COMPUTER SCIENCE TRIPOS Part IB - 2023 - Paper 6

4 Computation Theory (amp12)

- (a) For the λ -calculus, define the notions of
 - (i) β -conversion (= $_{\beta}$) [2 marks]
 - (ii) Church numeral (\underline{n}) [2 marks]
- (b) What does it mean for a total function $f: \mathbb{N}^n \to \mathbb{N}$ to be λ -definable? Explain why it is the case that not every $f: \mathbb{N}^n \to \mathbb{N}$ is λ -definable, carefully stating any standard results that you rely upon. [3 marks]
- (c) Explain why the predecessor function $pred: \mathbb{N} \to \mathbb{N}$

$$pred(x) = \begin{cases} 0 & \text{if } x = 0\\ x - 1 & \text{if } x > 0 \end{cases}$$

is λ -definable and give a λ -term that represents it.

[4 marks]

- (d) Show that the following functions are λ -definable. For each part you may assume solutions to the previous parts of the question.

 - (ii) $and: \mathbb{N}^2 \to \mathbb{N}$, where $and(x,y) = \begin{cases} 0 & \text{if } x = 0 \text{ and } y = 0 \\ 1 & \text{if } x \neq 0 \text{ or } y \neq 0 \end{cases}$ [1 mark]
 - (iii) $monus: \mathbb{N}^2 \to \mathbb{N}$, where $monus(x,y) = \begin{cases} x-y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$ [3 marks]
 - (iv) $eq: \mathbb{N}^2 \to \mathbb{N}$, where $eq(x,y) = \begin{cases} 0 & \text{if } x = y\\ 1 & \text{if } x \neq y \end{cases}$ [2 marks]