
## COMPUTER SCIENCE TRIPOS Part IB, Part II 50% - 2022 - Paper 7

## 6 Further Graphics (aco41)

- (a) Which of the following is an implicit function for a closed curve? Briefly explain.
  - (i)  $x^2 + (xy)^2$ , x, y > 0 [1 mark]
  - (ii)  $e^{f(x,y)} 1$ , where f(x,y) is an implicit function for a closed curve.

[1 mark]

- (iii) f(x,y) = 1 if g(x,y) > 1 and f(x,y) = g(x,y) otherwise, where g(x,y) is an implicit function for a closed curve. [1 mark]
- (iv) f(x,y)g(x,y), where f and g are implicit functions for circles of radius 2, one centered at (0,0) and the other at (1,0). [2 marks]
- (b) In this question, we will derive an implicit representation for a triangle.



- (i) Write the implicit function for a line passing through (0,0) on the xy-plane. [1 mark]
- (ii) Derive the implicit functions of the three lines in the figure on the left. [3 marks]
- (iii) Derive an implicit function representing the triangle that is formed by the three lines. The function is 0 inside the triangle (shaded in the figure) and non-zero otherwise. [Hint: You may use the function  $\max(0, x)$ .]

  [3 marks]
- (c) In this question, we represent rotations in the xy-plane with quaternions.
  - (i) Write the quaternion representing a rotation of angle  $\theta$  around the z-axis. [1 mark]
  - (ii) Derive the quaternion for rotation by  $\theta_1$  and then by  $\theta_2$  around the z-axis. [Hint:  $\cos(a)\cos(b) \sin(a)\sin(b) = \cos(a+b)$ , and  $\sin(a)\cos(b) + \cos(a)\sin(b) = \sin(a+b)$ .] [3 marks]
  - (iii) Starting from spherical blending of quaternions, prove that shortest path interpolation from the first to the second quaternion above (with  $\theta_2 > \theta_1$ ) is given by:  $\mathbf{q}(t) = \cos([(1-t)\theta_1 + t\theta_2]/2) + \hat{z}\sin([(1-t)\theta_1 + t\theta_2]/2)$ , where  $t \in [0,1]$ . [Hint: Recall that  $\mathbf{q}^t = e^{t\log \mathbf{q}}$ ,  $\log \mathbf{q} = \frac{\theta}{2}\mathbf{s}$ , and  $e^{\mathbf{q}} = \cos||\mathbf{q}|| + \frac{\mathbf{q}}{||\mathbf{q}||}\sin||\mathbf{q}||$  for a quaternion  $\mathbf{q} = \cos(\theta/2) + \mathbf{s}\sin(\theta/2)$ .] [4 marks]