
COMPUTER SCIENCE TRIPOS Part IB – 2024 – Paper 7

7 Further Graphics (aco41)

(a) You are given a unit length rod as in the figure. There is no rotation at one end of the rod at point \mathbf{x}_0 and a rotation around the plane normal \mathbf{n} is defined at the other end \mathbf{x}_1 . This rotation is interpolated along the rod. The interpolation weight for \mathbf{x} on the rod is $||\mathbf{x} - \mathbf{x}_i||$ for the rotation at \mathbf{x} , i = 0, 1.

- (i) Write the rotation in quaternion form at \mathbf{x} given a rotation of $\theta \leq \pi$ at \mathbf{x}_1 assuming shortest path interpolation of rotations in SO(3). [3 marks]
- (*ii*) At \mathbf{x}_1 at time t = 0 there is no rotation and at t = 1 the rotation angle is $\pi/2$. Write the quaternion at \mathbf{x} at any time in [0, 1] assuming the shortest path interpolation in SO(3) over time and over the rod. [3 marks]
- (*iii*) Answer (*ii*), this time assuming linear blending of quaternions along the rod and the shortest path interpolation in SO(3) over time. [3 marks]
- (iv) Write an expression for the norm of the quaternion in (iii). [3 marks]
- (b) Given a triangle in 3D with vertex locations $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$,
 - (i) determine a condition on the vertices for the triangle to define a valid plane, [1 mark]
 - (*ii*) define a parametric form $\mathbf{p}(u, v)$ for the plane of the triangle assuming it defines a valid plane, [2 marks]
 - (*iii*) write an expression for the normal of the plane, [1 mark]
 - (*iv*) write the steps of an algorithm to find the closest point of a point \mathbf{x} in space on the triangle. [4 marks]