and
if you cannot conclude anything about its truth, explain why that is so.

(a) Graph Isomorphism is in NP. [4 marks]

(b) Graph Isomorphism is in co-NP. [4 marks]

(c) GI ⊆ NP. [3 marks]

(d) NP ⊆ GI. [3 marks]

(e) P ⊆ GI. [3 marks]

(f) GI ⊆ P. [3 marks]

3 Computation Theory

(a) Give a precise definition of the collection of partial recursive functions. You
should define any functions, or constructions on partial functions that you use
in your definition. [9 marks]

(b) Explain why every partial function computable by a register machine is a
partial recursive function. You may assume without proof the existence
of suitable primitive recursive functions for manipulating numerical codes of
register machine configurations so long as you state their properties precisely.

[10 marks]

(c) Is every partial recursive function computable by a register machine? [1 mark]

3 (TURN OVER)

CST.2016.6.4

4 Computation Theory

(a) Define the terms M of the λ-calculus and the relation M =β M
′ of β-conversion

between them. [6 marks]

(b) For n ∈ N, what is the nth Church numeral? [2 marks]

(c) Consider encoding a non-empty list of λ-terms M1,M2, . . . ,Mn as the λ-term

[M1,M2, . . . ,Mn] , λx f. f M1(f M2 . . . (f Mn x) . . .)

where the variables x and f do not occur free in M1,M2, . . . ,Mn. Give, with
justification, λ-terms Iter, Cons, Append and Nil satisfying

(i) IterM F [M1,M2, . . . ,Mn] =β F M1(F M2 . . . (F MnM)) [2 marks]

(ii) ConsM [M1,M2, . . . ,Mn] =β [M,M1,M2, . . . ,Mn] [3 marks]

(iii) Append [M1, . . . ,Mm] [N1, . . . , Nn] =β [M1, . . . ,Mm, N1, . . . , Nn] [3 marks]

(iv) ConsM Nil =β [M], IterM F Nil =β M and AppendNilN =β N [4 marks]

4

CST.2016.6.5

5 Logic and Proof

(a) Write brief notes on the use of clause methods to prove theorems. Include a
description of an algorithm that can find a model of a set of clauses, if one
exists. Illustrate your answer using the following example:

{P,Q,¬R} {¬P,R} {¬Q} {P,R}

[6 marks]

(b) For each of the following sets of clauses, either exhibit a model or show that
none exists. Below, a and b are constants, while x, y and z are variables.

(i)

{¬P (x), Q(x, x)}
{¬Q(x, y),¬Q(y, x), R(x, y)}
{¬R(x, y),¬R(y, x)}
{P (a), P (b)}

[7 marks]

(ii)

{P (x), Q(x)}
{¬P (x), Q(f(x))}
{P (x),¬Q(f(x))}
{¬P (x),¬Q(x)}

[7 marks]

5 (TURN OVER)

CST.2016.6.6

6 Logic and Proof

(a) Write brief notes on Satisfiability Modulo Theories (SMT). Explain how SMT
works and what sort of problem it can solve. [4 marks]

(b) Outline the basic ideas behind Fourier-Motzkin variable elimination, demon-
strating them by solving the following set of constraints:

x+ z ≥ 5 y + z ≥ 5 y − 2z ≥ −2 x+ y + z ≤ 7

[8 marks]

(c) Briefly describe an algorithm for constructing a Binary Decision Diagram (BDD)
without first constructing the full binary decision tree. Illustrate your answer by
constructing the BDD for (P ∨R)→ (P ∧ (Q⊕R)), where ⊕ denotes exclusive
OR.

[8 marks]

6

CST.2016.6.7

7 Mathematical Methods for Computer Science

(a) (i) Express W , the primitive N th root of unity, as a complex exponential.
[2 marks]

(ii) Express the N -point real-valued discrete sequence f [n] = cos(2πn/N) for
n = 1, 2, 3, . . . , N in terms of W . [3 marks]

(iii) Using a vector sum diagram in the complex plane, show how elements of
the real-valued discrete sequence f [n] are represented as a sum of complex
numbers related to W , each having unit length. Construct your diagram
for the particular case of integer n = N/8. [2 marks]

(b) A zero-centred pulse function F (ω) in the frequency domain ω, having unit area
F (ω) = 1/2 for ω ∈ [−1,+1], and F (ω) = 0 for | ω | > 1, represents one ideal
low-pass filter.

i

e i/4

e i/4

1 1 -1

1/2

F()



(i) Derive its inverse Fourier transform f(x). [4 marks]

(ii) Sketch a plot of this function and specify the roots of f(x) = 0. [2 marks]

(c) Let f(x) be any real-valued function whose Fourier transform F (ω) exists.
Show that F (ω) has the property of Hermitian symmetry F (−ω) = F (ω), and
comment on the computational benefits that result from this property.

Hint : Represent f(x) as the sum of an even function fe(x) plus an odd function
fo(x), where

fe(x) =
1

2
(f(x) + f(−x))

fo(x) =
1

2
(f(x)− f(−x))

and then consider the Fourier transform of f(x) = fe(x)+fo(x). You may invoke
known properties of even- and odd-symmetric functions without proof.

[7 marks]

7 (TURN OVER)

CST.2016.6.8

8 Mathematical Methods for Computer Science

(a) (i) Consider a random variable X with moment generating function MX(t).
State Chernoff’s bound for the probability P(X ≥ a) where a is a constant.

[2 marks]

(ii) If X ∼ Binomial(n, p) apply Chernoff’s bound to X and minimize the upper
bound over the values t > 0 to show that for np < a < n

P(X ≥ a) ≤
(np
a

)a(n(1− p)
n− a

)n−a
.

[8 marks]

(b) An online service company receives n tasks per unit time and wishes to serve
these tasks using m servers. The allocation of the tasks to the servers is
by a randomized load balancing strategy that assigns each of the n tasks
independently and uniformly to one of the m servers. Each server can serve
up to and including t tasks per unit time without becoming overloaded. Let Xi

for i = 1, 2, . . . ,m be the random number of tasks assigned to the ith server in
a given unit of time.

(i) What is the marginal distribution of Xi for each i = 1, 2, . . . ,m?
[2 marks]

(ii) State whether or not the random variables Xi for i = 1, 2, . . . ,m are
mutually independent. Justify your result. [3 marks]

(iii) Let Ym = max{X1, X2, . . . , Xm} and show that

P(Ym ≥ a) ≤ mP(Xi ≥ a) i = 1, 2, . . . ,m .

You may assume without proof that if A1, A2, . . . , Ar are random events
then P(∪ri=1Ai) ≤

∑r
i=1 P(Ai). [2 marks]

(iv) The company asks your advice about a suitable number of servers to rent
so that the probability that at least one of the servers is overloaded in a
given unit of time is no greater than 0.01. Determine an expression for the
least value of m such that the stated criterion is met. [3 marks]

8

CST.2016.6.9

9 Semantics of Programming Languages

Consider the imperative language syntax below. Here n ranges over 32-bit numbers
N32 = [0, .., 232 − 1], with modular addition ⊕, and x ranges over an infinite set of
identifiers.

e ::= n | ref e | !e | e := e ′ | skip | e; e ′ | x | let x = e in e ′

We give it two semantics. The first extends the syntax with abstract locations l
(taken from some infinite set L) and has an abstract store s, a finite partial function
from abstract locations to values v ::= n | l . The initial abstract store s0 is the
partial function with empty domain. The semantic rules are all standard; the most
interesting are shown below for reference.

〈e1, s1〉 −→ 〈e2, s2〉

l 6∈ dom (s)

〈ref v , s〉 −→ 〈l , s + {l 7→ v}〉
ref1

l ∈ dom (s) ∧ s(l) = v

〈!l , s〉 −→ 〈v , s〉
deref1

l ∈ dom (s)

〈l := v , s〉 −→ 〈skip, s + {l 7→ v}〉
assign1

For the second semantics we have a concrete store M , a total function from concrete
addresses n ∈ N32 to values which here are also just numbers n′ ∈ N32, together with
a counter a ∈ N32 that records the next unallocated address. This semantics uses
the abstract syntax exactly as above, without abstract locations. The initial concrete
store M0 maps all addresses to 0; the initial a0 = 0. The interesting rules are:

〈e1,M1, a1〉 =⇒ 〈e2,M2, a2〉

〈ref n,M , a〉 =⇒ 〈a,M + {a 7→ n}, a ⊕ 1〉
ref1’

M (n) = n ′

〈!n,M , a〉 =⇒ 〈n ′,M , a〉
deref1’

〈n := n ′,M , a〉 =⇒ 〈skip,M + {n 7→ n ′}, a〉
assign1’

Consider expressions e of the form let x = ref 3 in e ′; !x , where e ′ does not contain
any free occurrences of x or any abstract locations l .

(a) Can e (with the initial store) reduce to a value different from 3, (i) in the abstract
semantics or (ii) in the concrete semantics? In each case, either give an example
and explain it or give a careful informal argument why not. [8 marks]

(b) Define a large subset of the expressions that reduce to the same value in both
semantics. Explain your answer. [8 marks]

(c) Discuss the advantages and disadvantages of the two semantics for a C-like
systems programming language. [4 marks]

9 (TURN OVER)

CST.2016.6.10

10 Semantics of Programming Languages

Explain the issues involved in the design of type systems with subtyping for a language
with types

T ::= integer | real | bool | unit | T1 → T2 |
{lab1 : T1, .., labk : Tk} | T ref

You should include precise rules for subsumption and for the definition of the subtype
relation <:. You should also include examples as appropriate, but there is no need
to include the standard operational semantics or expression typing rules.

[20 marks]

END OF PAPER

10

