COMPUTER SCIENCE TRIPOS Part IT — 2020 — Paper 8

8 Hoare Logic and Model Checking (jp622)

Consider commands C' composed from assignments X := E (where X is a program
variable, and F is an arithmetic expression), heap allocation X := alloc(FE, ..., E,),
heap assignment [E;| := Es, heap dereference X := [E], disposal of heap locations
dispose(F), the no-op skip, sequencing C1; Cy, conditionals if B then C) else Cy
(where B is a boolean expression), and loops while B do C. null is 0.
Recall the separation logic partial list representation predicates:

plist(t, ], w) = (t=u)ANemp

plist(t,h ::a,u) = Fy. ((t—=h)*((t+ 1) — y) * plist(y, a,u))

Circular lists can be represented by clist(¢, o) = plist(t, o, t) A (a =[] = t = null).
(a) Assuming F{P,} C; {Q1} and FH{P>} Cs {Q2}:
(i) explain precisely why F{P; x P} C1;Cy {Q1 * Q2} [2 marks]
(77) give a counterexample to = {Py A Py} C; Cy {Q1 A Q2}. [1 mark]

(b) Give a proof outline for the following circular list ‘next’ triple:
{clist(X,t:: )} X :=[X + 1] {clist(X,a ++ [t])} [3 marks]

(¢) Give a loop invariant (no need for a proof outline) for the following circular list
‘length’ triple:]
{clist(X, a)}
if X =null thenY :=0
else (Z:=[X+1];Y :=1;while Z# X do (Z:=[Z+1};Y =Y + 1))
{clist(X,a) * Y = length(a)}
[3 marks]

(d) Give a loop invariant (no need for a proof outline) for the following triple for a
‘previous’ operation on non-empty circular lists:
{clist(X,a + [t])}
Z=X;Y =[X+1;(whileY # X do (Z :=Y;Y =Y +1))); X =2
{clist(X,t :: )}
[4 marks|

(e) Give a loop invariant (no need for a proof outline) for the following triple for a
‘dial to minimum’ operation on non-empty circular lists:
{clist(X, a; + [t] ++ a2) A sorted(t :: merge(sort(ay), sort(az)))}
Z:=X;M:=[X];Y :=[X +1];
(while Y # Z do
(N :=[Y];(if N < M then X :=Y else skip);Y :=[Y +1]));
{clist(X, [t] + aa ++ reverse(ay))}
[5 marks]

(f) Describe precisely all pairs of a stack and a heap that satisfy
Jy,z. (X —ysy—zxz2=>X)ANY =0)
[2 marks]



